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Basic idea

Use textbook proofs to generate veri�able readable proofs

Textbook proofs - want to keep them and use them!

Readable
Informal
Error prone
Crucial in education

Machine veri�able proofs - want to generate them!

Rarely readable
Formal
Error free
Crucial for science

Formulate a language for description of textbook-like proofs precise
enough to keep the essence of the original proof (and generate
veri�able proof trace)

Target audience: high-school and university students
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Example - Simple theorem and its proof

Theorem If a point C does not belong to a line p, then there exists a
plane such that the point C and the line p lie on that plane.

D1 The line p contains at least two points A and B

D2 Points A, B and C are non-collinear

D3 There exists a plane α that contains non-collinear points A,
B i C

D4 Line p lies on the plane α
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First step of the proof
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Theorem If a point C does not belong to a line p, then there exists a plane such
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Second step of the proof
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Theorem If a point C does not belong to a line p, then there exists a plane such

that the point C and the line p lie on that plane.

D1 The line p contains at least two points A and B

D2 Points A, B and C are non-collinear
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D4 Line p lies on the plane α
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Third step of the proof
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Theorem If a point C does not belong to a line p, then there exists a plane such

that the point C and the line p lie on that plane.

D1 The line p contains at least two points A and B

D2 Points A, B and C are non-collinear

D3 There exists a plane α that contains non-collinear points A, B i C

D4 Line p lies on the plane α
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Fourth step of the proof
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Theorem If a point C does not belong to a line p, then there exists a plane such

that the point C and the line p lie on that plane.

D1 The line p contains at least two points A and B

D2 Points A, B and C are non-collinear

D3 There exists a plane α that contains non-collinear points A, B i C

D4 Line p lies on the plane α
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What is a proof?

A proof is a logical argument

Under the following assumptions

the axiomatic system
the inference rules of a deductive system
the statement is expressed in the language of that system

[Marc Bezem and Dimitri Hendriks]: A proof explains why the
theorem is true, and a formal proof does so in great detail.

Type of the proof de�nes two main contexts of theorem proving:

Textbook proofs
the emphasis is on the idea of the proof, often short proofs
Machine veri�able proofs
the emphasis is on correctness of the proof, often very detailed proofs
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In�uence of education to theorem proving

Di�erent type of theorem proving

ATP - Answer to the question: Is the given conjecture a theorem?
ITP - A detailed answer to the question: Is the given proof of a
conjecture valid?
A combination of the previous two approaches

Not so long ago, formal proofs were present just in journal and
conference papers

Today interactive theorem provers and formalizations of relevant
mathematical knowledge is present in undergraduate programs

But still informal proofs are necessary as the �rst step in
understanding and teaching of mathematics
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Motivation

Interactive theorem proving - challenges

Formalization is very challenging process, far from trivial
Learning curve is very steep
Structure of the formal proof often deviates signi�cantly from the
original proof

We want to keep the structure of the informal proof!

Textbook proofs have been relied on for several hundred years, they are
essential for everyday mathematical practice, and in most cases should
not be changed
We want to create the system that can verify the informal proof

S. Stojanovi¢ Ður�evi¢, D. Simi¢ Proof by cases 11 / 34



Our approach

Statement
[Start]

Informal textbook proof
[Create]

Semi-formal proof (CL inspired language)
[Formulate]

Coherent logic proof objects (CLV - coherent logic vernacular)
[Automatically generate]

Formal proofs of a theorem (Isabelle, Coq/Rocq, natural language)
[Automatically generate]
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Coherent logic

CL formula (Ai literals, Bj conjunctions of literals, n > 0, m > 0)

A1 ∧ . . . ∧ An ⇒ ∃x⃗1B1 ∨ . . . ∨ ∃x⃗mBm

Implicitly universally quanti�ed formula. Existential quanti�cation is
allowed just in the conclusion of the formula

First used by Skolem, and later popularized by Bezem et al.

Classical provability is the same as intuitionistic provability

No function symbols (of arity greater than 0) and no negation

Additional predicate symbols negation, sorts, and functions:
∀x⃗(R(x⃗) ∧ R(x⃗) ⇒ ⊥), ∀x⃗(R(x⃗) ∨ R(x⃗))
point(A) ∧ point(B) ∧ point(C ) ∧ col(A,B,C )

Scolem, Bezem, Narboux (Tarski), Avigad (Elements)

Features: Easily describe and generate proofs in
languages of di�erent interactive theorem provers (Isabelle, Coq/Rocq)
readable, natural language proofs
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Coherent logic vernacular - CLV

Vernacular - a language or a dialect native to a region or a country
(Marriam-Webster de�nition)

Mathematical vernacular

A formalism proposed for trying to put a substantial part of
mathematical vernacular into the formal system (de Bruijn, 1980's)
There is a canonical style of presenting mathematics that people
discover independently: something like a natural mathematical
vernacular (Freek Wiedijk 2000)

Coherent logic vernacular

Not a mathematical vernacular
Light-weight proof representation
Suitable for automatization and translation to various languages
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Coherent logic prover and CLV

ArgoCLP - CL theorem prover (Stojanovi¢, Marinkovi¢, Jani£i¢)

Input - axiomatic system and a conjecture in TPTP format
Output - proof trace in CLV format

CLV - A dialect for CL (Stojanovi¢, Narboux, Bezem, Jani£i¢)

The proof steps use only the following rules:
modus ponens, case splits, assumptions, ex falso quodlibet
Simple and expressive
XML-based format for proof representation in CL (with additional
veri�cation of proof structure)
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Coherent logic framework for automated formalization -
ArgoGeoChecker

Input

An informal (semi-formal) proof of a theorem
Set of axioms and de�nitions expressed in CL

Output CLV proof trace for validation and translation to:

Isabelle, Coq/Rocq (formal proofs)
English, Serbian (readable proofs - LATEX)

Automated theorem provers

Resolution theorem provers (Vampire, E) (for minimizing set of axioms)
Coherent logic theorem prover (ArgoCLP) (used for CLV generation)

The steps of the semi-formal proof will be veri�ed individually

A formal document is generated always, even when some steps were
not proven (labeled with sorry in Isabelle, and with Admitted in
Coq/Rocq)
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The architecture of the system
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Formal rendering of an informal proof (1)

Preserve the explanatory value of the proof

Do not use a general translation procedure to CL (use the translations
speci�c to Euclidean geometry)
Extract only the relevant information from the proof (change of
context or a new relevant step is introduced)

the existence of the intersection point of two lines

the conclusion that certain points are collinear

case split assumptions

Types of proofs

Direct linear proofs - a �nite sequence of formal statements (each proof
step is either a left hand side or a right hand side of a CL formula)
Proofs by cases
Proofs by contradiction
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Formal rendering of an informal proof (2)

The �rst step is assuming the premiss of the conjecture to be proved, i.e.
a conjunction of �rst-order atoms (left hand side of a CL
formula)

Subsequent step(s) is a possibly existentially quanti�ed conjunction of
�rst-order atoms

right hand side of a CL formula if m = 1
or an assumption of the current case (if m > 1)

The last step is the goal of the informal proof, i.e. a disjunction of a
possibly existentially quanti�ed conjunctions (right hand side
of a CL formula for m ≥ 1)

The conclusion of the conjecture will not always be the last step of the
semi-formal proof (existentially quanti�ed objects can be constructed
earlier in the proof, and the rest of the proof will show that those objects
satisfy the required properties)
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Formal rendering of an informal proof (3)

assume - the �rst step always starts with the word assume (gives the
context of the theorem being proved)

let - introduces new objects

have - introduces new relations over the existing objects

suppose - introducing a local assumption (case split on atomic
formule)

Can be used for case distinctions as well as for proof by contradiction
Proof by contradiction always establishes an atomic formulae or its
negation

contradiction - releases a local assumption
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Formal rendering of an informal proof (4)

Syntax is simple and self explanatory (easy integration into the TPTP
conforming formulas)

Unique objects

∃!xP(x) ≡ ∃xP(x) ∧ (∀x∀yP(x) ∧ P(y) → x = y)

Explicit nondegeneracy assumptions and giving name to an existing
objects

Original There exists a point D that does not belong to the line AB

Transformed For di�erent points A and B, let L be the line determined by the
points A and B, led D be a point that does not belong to the line L

Semi-formal have (A!=B)

let [L]:(line(L) & inc_po_l(A,L) & inc_po_l(B,L))

let [D]:(point(D) & ninc_po_l(D,L))
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Textbook proof and semi-formal proof

Teorema (textbook)

If a point C does not belong to a line p, then there exists a plane such that the point C and the

line p lie on that plane.

Theorem If a point C does not belong to a line p, then there exists a plane such that

the point C and the line p lie on that plane.

D1 The line p contains at least two points A and B

D2 Points A, B and C are non-collinear

D3 There exists a plane α that contains non-collinear points A, B i C

D4 Line p lies on the plane α

Teorema (semi-formal)

If a point C does not belong to a line p, then there exists a plane such that the point C and the

line p lie on that plane.

0. assume [P,C] : (line(P) & point(C) & ninc_po_l(C,P))

1. let [A,B] : (point(A) & point(B) & A!=B & inc_po_l(A,P) & inc_po_l(B,P))

2. have (ncol(A,B,C))

3. let [R] : (plane(R) & inc_po_pl(A,R) & inc_po_pl(B,R) & inc_po_pl(C,R))

4. have (inc_l_pl(P,R) & inc_po_pl(C,R))
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Semi-formal proof, uniqueness

Teorema (uniqueness)

If a point C does not belong to a line p, and there exist two planes α and β such that the point

C and line p lie on both of them, then those two planes are equal.

0. assume [P,C,R1,R2] : (line(P) & point(C) & plane(R1) & plane(R2) &

ninc_po_l(C,P) & inc_po_pl(C,R1) & inc_l_pl(P,R1) &

inc_po_pl(C,R2) & inc_l_pl(P,R2))

1. let [A,B] : (point(A) & point(B) & A!=B & inc_po_l(A,P) & inc_po_l(B,P))

2. have (ncol(A,B,C))

3. have (inc_po_pl(A,R1) & inc_po_pl(B,R1) & inc_po_pl(C,R1) & inc_po_pl(A,R2) &

inc_po_pl(B,R2) & inc_po_pl(C,R2))

4. have (R1 = R2)
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Semi-formal proof with case distinctions

Teorema

If the following relations hold: bet(A,B,C), bet(A,D,C) then ¬bet(B,A,D).

0. assume [A,B,C,D] : (point(A) & point(B) & point(C) & bet(A,B,C) & bet(A,D,C))

1. suppose (bet(B,A,D))

2. have (bet(D,A,B))

3. have (bet(D,A,C))

4. have (nbet(A,D,C))

5. contradiction

6. suppose (nbet(B,A,D))

7. have (nbet(B,A,D))
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The axiomatic system E (Avigad, Dean, Mumma)

Euclid's Elements were criticized for using informations from the
diagram � intuition over the rules

But, Euclidean practice is stable and in some way still used!

Jeremy Avigad et al. noted: Over the centuries, the style of
diagram-based argumentation of Euclid's Elements was held to be the
paradigm of rigor, and presentation much like Euclid's are still used
today to introduce students to the notions of proof

Formal axiomatic system E faitful to Euclid

Faithful representation of the proofs
Diagrammatic reasoning in Euclid's proofs is controlled and guided by
a distinct logic
Diagram is the representation of the relevant data (such as incidence,
intersection,...; but not for congruence - explicitly stated)
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Proofs in E

Form of the theorems:
Given points, lines, circles, satisfying...,
there are points, lines, circles satisfying...

Implicit assumption: objects are assumed to be distinct, triangles are
assumed to be nondegenerate - this has to be stated explicitly

Demonstration rules and construction rules

Reasoning is linear, except: proof by contradiction, using a case
distinction
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First Euclid's postulate in Elements
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First Euclid's postulate in axiomatic system E

Proposition I.1.
On a given straight line, to construct an equilateral triangle.
Proposition I.1. Assume a and b are two distinct points. Construct point c such that

ab = bc and bc = ca.
Proof.
Let α be the circle with center a passing through b.
Let β be the circle with center b passing through a.
Let c be a point on the intersection of α and β.
Have ab = ac [since they are radii of α].
Have ba = bc [since they are radii of β].
Hence ab = bc and bc = ca.
Q.E.F.

For the sake of intelligibility, we sometimes add comments, in brackets.
Once again, these play no role in the formal proof (Avigad et. al)
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First Euclid's postulate - semi-formal proof

Semi-formal proof:

0. assume [A,B] : (point(A) & point(B) & A != B)

1. let [K1] : (circle(K1) & center(A,K1) & onc(B,K1))

2. let [K2] : (circle(K2) & center(B,K2) & onc(A,K2))

3. let [C] : (point(C) & onc(C,K1) & onc(C,K2) & intersectscc(K1,K2))

4. have (cong(A,B,A,C))

5. have (cong(B,A,B,C))

6. have (cong(A,B,B,C) & cong(B,C,C,A))

We do not use comments!
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Autoformalizing Euclidean Geometry

LeanEuclid � Framework for autoformalizing Euclidean geometry
(Murphy, Yang, Sun, Li, Anandkumar, Si)

Automated reasoning engine based on SMT solvers, large language
models (LLMs)

Fills the gaps in the proofs - gaps need to be small enough

Implemented E in Lean

Manually formalized proofs into Lean
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Axiomatic system E in Lean

Axioms of E are built into the system

They provide several customized tactics that cover most steps used by
Euclid (but a proof can be made of arbitrary tactics)

euclid_intros � creates context for the current theorem
euclid_apply � applies a rule in a forward direction
euclid_assert � adds a new fact
euclid_finish � veri�es that the conclusion is derived

Check if the speci�c rule can be applied in the given context (of
known facts) or (if not) tries to prove left hand side of the rule
intersection_circles BCD ACE : intersectsCircle BCD ACE

→ ∃ c : Point, (onCircle c BCD) ∧ (onCircle c ACE)
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First Euclid's postulate in LeanEuclid

theorem proposition1 : ∀ (a b : Point) (AB : Line),

distinctPointsOnLine a b AB →
∃c : Point, |(c - a)| = |(a - b)| ∧ |(c - b)| = |(a - b)| :=

by

euclid_intros

euclid_apply circle_from_points a b as BCD

euclid_apply circle_from_points b a as ACE

euclid_apply intersection_circles BCD ACE as c

euclid_apply point_on_circle_onlyif a b c BCD

euclid_apply point_on_circle_onlyif b a c ACE

use c

euclid_finish

They use the comments from the E proofs!

The implicit steps of the SMT engine can use only non-construction
rules, whereas explicit steps performed by humans (or machine
learning) can use any rules
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Conclusion and future work

Simple approach, suited for the beginners in automated and
interactive theorem proving

Semi-formal proofs resemble those found in mathematical textbooks

Keep the conceptual framework for formulating and proving theorems

Automatically generated proof trace is translated to

Readable formal proofs that can be easily be used as a part of a larger
formalization project (in Isabelle and in Coq/Rocq)
Natural language proofs with usual predicate symbols and
mathematical dialect

Students can explore, can practice more and can see the process of
proving geometric theorems as a challenge for themselves

There are room for improvement: eliminating the trivial steps,
remembering previously proven theorems, using natural language as
the input, creating (online) software for interactive theorem proving
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Bloom's taxonomy

The proposed approach can integrate steps of the Bloom's taxonomy in the
teaching process

Remember - by using a few simple trivial examples in the beginning
students can learn proof steps e�ectively

Understand - by exploring certain steps on their own, students will
comprehend their meaning

Apply - by applying (successfully or not) certain steps they discover
the necessary assumptions and learn to apply them in new situations

Analyze - by �nding errors and �xing them, students learn to analyze
the proof and question future ideas

Evaluate - by assesing the current solution they need to choose next
steps

Create - by completing the previous phases, they can eventually are
able to create the solution on their own
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