
Sequent systems for Lambek calculi and their
extensions: A survey of new results

Wojciech Buszkowski

Faculty of Mathematics and Computer Science
Adam Mickiewicz University, Poznań



Abstract

Lambek’s paper “The mathematics of sentence structure” (1958)
introduced Syntactic Calculus as an extension of the type reduction
procedure for categorial grammars, due to Ajdukiewicz (1935) and
Bar-Hillel (1953). This calculus was later called Lambek Calculus
and extensively studied in computational linguistics as a basic type
logic for these grammars. In 1961 Lambek proposed a
non-associative version of this calculus. Here we denote these
calculi by L and NL, respectively. Lambek presented both calculi in
the form of Gentzen-style sequent systems and proved the
cut-elimination theorems for them. A characteristic feature of these
systems is the lack of structural rules (exchange, weakening,
contraction), which are admitted in sequent systems for classical
logic and intuitionistic logic. The connectives are multiplication ⊗
and two implications \, /; the latter are also called divisions or
residuations.



One also considers many extensions of L and NL. In the logical
community, in particular in substructural logics, L enriched with 1
(the unit for ⊗) and lattice connectives and constants is called Full
Lambek Calculus (FL) and regarded as a basic substructural logic.
Substructural logics are defined as extensions of FL by new axioms
and rules. The name substructural logics is justified by the lack of
some structural rules in their sequent systems. Propositional Linear
Logic (PLL) of Girard (1987) enriches the commutative FL with
negation, satisfying the double negation law, and two unary
modalities, called exponentials. Its fragment without exponentials is
called Multiplicative-Additive Linear Logic (MALL); Lambek
connectives, 1 and negation are referred to as multiplicative and
lattice connectives and constants as additive. Further extensions
admit various modalities, Kleene iteration, the distributive laws for
lattice connectives, and others.



In this talk I focus on sequent systems for different logics from this
family. More precisely, I consider two properties of them: cut
elimination and interpolation. I’m concerned with some
consequences of these properties, which are interesting for
computational linguistics.
The cut elimination theorems were proved for almost all systems,
considered here. This talk, however, discusses generalized versions
of these theorems, working for logics extended with non-logical
axioms, here called assumptions. As a consequence, these logics are
strongly conservative extensions of their language-restricted
fragments. Like in foundations of mathematics first-order theories
are even more important than the pure first-order logic, I believe
that Lambek logics with assumptions can find useful applications in
linguistics.



Furthermore, applying cut-free systems for pure logics one
constructs syntactic interpretations of stronger logics in weaker
logics, admitting Lambek’s restriction: the antecedent of any
sequent must be nonempty; see (Buszkowski 2014, 2015).

Craig Interpolation Lemma states that for any provable implication
φ→ ψ there exists an interpolant χ such that χ uses only
nonlogical symbols symbols common for φ and ψ and both ϕ→ χ
and χ→ ψ are provable.
For L the interpolation lemma of Roorda (1991), formulated for a
sequent system for L, states that for any provable sequent
Γ1,∆, Γ2 ⇒ A there exists an interpolant D such that both
Γ1,D, Γ2 ⇒ A and ∆ ⇒ D are provable, and the number of
occurrences of any atom in D is not greater than these numbers for
∆ and for the context Γ1,_, Γ2 ⇒ A. Roorda’s lemma is essential
in the proof that Lambek grammars are weakly equivalent to
context-free grammars (Pentus 1993).



For multiplicative non-associative logics, if Γ[∆] ⇒ A is provable,
then the interpolant D of ∆ can be found among subformulas of
the formulas in Γ[∆] ⇒ A (for systems with assumptions one must
adds subformulas of the formulas in assumptions). For NL with
assumptions, the latter lemma was proved in (Buszkowski 2005),
and later extended to other logics by several authors. Some
interesting consequences are the PTIME complexity of the
consequence relation (i.e. provability from assumptions) for these
logics and the weak equivalence of categorial grammars based on
these logics (also with assumptions) with context-free grammars.



Lambek calculi

The calculus NL in algebraic form. A,B,C denote formulas (types)
formed out of atoms p, q, r , . . . and connectives ⊗, \, /. The
axioms are

(Id) A ⇒ A

and the inference rules are

(RES-R1)
A⊗ B ⇒ C

B ⇒ A\C
(RES-R2)

A⊗ B ⇒ C

A ⇒ C/B

(CUT)
A ⇒ B ; B ⇒ C

A ⇒ C

The algebraic form of L is obtained by affixing two new axioms,
which express the associative law

(As1) (A⊗B)⊗C ⇒ A⊗(B⊗C ) (As2) A⊗(B⊗C ) ⇒ (A⊗B)⊗C

⇒ is interpreted as the partial order in the model.



The following rules are derivable in both NL and L

(MON-R1)
A ⇒ B

C ⊗ A ⇒ C ⊗ B
(MON-R1’)

A ⇒ B

A⊗ C ⇒ B ⊗ C

(MON-R2)
A ⇒ B

C\A ⇒ C\B
(MON-R2’)

A ⇒ B

B\C ⇒ A\C

(MON-R3)
A ⇒ B

A/C ⇒ B/C
(MON-R3’)

A ⇒ B

C/B ⇒ C/A

We list some laws provable in NL
(L1) A⊗ (A\B) ⇒ B , (B/A)⊗ A ⇒ B (application)
(L2) A ⇒ (B/A)\B , A ⇒ B/(A\B) (type-raising)
(L3) A ⇒ B\(B ⊗ A) , A ⇒ (A⊗ B)/B (expansion)
and in L
(L4) (A\B)⊗ (B\C ) ⇒ A\C , (A/B)⊗ (B/C ) ⇒ A/C
(composition)
(L5) (A\B)/C ⇒ A\(B/C ), A\(B/C ) ⇒ (A\B)/C (switching)



Let us briefly discuss the linguistic meaning of this formalism. The
basic interpretation refers to syntax. Σ is the lexicon of some
language. Sentences and other phrases are represented as strings of
words from Σ. Types represent certain sets of strings,
corresponding to syntactic categories. The order is inclusion.
Atomic types represent some basic categories, e.g. s - the category
of declarative sentences (statements), n - the category of proper
nouns, N - the category of common nouns.
Compound types represent functor categories. A string x is of type
A\B (resp. B/A), if and only if for any y of type A the
concatenation yx (resp. xy) is of type B ; one says that x is a
left-looking (resp. right-looking) functor from category A to
category B . Also z is of type A⊗ B if and only if z = xy , for some
x of type A and y of type B .
In non-associative frameworks, strings are replaced by bracketed
strings (phrase structures). One writes (x , y) for xy .



So n\s represents the category of verb phrases (e.g ‘works’),
(n\s)/n the category of transitive verb phrases (e.g. ‘likes’),
s/(n\s) the category of (full) noun phrases (e.g. ‘every boy’),
(s/(n\s))/N the category of determiners (e.g. ‘every’), and so on.

n ⇒ s/(n\s) (an instance of (L2)) says that every proper noun is a
full noun phrase.
Here we ignore agreement, flection etc. To regard them a finer
typing is necessary. For instance, s1 for statements in present tense,
s2 for statements in past tense, ni , i = 1, 2, 3, for subjects in the
i−th person. Then, ‘likes’ is of type n3\s1, ‘like’ is of types n1\s1
and n2\s1, and ‘liked’ is of types ni\s2, for i = 1, 2, 3.

One may use n as a general type of subjects, assuming ni ⇒ n, for
i = 1, 2, 3, and similarly s as a general type of statements,
assuming si ⇒ s, for i = 1, 2. (This naturally leads to Lambek
calculi with assumptions.) Then, ‘liked’ can be assigned type n\s2,
and n\s2 ⇒ n\s is provable, by (MON-R2).



Categorial grammars

A categorial grammar provides the whole information on the
particular language by types assigned to words (the principle of
lexicalism). Other types are derived by the logic underlying the
grammar (common for all languages). One may assign many types
to one word.
We assign ‘John’: n,‘smiles’: n\s. This yields ‘John smiles’: s,
since n ⊗ (n\s) ⇒ s is provable both in NL and L.
We assign ‘often’: (n\s)/(n\s). This yields ‘John often smiles’: s,
since n ⊗ ((n\s)/(n\s))⊗ (n\s) ⇒ s is provable in L.
In NL, n ⊗ (((n\s)/(n\s))⊗ (n\s)) ⇒ s is provable, which yields
(John, (often, smiles)): s.
We assign ‘boy’: N, ‘some’: (s/(n\s))/N. This yields ‘some boy
smiles’: s in grammars based on L, and ((some, boy), smiles): s in
grammars based on NL.



Sequent systems for L and NL

For L, a sequent is of the form Γ ⇒ A, where Γ is a nonempty
sequence of types. Commas in Γ are interpreted as ⊗. The axioms
are (Id) A ⇒ A. The rules are as follows.

(⊗ ⇒)
Γ,A,B,∆ ⇒ C

Γ,A⊗ B,∆ ⇒ C
(⇒ ⊗)

Γ ⇒ A ∆ ⇒ B

Γ,∆ ⇒ A⊗ B

(\ ⇒)
Γ,B,∆ ⇒ C Φ ⇒ A

Γ,Φ,A\B,∆ ⇒ C
(⇒ \) A, Γ ⇒ B

Γ ⇒ A\B

(/⇒)
Γ,A,∆ ⇒ C Φ ⇒ B

Γ,A/B,Φ,∆ ⇒ C
(⇒ /)

Γ,B ⇒ A

Γ ⇒ A/B

(CUT)
Γ,A,∆ ⇒ B Φ ⇒ A

Γ,Φ,∆ ⇒ B

In (⇒ \) and (⇒ /) the sequence Γ must be nonempty. Removing
this constraint yields a stronger system Lϵ, admitting empty
antecedents of sequents.



In NL the antecedent of a sequent is a bunch. A bunch is a single
formula or (Γ,∆), where Γ and ∆ are simpler bunches. A context is
a bunch Γ[_] with one occurrence of the special atom _. Γ[∆]
denotes the substitution of ∆ for _ in this context.
The axioms of NL are (Id). The inference rules are as follows.

(⊗ ⇒)
Γ[(A,B)] ⇒ C

Γ[A⊗ B] ⇒ C
(⇒ ⊗)

Γ ⇒ A ∆ ⇒ B

(Γ,∆) ⇒ A⊗ B

(\ ⇒)
Γ[B] ⇒ C ∆ ⇒ A

Γ[(∆,A\B)] ⇒ C
(⇒ \) (A, Γ) ⇒ B

Γ ⇒ A\B

(/⇒)
Γ[A] ⇒ C ∆ ⇒ B

Γ[(A/B,∆)] ⇒ C
(⇒ /)

(Γ,B) ⇒ A

Γ ⇒ A/B

(CUT)
Γ[A] ⇒ B ∆ ⇒ A

Γ[∆] ⇒ B

NLϵ admits the empty bunch ϵ as the antecedent of a sequent. One
assumes (ϵ, Γ) = Γ = (Γ, ϵ) and writes ⇒ A for ϵ⇒ A.



Cut elimination

The cut-elimination theorem Every sequent provable in the logic
has a proof with no application of (CUT).

This theorem was proved for the sequent systems for L and NL by
Lambek (1958, 1961) by proof-theoretic methods. The same proofs
work for Lϵ and NLϵ.
Main consequences:
(1) Every provable sequent has a proof such that every formula
appearing in the proof is a subformula of some formula occurring in
this sequent (the subformula property).
(2) The logic is a conservative extension of its all language
restricted fragments. For instance, L is a conservative extension of
L restricted to \, /.
(3) If the size of the conclusion of every rule is not less than the
size of each premise of this rule, than the logic is decidable. This
holds for the four logics considered above.



We also consider the consequence relation S ⊢ Γ ⇒ A, where S is a
set of sequents., called assumptions. In opposition to axioms, the
set of assumptions need not be closed under substitution.

The extended subformula property If a sequent is provable in the
logic from a set of assumptions S , then it has a proof from S such
that every formula appearing in the proof is a subformula of some
formula occurring in this sequent or in assumptions.
For NL and L, this was proved by W.B. (2005) by a model-theoretic
argument: if a sequent has no proof satisfying this property, than
there exists a model such that all assumptions are true but the
sequent is not true.
My PhD student Zhe Lin (2010) found a proof-theoretic argument.
For NL and L, one can only consider assumptions is of the form
A ⇒ B . For NL, each assumption A ⇒ B is replaced by the
following rule.

(S−CUT)
Γ[B] ⇒ C ∆ ⇒ A

Γ[∆] ⇒ C



(S−CUT) for L
Γ,B,∆ ⇒ C Φ ⇒ A

Γ,Φ,∆ ⇒ C

In NLϵ and Lϵ one can only consider assumptions of the form ⇒ A.
Each assumption ⇒ A is replaced by the following (S−CUT)-rule.

for NLϵ
Γ[A] ⇒ B

Γ[ϵ] ⇒ B
for Lϵ

Γ,A,∆ ⇒ B

Γ,∆ ⇒ B

One must reduce Γ[ϵ] to a bumch without explicit occurrences of ϵ.
One proves the cut-elimination theorem in the form: Every sequent
provable from S has a proof not applying (CUT), but it can use
some rules (S−CUT).
This yields the extended subformula property. Accordingly, each
logic preserves the consequence relation of its language restricted
fragments.
This does not yield decidability. The consequence relations for L
and Lϵ (with finite S) are undecidable.



Extensions

The same can be shown for different extensions of Lambek calculi.
Full Lambek Calculus (FL) enriches L with additive connectives
∧,∨ with the corresponding rules.

(∧ ⇒)
Γ,A,∆ ⇒ C

Γ,A ∧ B,∆ ⇒ C

Γ,B,∆ ⇒ C

Γ,A ∧ B,∆ ⇒ C
(⇒ ∧) Γ ⇒ A ∆ ⇒ B

Γ,∆ ⇒ A ∧ B

(∨ ⇒)
Γ,A,∆ ⇒ C Γ,B,∆ ⇒ C

Γ,A ∨ B,∆ ⇒ C
(⇒ ∨) Γ ⇒ A

Γ ⇒ A ∨ B

Γ ⇒ B

Γ ⇒ A ∨ B

For FNL the left-introduction rules are as follows.

(∧ ⇒)
Γ[A] ⇒ C

Γ[A ∧ B] ⇒ C

Γ[B] ⇒ C

Γ[A ∧ B] ⇒ C
(∨ ⇒)

Γ[A] ⇒ C Γ[B] ⇒ C

Γ[A ∨ B] ⇒ C

In the same way one obtains FLϵ and FNLϵ from Lϵ and NLϵ,
respectively. In the literature on substructural logics, Full Lambek
Calculus is defined as FLϵ with constant 1, admitting:

(⇒ 1) ⇒ 1 (1 ⇒)
Γ,∆ ⇒ A

Γ, 1,∆ ⇒ A



Optionally one adds the constant 0 with no new axioms or rules.
One defines substructural negations A∼ = A\0, A− = 0/A.

One can also add some structural rules: exchange (e), weakening
(w), contraction (c).

(e)
Γ,A,B,∆ ⇒ C

Γ,B,A,∆ ⇒ C
(w)

Γ,∆ ⇒ A

Γ,Φ,∆ ⇒ A

(c)
Γ,Φ,Φ,∆ ⇒ A

Γ,Φ,∆ ⇒ A

We omit non-associative versions of these rules.
In logics with (e) the formulas A\B and B/A are equivalent. Both
are replaced by A → B . In logic with (w) and 1 one proves A ⇒ 1,
hence 1 is interpreted as the greatest element in models.
Each logic is a strongly conservative extension of its language
restricted fragments.



A syntactic interpretation

Systems admitting empty antecedents are preferred by logicians:
they yield provable formulas.
Systems not admitting empty antecedents are preferred by some
linguists. For instance, in Lϵ the types N/N and ((N/N)/(N/N)
are equivalent, while linguists want to distinguish them: N/N is
assigned to adjectives and (N/N)/(N/N) to adverbs.
In W.B. (2014, 2015) the former systems (admitting empty
antecedents) are interpreted in the latter (not admitting empty
antecedents). One defines two interpretation maps P and N: P is
applied to positive occurrences and N to negative occurrences of
subformulas in the sequent. This is more elegant for logics with
∧,∨.
P(p) = N(p) = p for atoms p
P(A ∧ B) = P(A) ∧ P(B), N(A ∧ B) = N(A) ∧ N(B), similarly for
∨
N(A⊗ B) = N(A)⊗ N(B)



P(A⊗ B) = P(A)⊗ P(B) if neither ⇒ A, nor ⇒ B is provable
P(A⊗ B) = (P(A)⊗ P(B)) ∨ P(B) if ⇒ A but not ⇒ B is
provable
P(A⊗B) = (P(A)⊗P(B))∨P(A) if ⇒ B but not ⇒ A is provable
P(A⊗ B) = (P(A)⊗ P(B)) ∨ P(A) ∨ P(B) if both ⇒ A and ⇒ B
are provable
P(A\B) = N(A)\P(B), P(B/A) = P(B)/N(A)
N(A\B) = P(A)\N(B), N(B/A) = N(B)/P(A) if ⇒ A is not
provable
N(A\B) = (P(A)\N(B)) ∧ N(B),
N(B/A) = (N(B)/P(A)) ∧ N(B) if ⇒ A is provable

Theorem For every sequent Γ ⇒ A with Γ ̸= ϵ, this sequent is
provable in FLϵ if and only if N(Γ) ⇒ P(A) is provable in FL.
This also holds for logics with structural rules and non-associative
logics. One essentially uses cut-elimination for the pure logics.



Interpolation

Interpolation in our sense reverses cut elimination. Every provable
sequent (also from assumptions) can be presented as the conclusion
of (CUT), where the cut-formula is a subformula of some formula
appearing in this sequent (or in some assumption).

The interpolation theorem Let Γ[∆] ⇒ A be provable from S .
There exists a formula D, being a subformula of some formula in
this sequent or in sequents from S , such that both Γ[D] ⇒ A and
∆ ⇒ D are provable from S .
D is called an interpolant of ∆ in Γ[∆] ⇒ A.
W.B. (2005) proves this theorem for NL. The proof works for NLϵ

(also with 1). One proceeds by induction on proofs, satisfying the
extended subformula property.
Let T be a set of formulas, closed under subformulas.
A T−sequent consists of formulas from T only.
A sequent of the form A ⇒ B or (A,B) ⇒ C is said to be basic.



We fix a finite set of assumptions S . Every assumption is of the
form A ⇒ B with A,B ∈ T .
We construct a set C (T ) which consists of all basic T−sequents
provable from S in NL. The construction can be performed in
polynomial time. We omit details.
Therefore, the consequence relation for NL is PTIME.

Furthermore, every provable T−sequent Γ ⇒ A can be proved from
C (T ) using (CUT) only. This is essentially a derivation in a
context-free grammar.
Therefore, the categorial grammars, based on NL with finitely many
assumptions, generate context-free languages.

Bulińska (2009) proved the same results for NLϵ with 1 and Zhe Lin
(2010) for some modal extensions of NL.



For logics with ∧,∨, the interpolant can be a ∧,∨−combination of
formulas from a finite set. In general, this yields an infinite set of
possible interpolants, It is known that the consequence relations for
FNL and FNLϵ are undecidable (Chvalovsky 2015).
They are decidable for FNL and FNLϵ enriched with the distributive
laws. It suffices to add one new axiom.

(Dist) A ∧ (B ∨ C ) ⇒ (A ∧ B) ∨ (A ∧ C )

The interpolation theorem can be proved with a finite set of
possible interpolants. Using the distributive laws, every
∧,∨−combination of formulas from T can be transformed into its
CNF. Omitting repetitions, one obtains a finite set of these forms.
This yields the decidability and the context-freeness of languages
generated by categorial grammars based on these logics (W.B.
2011). The consequence relation for these logics with ⊤,⊥ is
EXPTIME-complete (Shkatov, van Alten 2019).



Non-associative linear logics

In the last years some related results were obtained for the
multiplicative fragments of non-associative linear logics. Recently
non-associative linear logics have been studied by authors from the
community of computational logic; see e.g. (Blaisdell et al. 2022).
The first logic of this kind was introduced by de Groote and
Lamarche (2002) under the name Classical Non-associative Lambek
Calculus. The logic can be presented as the extension of NL by
negation ∼, satisfying the double negation and the contraposition
laws: A∼∼ ⇔ A and A∼/B ⇔ A\B∼. This system does not admit
cut elimination. In the cited paper a cut-free one-sided sequent
system is given and its PTIME-complexity is proved. The system is
shown to be a conservative extension of NL.
W.B. (2016) studies a dual one-directed sequent system, proves the
cut-elimination theorem and the interpolation theorem. The logic is
shown to be a strongly conservative extension of NL. Categorial
grammars based on this logic (also with assumptions) generate
context-free languages.



One also considers the extension of NL with two negations ∼,−,
satisfying: A∼− ⇔ A, A−∼ ⇔ A and A∼/B ⇔ A\B−, like in
Non-commutative MALL of Abrusci (1991).
W.B (2017) presents a one-sided sequent system for this logic,
called Involutive Non-associative Lambek Calculus, proves the
cut-elimination theorem and the PTIME-complexity of the pure
logic. The proof uses an interpolation theorem. The methods are
proof-theoretic. The complexity (even the decidability) of the
consequence relation remains an open problem.
W.B. (2019) studies an extension of this logic by a unary modality
and obtains similar results by model-theoretic tools. Categorial
grammars based on this logic are shown to generate context-free
languages.
Some results have been adapted for logics with ∧,∨ and 1 by
Płaczek (2021).



Selected references

E. Blaisdell, M. Kanovich, S. Kuznetsov, E. Pimentel, A. Scedrov:
Non-commutative, non-associative multi-modal linear logic. In:
LNCS 13385 (2022).
W. Buszkowski: Lambek calculus with nonlogical axioms. In: C.
Casadio et al. (eds.), Language and Grammar, CSLI Pubnlications
(2005)
W. B.: Interpolation and FEP for logics of residuated algebras.
Logic Journal of The IGPL 19 (2011), 437–454.
W.B.: Some syntactic interpretations in different systems of Full
Lambek Calculus. In: S. Ju et al. (eds.), Modality, Semantics and
Interpretations, Studia Logica Library, Springer (2015).
W.B.: On Classical Nonassociative Lambek Calculus. In: M.
Amblard, Ph. de Groote et al. (eds.), Logical Aspects of
Computational Linguistics, LNCS 10054 (2016).
W.B.: On Involutive Nonassociative Lambek Calculus. Journal of
Logic, Language and Information 28 (2019), 157-181.



K. Chvalovsky: Undecidability of consequence relation in full
nonassociative Lambek calculus. Journal of Symbolic Logic 80
(2015), 524–540.
J.-Y. Girard: Linear logic. Theoretical Computer Science 50 (1987),
1–102.
P. de Groote, F. Lamarche: Classical non-associative Lambek
calculus. Studia Logica 71 (2002), 355–388.
J. Lambek: The mathematics of sentence structure. The American
Mathematical Monthly 65 (1958), 154–170.
J. Lambek: On the calculus of syntactic types. In: R. Jakobson
(ed.), Structure of Language and Its Mathematical Aspects,
American Mathematical Society (1961).
Z. Lin: Modal nonassociative Lambek calculus with assumptions:
Complexity and Context-Freeness. In: LNCS 6031 (2010).
P. Płaczek: Extensions of Lambek calculi: Sequent systems,
conservativeness and computational complexity. PhD Thesis, Adam
Mickiewicz University (2021).



D. Shkatov, C.J. Van Alten: Complexity of the universal theory of
bounded residuated lattice-ordered groupoids. Algebra Universalis
80.3 (2019).

Thank you


