
Categorial Dependency Grammars extended with
typed barriers

Denis Béchet, Nantes University, France
Annie Foret, University of Rennes and IRISA, France

MCLP 2025, September 15–18, 2025, Orsay, France

D. Béchet and A. Foret CDG with typed barriers 1 / 31

CDG Problem 1: Overgeneration with non-projective
dependencies

The CDG analyses of “Je lui ai dit qu’il a rendu le livre”
“I have told him that he has returned the book” – clitic “lui” (him)

The normal analysis

A wrong analysis

=⇒ Our solution: CDGtb (typed barriers)

D. Béchet and A. Foret CDG with typed barriers 2 / 31

CDG Problem 2: No known construction for Kleene plus

No known construction for the Kleene plus (CDG):

Let G be a CDG. L(G) is the formal language generated by G

∃G ′, a CDG such that L(G ′) = L(G)+ ?

=⇒ Our solutions: CDGtb (typed barriers) or CDGb (barriers)

D. Béchet and A. Foret CDG with typed barriers 3 / 31

Plan

1 CDG Languages

2 Product of CDG Languages

3 Product and Kleene Plus of CDGtb Languages (with typed
barriers)

4 CDGtb for Natural Languages

5 Conclusion

D. Béchet and A. Foret CDG with typed barriers 4 / 31

Plan

1 CDG Languages

2 Product of CDG Languages

3 Product and Kleene Plus of CDGtb Languages (with typed
barriers)

4 CDGtb for Natural Languages

5 Conclusion

D. Béchet and A. Foret CDG with typed barriers 5 / 31

Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

Dependencies are determined by valencies of words

brought has +valency pred of a left adjacent word
deal has −valency pred of a right adjacent word
Saturation of valency pred determines projective dependency

deal
pred←− brought (Governor: brought, Subordinate: deal)

D. Béchet and A. Foret CDG with typed barriers 6 / 31

Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

Dependencies are determined by valencies of words

more has +valency comp-conj of a word somewhere on its right
than has −valency comp-conj of a word somewhere on its left
Saturation of comp-conj determines non-projective dependency

more
comp-conj

99K than (Governor: more, Subordinate: than)

D. Béchet and A. Foret CDG with typed barriers 6 / 31

Categorial Dependency Grammars

CDG Types express dependency valencies

PROJECTIVE DEPENDENCIES

Dependency: Gov
d−→ Sub:

Governor Type: Gov 7→ [..\../../d/..]P

Subordinate Type: Sub 7→ [..\d/..]P

[...] : Part of a type for projective relations (basic dependency type)
P : Part of a type for non-projective dependencies (potential)

D. Béchet and A. Foret CDG with typed barriers 7 / 31

Categorial Dependency Grammars

CDG Types express dependency valencies

in 7→ [c copul/prepos−l]
the 7→ [det]
beginning 7→ [det\prepos−l]
was 7→ [c copul\S/pred]
Word 7→ [det\pred]

D. Béchet and A. Foret CDG with typed barriers 7 / 31

Categorial Dependency Grammars

CDG Types express dependency valencies

NON-PROJECTIVE DEPENDENCIES

Polarized valencies: ↗d , ↘d , ↖d , ↙d

Dependency: Gov
d
99K Sub:

Governor Type Potential: Gov 7→ [..]..↗d ..

Subordinate Type Potential: Sub 7→ [..]..↘d ..

[..] : Part of a type for projective relations (basic dependency type)
..↗d .. : Part of a type for non-projective dependencies (potential)

D. Béchet and A. Foret CDG with typed barriers 7 / 31

Categorial Dependency Grammars

CDG Types express dependency valencies

this 7→ [det]
deal 7→ [det\pred]
brought 7→ [pred\S/a−obj]
problems 7→ [compar\a−obj]
profits 7→ [conj−th]
more 7→ [compar]↗comp−conj

than 7→ [/conj−th]↘comp−conj

D. Béchet and A. Foret CDG with typed barriers 7 / 31

CDG calculus

Left-oriented rules

Ll. [C]P [C\β]Q ⊢ [β]PQ Gov
C−→ Sub

Llε. []P [β]Q ⊢ [β]PQ (no new dependency)

Il. [C]P [C ∗\β]Q ⊢ [C ∗\β]PQ Gov
C−→ Sub

Ωl. [C ∗\β]P ⊢ [β]P (no new dependency)

Dl. αP1(↙C)P(↖C)P2 ⊢ αP1PP2 Gov
C
99K Sub

First-Available Rule

FA: in (↙C)P(↖C), the valency ↙C is the first available for the
dual valency ↖C , i.e. P has no occurrences of ↙C ,↖C

D. Béchet and A. Foret CDG with typed barriers 8 / 31

CDG calculus

Left-oriented rules

Ll. [C]P [C\β]Q ⊢ [β]PQ Gov
C−→ Sub

Llε. []P [β]Q ⊢ [β]PQ (no new dependency)

Il. [C]P [C ∗\β]Q ⊢ [C ∗\β]PQ Gov
C−→ Sub

Ωl. [C ∗\β]P ⊢ [β]P (no new dependency)

Dl. αP1(↙C)P(↖C)P2 ⊢ αP1PP2 Gov
C
99K Sub

First-Available Rule

FA: in (↙C)P(↖C), the valency ↙C is the first available for the
dual valency ↖C , i.e. P has no occurrences of ↙C ,↖C

D. Béchet and A. Foret CDG with typed barriers 8 / 31

CDG calculus

Left-oriented rules

Ll. [C]P [C\β]Q ⊢ [β]PQ Gov
C−→ Sub

Llε. []P [β]Q ⊢ [β]PQ (no new dependency)

Il. [C]P [C ∗\β]Q ⊢ [C ∗\β]PQ Gov
C−→ Sub

Ωl. [C ∗\β]P ⊢ [β]P (no new dependency)

Dl. αP1(↙C)P(↖C)P2 ⊢ αP1PP2 Gov
C
99K Sub

First-Available Rule

FA: in (↙C)P(↖C), the valency ↙C is the first available for the
dual valency ↖C , i.e. P has no occurrences of ↙C ,↖C

D. Béchet and A. Foret CDG with typed barriers 8 / 31

CDG calculus

Left-oriented rules

Ll. [C]P [C\β]Q ⊢ [β]PQ Gov
C−→ Sub

Llε. []P [β]Q ⊢ [β]PQ (no new dependency)

Il. [C]P [C ∗\β]Q ⊢ [C ∗\β]PQ Gov
C−→ Sub

Ωl. [C ∗\β]P ⊢ [β]P (no new dependency)

Dl. αP1(↙C)P(↖C)P2 ⊢ αP1PP2 Gov
C
99K Sub

First-Available Rule

FA: in (↙C)P(↖C), the valency ↙C is the first available for the
dual valency ↖C , i.e. P has no occurrences of ↙C ,↖C

D. Béchet and A. Foret CDG with typed barriers 8 / 31

LEXICON:
John 7→ [pr]
ran 7→ [pr \S/c∗]
fast, yesterday 7→ [c]

Derivation

John

[pr]

ran

[pr \ S / c∗]
fast

[c]
Ir

[pr \ S / c∗]
yesterday

[c]
Ir

[pr \ S / c∗]
Ωr

[pr \ S]
Ll

S

Dependency structure

Ll [C]P [C\β]Q ⊢ [β]PQ Lr [β/C]P [C]Q ⊢ [β]PQ

Llε []P [β]Q ⊢ [β]PQ Lrε [β]P []Q ⊢ [β]PQ

Il [C]P [C∗\β]Q ⊢ [C∗\β]PQ Ir [β/C∗]P [C]Q ⊢ [β/C∗]PQ

Ωl [C∗\β]P ⊢ [β]P Ωr [β/C∗]P ⊢ [β]P

Dl αP1(↙V)P(↖V)P2 ⊢ αP1PP2 , if FA Dr αP1(↗V)P(↘V)P2 ⊢ αP1PP2 , if FA

D. Béchet and A. Foret CDG with typed barriers 9 / 31

CDG formal example: mix of n a, b and c

a [S]↖B↖C

[S\S]↖B↖C

[S]↗B↗C

[S\S]↗B↗C

[S]↖B↗C

[S\S]↖B↗C

[S]↖C↗B

[S\S]↖C↗B

b []↙B

[]↘B

c []↙C

[]↘C

A CDG for mix with a parse example

In the above grammar, some types have empty heads ; other grammars

avoiding empty heads can be provided, but the above one is simpler.

D. Béchet and A. Foret CDG with typed barriers 10 / 31

Plan

1 CDG Languages

2 Product of CDG Languages

3 Product and Kleene Plus of CDGtb Languages (with typed
barriers)

4 CDGtb for Natural Languages

5 Conclusion

D. Béchet and A. Foret CDG with typed barriers 11 / 31

CDG example: anbncn

a [A]↙D b [A\S/C] c [C]↖D

[A\A]↙D [B/C] [B\C]↖D

a
[A]↙D

a
[A \ A]↙D

Ll

[A]↙D↙D
b

[A \ S / C]
Ll

[S / C]↙D↙D

b
[B / C]

c
[C]↖D

Lr

[B]↖D
c

[B \ C]↖D

Ll

[C]↖D↖D

Lr

[S]↙D↙D↖D↖D

Dl

[S]↙D↖D

Dl

[S]

A CDG for {anbncn, n ≥ 1} with a derivation for aabbcc (n = 2)

D. Béchet and A. Foret CDG with typed barriers 12 / 31

CDG example: anbncn

a [A]↙D b [A\S/C] c [C]↖D

[A\A]↙D [B/C] [B\C]↖D

The same CDG for {anbncn, n ≥ 1} with the dependency structure
for aaabbbccc (n = 3)

Parsing time complexity : O(n4)

D. Béchet and A. Foret CDG with typed barriers 13 / 31

CDG example: The product of anbncn with itself

Is it possible to define a CDG that yields the product of anbncn

with itself ?
{apbpcpaqbqcq, p ≥ 1, q ≥ 1}

How can we find it from a CDG that yields anbncn ?

D. Béchet and A. Foret CDG with typed barriers 14 / 31

CDG example: An unsuccessful attempt for the product of
anbncn with itself

a [A]↙D

[A\A]↙D

b [A\S/S2/C]
[A\S2/C]
[B/C]

c [C]↖D

[B\C]↖D

The CDG is built from the initial CDG for anbncn :
The initial type of b with S is duplicated and S2 is added

The CDG doesn’t yield the product of anbncn with itself:
aabcabbcc can be parsed but it isn’t correct:
Non-projective dependencies between the parts are allowed

D. Béchet and A. Foret CDG with typed barriers 15 / 31

CDG example: A correct product of anbncn with itself

a [A1]
↙D1

[A1\A1]
↙D1

b [A1\S/S2/C1]
[B1/C1]

c [C1]
↖D1

[B1\C1]
↖D1

a [A2]
↙D2

[A2\A2]
↙D2

b [A2\S2/C2]
[B2/C2]

c [C2]
↖D2

[B2\C2]
↖D2

All the types are duplicated from the initial CDG for anbncn

=⇒ Two non-projective dependency names: D1 and D2 rather than D
=⇒ Higher parsing time complexity: O(n5) rather than O(n4)

No known general construction for the Kleene plus of a CDG
D. Béchet and A. Foret CDG with typed barriers 16 / 31

Plan

1 CDG Languages

2 Product of CDG Languages

3 Product and Kleene Plus of CDGtb Languages (with typed
barriers)

4 CDGtb for Natural Languages

5 Conclusion

D. Béchet and A. Foret CDG with typed barriers 17 / 31

Our proposal : CDGtb calculus with typed barriers

Left-oriented rules

Ll. [C]P [C\β]Q ⊢ [β]PQ Gov
C−→ Sub

Llε. []P [β]Q ⊢ [β]PQ (no new dependency)

Il. [C]P [C ∗\β]Q ⊢ [C ∗\β]PQ Gov
C−→ Sub

Ωl. [C ∗\β]P ⊢ [β]P (no new dependency)

Dl. αP1(↙C)P(↖C)P2 ⊢ αP1PP2 Gov
C
99K Sub

First-Available Rule (and no intermediate typed barrier)

FAtb: in (↙C)P(↖C), the valency ↙C is the first available for the
dual valency ↖C , i.e. P has no occurrences of ↙C ,↖C and ↣C

Potentials contain polarized valencies ↙d ,↖d , ↘d ,↗d and typed barriers ↣d

D. Béchet and A. Foret CDG with typed barriers 18 / 31

CDGtb with typed barriers: a simple product of anbncn

with itself

a [A] ↣D↙D

[A\A]↙D

b [A\S/S2/C]
[A\S2/C]
[B/C]↖D

c [C]↖D

[B\C]↖D

There is a typed barrier ↣D on the rightmost a (for aabcabbcc)
=⇒ The top non-projective dependency isn’t allowed this time

The CDGtb with typed barriers yields the product of anbncn with
itself

Only one non-projective dependency name (D)
=⇒ Same parsing time complexity as anbncn

D. Béchet and A. Foret CDG with typed barriers 19 / 31

CDGtb with typed barriers: Kleene plus of anbncn

Is it possible to define a CDG that yields Kleene plus of anbncn ?
{ap1bp1cp1ap2bp2cp2 · · · apnbpncpn , n ≥ 1 p1 ≥ 1, . . . , pn ≥ 1}

How can we find it from a CDG that yields anbncn ?

D. Béchet and A. Foret CDG with typed barriers 20 / 31

CDGtb with typed barriers: Kleene plus of anbncn

No known general construction for the Kleene plus of a CDG
Always possible with a CDGtb (our proposal)

a [A] ↣D↙D

[A\A]↙D

b [A\S/S/C]
[A\S/C]
[B/C]

c [C]↖D

[B\C]↖D

A typed barrier on the leftmost a of each part of the Kleene plus
=⇒ Non-projective dependencies between parts aren’t allowed
=⇒ The CDGtb yields the Kleene plus of anbncn

Only one non-projective dependency name (D)
=⇒ Same parsing time complexity as anbncn

D. Béchet and A. Foret CDG with typed barriers 21 / 31

Kleene plus: The general construction for a CDGtb

language

Starting with G , a CDGtb with typed barriers

1 Transform G if G has types with empty heads in the lexicon

2 Transform G if the axiom S is used as an argument of a type
3 Transform G such that the types in the lexicon are divided in

two parts :

The types only used on the rightmost token of any derivation
The types never used on the rightmost token of any derivation

4 Add (typed) barriers in the potential of the types that can
only be used on the rightmost token of any derivation

5 For each type with the axiom S as head type, duplicate the
same type but where S is replaced with S/S

The final CDGtb corresponds to the Kleene plus of the initial
CDGtb

D. Béchet and A. Foret CDG with typed barriers 22 / 31

Example: Kleene plus of anbncn

a [A]↙D b [A\S/C] c [C]↖D

[A\A]↙D [B/C] [B\C]↖D

1 Transform G if G has types with empty heads in the lexicon
=⇒ Ok (no empty head)

2 Transform G if the axiom S is used as an argument of a type
=⇒ Ok (S only used as head type))

D. Béchet and A. Foret CDG with typed barriers 23 / 31

Example: Kleene plus of anbncn

a [A]↙D b [A\S/C] c [C]↖D

[A\A]↙D [B/C] [B\C]↖D

3 Transform G such that the types in the lexicon are divided in
two parts :

The types only used on the rightmost token of any derivation
The types never used on the rightmost token of any derivation

Types on the rightmost token: Types of c ([C]↖D and
[B\C]↖D)
Types on other tokens: All the types
Not ok (the types of c)
=⇒ We need to transform the grammar (axiom Sr):

a [Ar]
↙D b [Ao\Sr/Cr] c [Cr]

↖D

[Ao]
↙D [Ao\So/Co] [Co]

↖D

[Ao\Ar]
↙D [Br/Cr] [Bo\Cr]

↖D

[Ao\Ao]
↙D [Bo/Co] [Bo\Co]

↖D

Remark: The grammar can be simplified (useless types)

D. Béchet and A. Foret CDG with typed barriers 24 / 31

Example: Kleene plus of anbncn

a [Ao]
↙D b [Ao\Sr/Cr] c [Cr]

↖D

[Ao\Ao]
↙D [Bo/Co] [Co]

↖D

[Bo\Cr]
↖D

[Bo\Co]
↖D

4 Add typed barriers in the potential of the types that can only
be used on the rightmost token of any derivation

a [Ao]
↙D b [Ao\Sr/Cr] c [Cr]

↖D ↣D

[Ao\Ao]
↙D [Bo/Co] [Co]

↖D

[Bo\Cr]
↖D ↣D

[Bo\Co]
↖D

D. Béchet and A. Foret CDG with typed barriers 25 / 31

Example: Kleene plus of anbncn

a [Ao]
↙D b [Ao\Sr/Cr] c [Cr]

↖D ↣D

[Ao\Ao]
↙D [Bo/Co] [Co]

↖D

[Bo\Cr]
↖D ↣D

[Bo\Co]
↖D

5 For each type with the axiom Sr as head type, duplicate the
same type but where Sr is replaced with Sr/Sr

a [Ao]
↙D b [Ao\Sr/Cr] c [Cr]

↖D ↣D

[Ao\Ao]
↙D [Ao\Sr/Sr/Cr] [Co]

↖D

[Bo/Co] [Bo\Cr]
↖D ↣D

[Bo\Co]
↖D

D. Béchet and A. Foret CDG with typed barriers 26 / 31

Plan

1 CDG Languages

2 Product of CDG Languages

3 Product and Kleene Plus of CDGtb Languages (with typed
barriers)

4 CDGtb for Natural Languages

5 Conclusion

D. Béchet and A. Foret CDG with typed barriers 27 / 31

CDG and CDGtb for Natural Languages

The CDG analyses of “Je lui ai dit qu’il a rendu le livre”
“I have told him that he has returned the book” clitic “lui” (him)
il 7→ []↙clit−3d dit, rendu 7→ [aux/a−obj], [aux/a−obj]↖clit−3d

The normal analysis: dit 7→ [aux/a−obj]↖clit−3d rendu 7→ [aux/a−obj]

A wrong analysis: dit 7→ [aux/a−obj] rendu 7→ [aux/a−obj]↖clit−3d

D. Béchet and A. Foret CDG with typed barriers 28 / 31

CDG and CDGtb for Natural Languages

The CDGtb analyses of “Je lui ai dit qu’il a rendu le livre”
“I have told him that he has returned the book” clitic “lui” (him)

il 7→ []↙clit−3d dit, rendu 7→ [aux/a−obj] ↣clit−3d
, [aux/a−obj]↖clit−3d

The normal analysis: dit 7→ [aux/a−obj]↖clit−3d

rendu 7→ [aux/a−obj] ↣clit−3d

No analysis: dit 7→ [aux/a−obj] ↣clit−3d
rendu 7→ [aux/a−obj]↖clit−3d

=⇒ Typed barriers can control the range of specific non-projective
dependencies

D. Béchet and A. Foret CDG with typed barriers 29 / 31

Conclusion and Open Questions

The product and the Kleene plus of languages may be useful,
for instance, to model the conjunction of parts of speech or
the list of complex complements in a lot of natural languages.

Our proposal allows such constructions for CDGtb languages
(with typed barriers).

There is no parsing complexity penalty for the product and
the Kleene plus.

Categorial Dependency Grammars extended with typed
barriers define an Abstract Family of Languages (closed under
union, product, Kleene plus, ε-free homomorphism, inverse
homomorphism, intersection with regular sets).

The same questions remain opened for classical CDG.

For natural languages, typed barriers can control the range of
specific non-projective dependencies.

THANK YOU !

D. Béchet and A. Foret CDG with typed barriers 30 / 31

Conclusion and Open Questions

The product and the Kleene plus of languages may be useful,
for instance, to model the conjunction of parts of speech or
the list of complex complements in a lot of natural languages.

Our proposal allows such constructions for CDGtb languages
(with typed barriers).

There is no parsing complexity penalty for the product and
the Kleene plus.

Categorial Dependency Grammars extended with typed
barriers define an Abstract Family of Languages (closed under
union, product, Kleene plus, ε-free homomorphism, inverse
homomorphism, intersection with regular sets).

The same questions remain opened for classical CDG.

For natural languages, typed barriers can control the range of
specific non-projective dependencies.

THANK YOU !

D. Béchet and A. Foret CDG with typed barriers 30 / 31

Bibliography

Michael Dekhtyar, Alexander Dikovsky, and Boris Karlov.
Categorial dependency grammars.
Theoretical Computer Science, 579:33–63, 2015.

Y. Bar-Hillel, H. Gaifman, and E. Shamir.
On categorial and phrase structure grammars.
Bull. Res. Council Israel, 9F:1–16, 1960.

I. Mel’čuk.
Dependency Syntax.
SUNY Press, Albany, NY, 1988.

Denis Béchet and Annie Foret.
Categorial dependency grammars extended with barriers
(CDGb) yield an abstract family of languages (AFL).
In David C. Wyld and Dhinaharan Nagamalai, editors,
Proceedings of the 5th International Conference on Natural
Language Processing and Computational Linguistics (NLPCL
2024), Copenhagen, Denmark, pages 53–66, September
21–22, 2024. D. Béchet and A. Foret CDG with typed barriers 31 / 31

	CDG Languages
	 Product of CDG Languages
	 Product and Kleene Plus of CDGtb Languages (with typed barriers)
	 CDGtb for Natural Languages
	Conclusion

