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CDG Problem 1: Overgeneration with non-projective

dependencies

The CDG analyses of “Je lui ai dit qu’il a rendu le livre"
“I have told him that he has returned the book” — clitic “lui” (him)

S
/_ﬁKL&dlﬁt;d_\ claus a-obj
= aux,  a-obj m aux /_ITGM

& Je lui ai dit qu' il a rendu le livre

The normal analysis
clit-3d _

claus a-obj
aux  a-obj /\di aux \‘/_ITJES
f R

rendu le livre

A wrong ana|y5|s

= Our solution: CDGyy, (typed barriers)
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CDG Problem 2: No known construction for Kleene plus

No known construction for the Kleene plus (CDG):

Let G be a CDG. L(G) is the formal language generated by G
JG’, a CDG such that L(G') = L(G)T ?

= Our solutions: CDGy, (typed barriers) or CDGy, (barriers)
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@ CDG Languages

© Product of CDG Languages

© Product and Kleene Plus of CDGy, Languages (with typed
barriers)

@ CDGy, for Natural Languages

© Conclusion
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@ CDG Languages

D. Béchet and A. Foret CDG with typed barriers 5/31




Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

comg conj_ _
G TT=> conj-th

det red

This deal brought mére problems than profits

Dependencies are determined by valencies of words

brought has +valency pred of a left adjacent word
deal has —valency pred of a right adjacent word
Saturation of valency pred determines projective dependency

d
deal B brought (Governor: brought, Subordinate: deal)
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Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

comg conj_ _
G TT=> conj-th

det red

This deal brought more problems than profits

Dependencies are determined by valencies of words

more has +valency comp-conj of a word somewhere on its right
than has —valency comp-conj of a word somewhere on its left

Saturation of comp-conj determines non-projective dependency
comp-conj .
more  --» than (Governor: more, Subordinate: than)
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Categorial Dependency Grammars

CDG Types express dependency valencies
PROJECTIVE DEPENDENCIES

Dependency: Gov i> Sub:
Governor Type: Gov — [.\../../d/..]P
Subordinate Type: Sub s [..\d/..]P

[...] : Part of a type for projective relations (basic dependency type)
P : Part of a type for non-projective dependencies (potential)
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Categorial Dependency Grammars
CDG Types express dependency valencies

c copul
epos-| red
/_det\ de
£ N £ N

In the beginning was the Word

in — [c-copul | prepos — 1]
the — [det]

beginning + [det\ prepos—I]
was — [c_copul\S/pred]
Word s [det\ pred]
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Categorial Dependency Grammars

CDG Types express dependency valencies
NON-PROJECTIVE DEPENDENCIES

Polarized valencies: "d, \,d, \ d, ,/d

Dependency: Gov —Ej+ Sub:
Governor Type Potential: Gov + [..]+/~
Subordinate Type Potential: Sub s [..]+ >

[..] : Part of a type for projective relations (basic dependency type)
..,/*d.. . Part of a type for non-projective dependencies (potential)
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Categorial Dependency Grammars
CDG Types express dependency valencies

a-obj comp-conj_ _
det red _C E) TT=> conj-th

This deal brought more problems than profits

this — [det]

deal — [det\pred|

brought — [pred\S/a— obj]
problems +— [compar\a— obj]
profits — [conj—th]

more +— [compar]/compP—<oni
than — [ /conj— th] Scomp—conj

.
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CDG calculus
Left-oriented rules

L'. [C]P[C\A]® F [8]P° G =2 Gl
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CDG calculus
Left-oriented rules

L. [C]P[C\B]® + [B]"° Gow S Gup
L. [ IPIB19 F [8]79 (no new dependency)
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CDG calculus
Left-oriented rules

L. [CIP[C\8]9 - [8]7€ Gov S5 Sub
L. [ 1PIB19 - (8179 (no new dependency)
I [CIP[C\BI9 F [CH\A]7 Gov <+ Sub
Q. [Cc\B]P - [8]F (no new dependency)
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CDG calculus
Left-oriented rules

L'. [C]P[C\A]® F [8]P° G =2 Gl
L. [ IPIB19 F [8]79 (no new dependency)
I [C)P[C*\B]® F [C*\B]"? Gow 2 G
Q. [c\p)° - [B)° (no new dependency)
D. aPCOPINOP: - oPiPP: Gov -S> Sub)

First-Available Rule

FA: in (LC)P(NC), the valency ,C is the first available for the
dual valency N\C, i.e. P has no occurrences of ,C,N\C
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Derivation

LEXICON:

ran

pr\S/ e

yesterday

lpr\ S/ c] [c]

[pr\S/cl
_ QF

ol [pr\ ] .
S v
L' [CIP[C\B]9 - 5179 L
LL [1°[B19+ [817€ L
I' o [CIPICH\BIC F [Cr\B]7? I
Q' [cn\gP - [8]” Q’
D' QP VIPC\VIP2 | oP1PP2 if FA DY

D. Béchet and A. Foret

John - [pr]
ran — [pr\S/c*]
fast, yesterday +— [c]

Dependency structure

C
r

John ran fast yesterday

[6/C1°1C1° - [6179

[BI°119 - (8179

[6/C*1P1C19 - [B/C]7@
[6/C*1” + 18)”

aPLCVIPOSVIP - o PLPP2 e FA

CDG with typed barriers
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CDG formal example: mix of n a, b and ¢

3 [5]\B\C
[5\S]" 8¢
(51757
[S\s]7B7¢
[5]\3/‘C et T T Tl
[S\S]NBC . _C_ *
[S]N\C/B c /s B8 REN
[S\S]NC/B R R

b [ 8 c a a b ¢ b
[ 1>

c []€
[ 1>

A CDG for mix with a parse example

In the above grammar, some types have empty heads ; other grammars
avoiding empty heads can be provided, but the above one is simpler.
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© Product of CDG Languages
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CDG example: a"b"c”

a [AP b [A\S/C] ¢ [C]N
[A\A]<P [B/C] [B\C]™®

a a b C
[A]<P [A\ AP [B/CIICI™

(AP [a\S/cl . (B [B\CI®
5/ 1707 ) (oo :
[S5]<P<DNDND L
1
(51700 >
DI

g

A CDG for {a"b"c", n > 1} with a derivation for aabbcc (n = 2)
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CDG example: a"b"c”

a [A]¥P b [A\S/C] ¢ [C™P

[A\A]<P [B/C] [B\C]™\P
——"—_D_“~~
I N
’/’ ’/,—’— —-‘~C \\\
s - D B
VoaVa ¥a /:B\
£ a a a b b b ¢ ¢ c

The same CDG for {a"b"c",n > 1} with the dependency structure
for aaabbbcce (n = 3)

Parsing time complexity : O(n%)
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CDG example: The product of a”b"c” with itself

Is it possible to define a CDG that yields the product of a”b"c”
with itself ?
{aPbPcPa¥bic9 p > 1,q > 1}

How can we find it from a CDG that yields a”"b"c" ?
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CDG example: An unsuccessful attempt for the product of

a"b"c™ with itself

a [AFP b
[A\A]<D LTI
b [A\S/52/C]
[A\S2/C] £
B/C VA R G G.
g g
[B\C]"D & a a b

The CDG is built from the initial CDG for a"b"c" :
The initial type of b with S is duplicated and 52 is added

The CDG doesn't yield the product of a"b"c” with itself:
aabcabbcc can be parsed but it isn't correct:
Non-projective dependencies between the parts are allowed
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CDG example: A correct product of a"b"c" with itself

3 [Al]\/Dl
[Ar\A]< D1

b [A1\S/S/ G
[B1/Ci]

C [Cl]’\D1
[B1\ Gi]™Pr

3 [A2]/D2

[A2\ Az]< P2 £
b [A\Sy/ G
[B2/ 5]
c [Cz]\DZ
[B2\ Co] P2

All the types are duplicated from the initial CDG for a"b"c"

== Two non-projective dependency names: D; and D, rather than D
= Higher parsing time complexity: O(n®) rather than O(n*)

No known general construction for the Kleene plus.of a CDG
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© Product and Kleene Plus of CDGy, Languages (with typed
barriers)
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Our proposal : CDGy, calculus with
Left-oriented rules

L'. [C]P[C\B]° F [8]P° G =2, Gl
L. [ 1PIBI9 - [B]P@ (no new dependency)
I [C)P[C*\B]Q F [C*\B]P? Gow 2 G
Q. [Cc\p]P+ [8]F (no new dependency)
D. aPWOPROP | oPiPP: Gov -S> Sub)

First-Available Rule (and no intermediate typed barrier)

FAw: in (LC)P(NC), the valency ,/C is the first available for the
dual valency \C, i.e. P has no occurrences of ,/C,~C and | C

V

Potentials contain polarized valencies ,/d,\d, \d, /d and typed barriers | d
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CDG;p with typed barriers: a simple product of a"b"c”

with itself

5 [A]ID/D
[A\A]<P

b [A\S5/S52/C]
[A\S2/C]
[B/C]NP

c [C]™P
[B\C]™P

There is a typed barrier [ D on the rightmost a (for aabcabbcc)

= The top non-projective dependency isn't allowed this time
The CDGy, with typed barriers yields the product of a"b"c” with
itself

Only one non-projective dependency name (D)
= Same parsing time complexity as a"b"c"
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CDG;p with typed barriers: Kleene plus of a"b"c”

Is it possible to define a CDG that yields Kleene plus of a"b"c" ?
{aPLbPrcPraP2pP2cP2 .. gPrpPrcPr n > 1py > 1,...,p, > 1}

How can we find it from a CDG that yields a”"b"c" ?
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CDG;p with typed barriers: Kleene plus of a"b"c”

No known general construction for the Kleene plus of a CDG

Always possible with a CDGy, (our proposal)

[A]ID/D

[A\A]<P

b [A\S/5/C]
[A\S/C]

a

A typed barrier on the leftmost a of each part of the Kleene plus
= Non-projective dependencies between parts aren't allowed
= The CDGy, yields the Kleene plus of a"b"c"

Only one non-projective dependency name (D)
= Same parsing time complexity as a"b"c"

D. Béchet and A. Foret CDG with typed barriers 21/31



Kleene plus: The general construction for a CDGy,

language

Starting with G, a CDGy;, with typed barriers
@ Transform G if G has types with empty heads in the lexicon

@ Transform G if the axiom S is used as an argument of a type

© Transform G such that the types in the lexicon are divided in
two parts :

e The types only used on the rightmost token of any derivation
o The types never used on the rightmost token of any derivation

© Add (typed) barriers in the potential of the types that can
only be used on the rightmost token of any derivation

© For each type with the axiom S as head type, duplicate the
same type but where S is replaced with §/S

The final CDGyp, corresponds to the Kleene plus of the initial
CDGyp

D. Béchet and A. Foret CDG with typed barriers
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Example: Kleene plus of a”b"c”

a [AP b [A\S/C] ¢ [C]N
[A\A]<P [B/C] [B\C]™?

@ Transform G if G has types with empty heads in the lexicon
— Ok (no empty head)

@ Transform G if the axiom S is used as an argument of a type
= Ok (S only used as head type))
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Example: Kleene plus of a”b"c”

a [AP b [A\S/C] ¢ [C]NY
[A\A]<P [B/C] [B\C]™

© Transform G such that the types in the lexicon are divided in
two parts :

e The types only used on the rightmost token of any derivation
e The types never used on the rightmost token of any derivation

Types on the rightmost token: Types of ¢ ([C]™\P and
[B\C]P)

Types on other tokens: All the types

Not ok (the types of ¢)

= We need to transform the grammar (axiom S,):

a [Ar]/D b [AO\Sr/Cr] c [Cr]\D
[A]<P [Ao\So/ Co) [C]NP
[ANA <P (B//C] [BAC]™NP
[A\AL]<P [Bo/Co] [Bo\ Co] NP

Remark: The grammar can be simplified (useless types)
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Example: Kleene plus of a”b"c”

a [A)<P b [ANS/C] ¢ [GIYP
[A\A]<P [Bo/ Co [CoNP
[BLA\CI™NP
[Bo\ Co] NP

@ Add typed barriers in the potential of the types that can only
be used on the rightmost token of any derivation

a [A]P b [ANS/C] ¢ (o PlP
[Ao\AGJ<P [Bo/ Col [CoNP
(BACTP1
[Bo\Co] NP
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Example: Kleene plus of a”b"c”

a [Al]P b [A\S,/C] ¢ [C,]\DID
ANA P B,/C, C,IN\P
[A0\Ao] [Bo/ Co) I oo

[Bo\Co] P

© For each type with the axiom S, as head type, duplicate the
same type but where S, is replaced with S,/5,

a [A]<P b [A\S,/C ¢ [Pl
Ao\A,]¢P Ao\S,/S,/C; CN\P
AT et

[Bo\Co] NP
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@ CDGy, for Natural Languages
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CDG and CDGy, for Natural Languages

The CDG analyses of “Je lui ai dit qu’il a rendu le livre"
“I'have told him that he has returned the book” clitic “lui” (him)

il — [ [<€=39 dijt, rendu — [aux/a— obj], [aux/a— obj] €/t —3d
s
lit-3d claus
mM a_ob] /_IT]-N
& Je lui ai dit qu |I a rendu le livre
The normal analysis: dit + [aux/a—obj] <""=3¢ rendu + [aux/a— obj]
___dit3d
/_N bj /daisﬁas /"‘d‘m
aux a-o0bj aux “
|t qu' il a rendu le livre

A wrong analy5|s. d/t + [aux/a—obj] rendu — [aux/a— obj] ¢/t—3d
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CDG and CDGy, for Natural Languages

The CDGyy, analyses of “Je lui ai dit qu'il a rendu le livre”
“I have told him that he has returned the book™” clitic “lui” (him)

il = [ ]<€7=34 dit, rendu [aux/a—obj]IC”FM7 [aux/a— obj] /it

S
lit-3d claus
KP_M a.ob] /_IT]_N

& Je lui ai dit qu |I a rendu le livre
The normal analysis: dit — [aux/a—obj] ¢3¢
rendu [aux/a—obj]Idit%d
/’_J_X_C_lmid_ S
Kﬂé\/\ : bi claus AN a-obj
aux a-obj re aux “ e
X Je lui ai ditt qu' il a rendu le livre

No analysis: dit — [aux/a—obj]IC”t%d rendu +— [aux/a— obj] =34

= Typed barriers can control the range of specific non-projective
dependencies
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Conclusion and Open Questions

@ The product and the Kleene plus of languages may be useful,
for instance, to model the conjunction of parts of speech or
the list of complex complements in a lot of natural languages.

@ Our proposal allows such constructions for CDG;, languages
(with typed barriers).

@ There is no parsing complexity penalty for the product and
the Kleene plus.

@ Categorial Dependency Grammars extended with typed
barriers define an Abstract Family of Languages (closed under
union, product, Kleene plus, e-free homomorphism, inverse
homomorphism, intersection with regular sets).

@ The same questions remain opened for classical CDG.

@ For natural languages, typed barriers can control the range of
specific non-projective dependencies.
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Conclusion and Open Questions

@ The product and the Kleene plus of languages may be useful,
for instance, to model the conjunction of parts of speech or
the list of complex complements in a lot of natural languages.

@ Our proposal allows such constructions for CDG;, languages
(with typed barriers).

@ There is no parsing complexity penalty for the product and
the Kleene plus.

@ Categorial Dependency Grammars extended with typed
barriers define an Abstract Family of Languages (closed under
union, product, Kleene plus, e-free homomorphism, inverse
homomorphism, intersection with regular sets).

@ The same questions remain opened for classical CDG.

@ For natural languages, typed barriers can control the range of
specific non-projective dependencies.

THANK YOU !
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