Categorial Dependency Grammars extended with

typed barriers

Denis Béchet, Nantes University, France
Annie Foret, University of Rennes and IRISA, France

MCLP 2025, September 15-18, 2025, Orsay, France

D. Béchet and A. Foret CDG with typed barriers

CDG Problem 1: Overgeneration with non-projective

dependencies

The CDG analyses of “Je lui ai dit qu’il a rendu le livre"
“I have told him that he has returned the book” — clitic “lui” (him)

S
/_ﬁKL&dlﬁt;d_\ claus a-obj
= aux, a-obj m aux /_ITGM

& Je lui ai dit qu' il a rendu le livre

The normal analysis
clit-3d _

claus a-obj
aux a-obj /\di aux \‘/_ITJES
f R

rendu le livre

A wrong ana|y5|s

= Our solution: CDGyy, (typed barriers)

D. Béchet and A. Foret CDG with typed barriers 2/31

CDG Problem 2: No known construction for Kleene plus

No known construction for the Kleene plus (CDG):

Let G be a CDG. L(G) is the formal language generated by G
JG’, a CDG such that L(G') = L(G)T ?

= Our solutions: CDGy, (typed barriers) or CDGy, (barriers)

D. Béchet and A. Foret CDG with typed barriers 3/31

@ CDG Languages

© Product of CDG Languages

© Product and Kleene Plus of CDGy, Languages (with typed
barriers)

@ CDGy, for Natural Languages

© Conclusion

D. Béchet and A. Foret CDG with typed barriers 4/31

@ CDG Languages

D. Béchet and A. Foret CDG with typed barriers 5/31

Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

comg conj_ _
G TT=> conj-th

det red

This deal brought mére problems than profits

Dependencies are determined by valencies of words

brought has +valency pred of a left adjacent word
deal has —valency pred of a right adjacent word
Saturation of valency pred determines projective dependency

d
deal B brought (Governor: brought, Subordinate: deal)

D. Béchet and A. Foret CDG with typed barriers 6/31

Basics of Dependency Syntax

Surface Dependency Structures (DS) are graphs of surface
syntactic relations between the words in a sentence.

A Dependency Structure

comg conj_ _
G TT=> conj-th

det red

This deal brought more problems than profits

Dependencies are determined by valencies of words

more has +valency comp-conj of a word somewhere on its right
than has —valency comp-conj of a word somewhere on its left

Saturation of comp-conj determines non-projective dependency
comp-conj .
more --» than (Governor: more, Subordinate: than)

D. Béchet and A. Foret CDG with typed barriers 6/31

Categorial Dependency Grammars

CDG Types express dependency valencies
PROJECTIVE DEPENDENCIES

Dependency: Gov i> Sub:
Governor Type: Gov — [.\../../d/..]P
Subordinate Type: Sub s [..\d/..]P

[...] : Part of a type for projective relations (basic dependency type)
P : Part of a type for non-projective dependencies (potential)

D. Béchet and A. Foret CDG with typed barriers 7/31

Categorial Dependency Grammars
CDG Types express dependency valencies

c copul
epos-| red
/_det\ de
£ N £ N

In the beginning was the Word

in — [c-copul | prepos — 1]
the — [det]

beginning + [det\ prepos—I]
was — [c_copul\S/pred]
Word s [det\ pred]

D. Béchet and A. Foret CDG with typed barriers 7/31

Categorial Dependency Grammars

CDG Types express dependency valencies
NON-PROJECTIVE DEPENDENCIES

Polarized valencies: "d, \,d, \ d, ,/d

Dependency: Gov —Ej+ Sub:
Governor Type Potential: Gov + [..]+/~
Subordinate Type Potential: Sub s [..]+ >

[..] : Part of a type for projective relations (basic dependency type)
..,/*d.. . Part of a type for non-projective dependencies (potential)

D. Béchet and A. Foret CDG with typed barriers 7/31

Categorial Dependency Grammars
CDG Types express dependency valencies

a-obj comp-conj_ _
det red _C E) TT=> conj-th

This deal brought more problems than profits

this — [det]

deal — [det\pred|

brought — [pred\S/a— obj]
problems +— [compar\a— obj]
profits — [conj—th]

more +— [compar]/compP—<oni
than — [/conj— th] Scomp—conj

.

D. Béchet and A. Foret CDG with typed barriers 7/31

CDG calculus
Left-oriented rules

L'. [C]P[C\A]® F [8]P° G =2 Gl

D. Béchet and A. Foret CDG with typed barriers 8/31

CDG calculus
Left-oriented rules

L. [C]P[C\B]® + [B]"° Gow S Gup
L. [IPIB19 F [8]79 (no new dependency)

D. Béchet and A. Foret CDG with typed barriers 8/31

CDG calculus
Left-oriented rules

L. [CIP[C\8]9 - [8]7€ Gov S5 Sub
L. [1PIB19 - (8179 (no new dependency)
I [CIP[C\BI9 F [CH\A]7 Gov <+ Sub
Q. [Cc\B]P - [8]F (no new dependency)

D. Béchet and A. Foret CDG with typed barriers 8/31

CDG calculus
Left-oriented rules

L'. [C]P[C\A]® F [8]P° G =2 Gl
L. [IPIB19 F [8]79 (no new dependency)
I [C)P[C*\B]® F [C*\B]"? Gow 2 G
Q. [c\p)° - [B)° (no new dependency)
D. aPCOPINOP: - oPiPP: Gov -S> Sub)

First-Available Rule

FA: in (LC)P(NC), the valency ,C is the first available for the
dual valency N\C, i.e. P has no occurrences of ,C,N\C

D. Béchet and A. Foret CDG with typed barriers 8/31

Derivation

LEXICON:

ran

pr\S/ e

yesterday

lpr\ S/ c] [c]

[pr\S/cl
_ QF

ol [pr\] .
S v
L' [CIP[C\B]9 - 5179 L
LL [1°[B19+ [817€ L
I' o [CIPICH\BIC F [Cr\B]7? I
Q' [cn\gP - [8]” Q’
D' QP VIPC\VIP2 | oP1PP2 if FA DY

D. Béchet and A. Foret

John - [pr]
ran — [pr\S/c*]
fast, yesterday +— [c]

Dependency structure

C
r

John ran fast yesterday

[6/C1°1C1° - [6179

[BI°119 - (8179

[6/C*1P1C19 - [B/C]7@
[6/C*1” + 18)”

aPLCVIPOSVIP - o PLPP2 e FA

CDG with typed barriers

9/31

CDG formal example: mix of n a, b and ¢

3 [5]\B\C
[5\S]" 8¢
(51757
[S\s]7B7¢
[5]\3/‘C et T T Tl
[S\S]NBC . _C_ *
[S]N\C/B c /s B8 REN
[S\S]NC/B R R

b [8 c a a b ¢ b
[1>

c []€
[1>

A CDG for mix with a parse example

In the above grammar, some types have empty heads ; other grammars
avoiding empty heads can be provided, but the above one is simpler.

D. Béchet and A. Foret CDG with typed barriers 10/31

© Product of CDG Languages

D. Béchet and A. Foret CDG with typed barriers 11/31

CDG example: a"b"c”

a [AP b [A\S/C] ¢ [C]N
[A\A]<P [B/C] [B\C]™®

a a b C
[A]<P [A\ AP [B/CIICI™

(AP [a\S/cl . (B [B\CI®
5/ 1707) (oo :
[S5]<P<DNDND L
1
(51700 >
DI

g

A CDG for {a"b"c", n > 1} with a derivation for aabbcc (n = 2)

D. Béchet and A. Foret CDG with typed barriers 12/31

CDG example: a"b"c”

a [A]¥P b [A\S/C] ¢ [C™P

[A\A]<P [B/C] [B\C]™\P
——"—_D_“~~
I N
’/’ ’/,—’— —-‘~C \\\
s - D B
VoaVa ¥a /:B\
£ a a a b b b ¢ ¢ c

The same CDG for {a"b"c",n > 1} with the dependency structure
for aaabbbcce (n = 3)

Parsing time complexity : O(n%)

D. Béchet and A. Foret CDG with typed barriers 13/31

CDG example: The product of a”b"c” with itself

Is it possible to define a CDG that yields the product of a”b"c”
with itself ?
{aPbPcPa¥bic9 p > 1,q > 1}

How can we find it from a CDG that yields a”"b"c" ?

D. Béchet and A. Foret CDG with typed barriers 14 /31

CDG example: An unsuccessful attempt for the product of

a"b"c™ with itself

a [AFP b
[A\A]<D LTI
b [A\S/52/C]
[A\S2/C] £
B/C VA R G G.
g g
[B\C]"D & a a b

The CDG is built from the initial CDG for a"b"c" :
The initial type of b with S is duplicated and 52 is added

The CDG doesn't yield the product of a"b"c” with itself:
aabcabbcc can be parsed but it isn't correct:
Non-projective dependencies between the parts are allowed

D. Béchet and A. Foret CDG with typed barriers 15/31

CDG example: A correct product of a"b"c" with itself

3 [Al]\/Dl
[Ar\A]< D1

b [A1\S/S/ G
[B1/Ci]

C [Cl]’\D1
[B1\ Gi]™Pr

3 [A2]/D2

[A2\ Az]< P2 £
b [A\Sy/ G
[B2/ 5]
c [Cz]\DZ
[B2\ Co] P2

All the types are duplicated from the initial CDG for a"b"c"

== Two non-projective dependency names: D; and D, rather than D
= Higher parsing time complexity: O(n®) rather than O(n*)

No known general construction for the Kleene plus.of a CDG

D. Béchet and A. Foret CDG with typed barriers 16 /31

© Product and Kleene Plus of CDGy, Languages (with typed
barriers)

D. Béchet and A. Foret CDG with typed barriers 17 /31

Our proposal : CDGy, calculus with
Left-oriented rules

L'. [C]P[C\B]° F [8]P° G =2, Gl
L. [1PIBI9 - [B]P@ (no new dependency)
I [C)P[C*\B]Q F [C*\B]P? Gow 2 G
Q. [Cc\p]P+ [8]F (no new dependency)
D. aPWOPROP | oPiPP: Gov -S> Sub)

First-Available Rule (and no intermediate typed barrier)

FAw: in (LC)P(NC), the valency ,/C is the first available for the
dual valency \C, i.e. P has no occurrences of ,/C,~C and | C

V

Potentials contain polarized valencies ,/d,\d, \d, /d and typed barriers | d

D. Béchet and A. Foret CDG with typed barriers 18/31

CDG;p with typed barriers: a simple product of a"b"c”

with itself

5 [A]ID/D
[A\A]<P

b [A\S5/S52/C]
[A\S2/C]
[B/C]NP

c [C]™P
[B\C]™P

There is a typed barrier [D on the rightmost a (for aabcabbcc)

= The top non-projective dependency isn't allowed this time
The CDGy, with typed barriers yields the product of a"b"c” with
itself

Only one non-projective dependency name (D)
= Same parsing time complexity as a"b"c"

D. Béchet and A. Foret CDG with typed barriers 19/31

CDG;p with typed barriers: Kleene plus of a"b"c”

Is it possible to define a CDG that yields Kleene plus of a"b"c" ?
{aPLbPrcPraP2pP2cP2 .. gPrpPrcPr n > 1py > 1,...,p, > 1}

How can we find it from a CDG that yields a”"b"c" ?

D. Béchet and A. Foret CDG with typed barriers 20/31

CDG;p with typed barriers: Kleene plus of a"b"c”

No known general construction for the Kleene plus of a CDG

Always possible with a CDGy, (our proposal)

[A]ID/D

[A\A]<P

b [A\S/5/C]
[A\S/C]

a

A typed barrier on the leftmost a of each part of the Kleene plus
= Non-projective dependencies between parts aren't allowed
= The CDGy, yields the Kleene plus of a"b"c"

Only one non-projective dependency name (D)
= Same parsing time complexity as a"b"c"

D. Béchet and A. Foret CDG with typed barriers 21/31

Kleene plus: The general construction for a CDGy,

language

Starting with G, a CDGy;, with typed barriers
@ Transform G if G has types with empty heads in the lexicon

@ Transform G if the axiom S is used as an argument of a type

© Transform G such that the types in the lexicon are divided in
two parts :

e The types only used on the rightmost token of any derivation
o The types never used on the rightmost token of any derivation

© Add (typed) barriers in the potential of the types that can
only be used on the rightmost token of any derivation

© For each type with the axiom S as head type, duplicate the
same type but where S is replaced with §/S

The final CDGyp, corresponds to the Kleene plus of the initial
CDGyp

D. Béchet and A. Foret CDG with typed barriers

22/31

Example: Kleene plus of a”b"c”

a [AP b [A\S/C] ¢ [C]N
[A\A]<P [B/C] [B\C]™?

@ Transform G if G has types with empty heads in the lexicon
— Ok (no empty head)

@ Transform G if the axiom S is used as an argument of a type
= Ok (S only used as head type))

D. Béchet and A. Foret CDG with typed barriers 23/31

Example: Kleene plus of a”b"c”

a [AP b [A\S/C] ¢ [C]NY
[A\A]<P [B/C] [B\C]™

© Transform G such that the types in the lexicon are divided in
two parts :

e The types only used on the rightmost token of any derivation
e The types never used on the rightmost token of any derivation

Types on the rightmost token: Types of ¢ ([C]™\P and
[B\C]P)

Types on other tokens: All the types

Not ok (the types of ¢)

= We need to transform the grammar (axiom S,):

a [Ar]/D b [AO\Sr/Cr] c [Cr]\D
[A]<P [Ao\So/ Co) [C]NP
[ANA <P (B//C] [BAC]™NP
[A\AL]<P [Bo/Co] [Bo\ Co] NP

Remark: The grammar can be simplified (useless types)

D. Béchet and A. Foret CDG with typed barriers 24 /31

Example: Kleene plus of a”b"c”

a [A)<P b [ANS/C] ¢ [GIYP
[A\A]<P [Bo/ Co [CoNP
[BLA\CI™NP
[Bo\ Co] NP

@ Add typed barriers in the potential of the types that can only
be used on the rightmost token of any derivation

a [A]P b [ANS/C] ¢ (o PlP
[Ao\AGJ<P [Bo/ Col [CoNP
(BACTP1
[Bo\Co] NP

D. Béchet and A. Foret CDG with typed barriers 25/31

Example: Kleene plus of a”b"c”

a [Al]P b [A\S,/C] ¢ [C,]\DID
ANA P B,/C, C,IN\P
[A0\Ao] [Bo/ Co) I oo

[Bo\Co] P

© For each type with the axiom S, as head type, duplicate the
same type but where S, is replaced with S,/5,

a [A]<P b [A\S,/C ¢ [Pl
Ao\A,]¢P Ao\S,/S,/C; CN\P
AT et

[Bo\Co] NP

D. Béchet and A. Foret CDG with typed barriers 26 /31

@ CDGy, for Natural Languages

D. Béchet and A. Foret CDG with typed barriers 27 /31

CDG and CDGy, for Natural Languages

The CDG analyses of “Je lui ai dit qu’il a rendu le livre"
“I'have told him that he has returned the book” clitic “lui” (him)

il — [[<€=39 dijt, rendu — [aux/a— obj], [aux/a— obj] €/t —3d
s
lit-3d claus
mM a_ob] /_IT]-N
& Je lui ai dit qu |I a rendu le livre
The normal analysis: dit + [aux/a—obj] <""=3¢ rendu + [aux/a— obj]
___dit3d
/_N bj /daisﬁas /"‘d‘m
aux a-o0bj aux “
|t qu' il a rendu le livre

A wrong analy5|s. d/t + [aux/a—obj] rendu — [aux/a— obj] ¢/t—3d

D. Béchet and A. Foret CDG with typed barriers 28 /31

CDG and CDGy, for Natural Languages

The CDGyy, analyses of “Je lui ai dit qu'il a rendu le livre”
“I have told him that he has returned the book™” clitic “lui” (him)

il = []<€7=34 dit, rendu [aux/a—obj]IC”FM7 [aux/a— obj] /it

S
lit-3d claus
KP_M a.ob] /_IT]_N

& Je lui ai dit qu |I a rendu le livre
The normal analysis: dit — [aux/a—obj] ¢3¢
rendu [aux/a—obj]Idit%d
/’_J_X_C_lmid_ S
Kﬂé\/\ : bi claus AN a-obj
aux a-obj re aux “ e
X Je lui ai ditt qu' il a rendu le livre

No analysis: dit — [aux/a—obj]IC”t%d rendu +— [aux/a— obj] =34

= Typed barriers can control the range of specific non-projective
dependencies
D. Béchet and A. Foret CDG with typed barriers 29/31

Conclusion and Open Questions

@ The product and the Kleene plus of languages may be useful,
for instance, to model the conjunction of parts of speech or
the list of complex complements in a lot of natural languages.

@ Our proposal allows such constructions for CDG;, languages
(with typed barriers).

@ There is no parsing complexity penalty for the product and
the Kleene plus.

@ Categorial Dependency Grammars extended with typed
barriers define an Abstract Family of Languages (closed under
union, product, Kleene plus, e-free homomorphism, inverse
homomorphism, intersection with regular sets).

@ The same questions remain opened for classical CDG.

@ For natural languages, typed barriers can control the range of
specific non-projective dependencies.

D. Béchet and A. Foret CDG with typed barriers 30/31

Conclusion and Open Questions

@ The product and the Kleene plus of languages may be useful,
for instance, to model the conjunction of parts of speech or
the list of complex complements in a lot of natural languages.

@ Our proposal allows such constructions for CDG;, languages
(with typed barriers).

@ There is no parsing complexity penalty for the product and
the Kleene plus.

@ Categorial Dependency Grammars extended with typed
barriers define an Abstract Family of Languages (closed under
union, product, Kleene plus, e-free homomorphism, inverse
homomorphism, intersection with regular sets).

@ The same questions remain opened for classical CDG.

@ For natural languages, typed barriers can control the range of
specific non-projective dependencies.

THANK YOU !

D. Béchet and A. Foret CDG with typed barriers 30/31

Bibliography

[Michael Dekhtyar, Alexander Dikovsky, and Boris Karlov.
Categorial dependency grammars.
Theoretical Computer Science, 579:33-63, 2015.

[Y. Bar-Hillel, H. Gaifman, and E. Shamir.
On categorial and phrase structure grammars.
Bull. Res. Council Israel, 9F:1-16, 1960.

3 1. Mel'¢uk.
Dependency Syntax.
SUNY Press, Albany, NY, 1988.

[Denis Béchet and Annie Foret.
Categorial dependency grammars extended with barriers
(CDGDb) yield an abstract family of languages (AFL).
In David C. Wyld and Dhinaharan Nagamalai, editors,
Proceedings of the 5th International Conference on Natural
Language Processing and Computational Linguistics (NLPCL
2024), Copenhagen, Denmark, pages 53—66, September

D. Béchet and A. Foret CDG with typed barriers 31/31

	CDG Languages
	 Product of CDG Languages
	 Product and Kleene Plus of CDGtb Languages (with typed barriers)
	 CDGtb for Natural Languages
	Conclusion

