International Conference on Mathematical and Computational Linguistics for Proofs
17th September 2025, Institut Pascal, Orsay, France

Natural language understanding
in natural proof checking

Adrian De Lon "2

T Mathematical Logic Group, University of Bonn CZECH INSTITUTE
2 CIIRC CTU, Prague m ROBOTICS AND.
> CYBERNETICS
Supported by GACR Grant 25-17929X NextReason CTU IN PRAGUE

Formalization examples

Example: Cantor’s theorem formalized in Naproche-ZF

Theorem (Cantor). There exists no surjection from A to 24,
Proof. Suppose not. Consider a surjection ffrom Ato 24 LetB = {a € A | a ¢ f(a)}. Then B € 2.
Thereexistsa’ € Asuchthatf(a’) = B. Nowa’ € Biffa’ ¢ f(a’) = B. Contradiction.

Example: proof tasks from proof gaps

Theorem (Cantor). There exists no surjection from A to 24,
Proof. Suppose not. Consider a surjection ffrom Ato 24 Let B = {a € A | a ¢ f(a)}. Then B € 2.
Thereexistsa’ € Asuchthatf(a’) = B. Nowa’ € Biffa’ ¢ f(a’) = B. Contradiction.

Negated conjecture from “Then B € 24” B ¢ 24

Global premise from a lemma VX.VY.XCY = Xe2¥

Global premise from a definition VXVX.XCY & (Vx.xeX = x€Y)
Local premise from “LetB = ---” Va.aeB & (acANna¢f))

Local premise from “Consider. ..” fesuri(A,24)

Local premise from “Suppose not” Jg.g € Surj(A,24)

Example: proof tasks from proof gaps

Theorem (Cantor). There exists no surjection from A to 24,
Proof. Suppose not. Consider a surjection ffrom Ato 24 Let B = {a € A | a ¢ f(a)}. Then B € 2.
Thereexistsa’ € Asuchthatf(a’) = B. Nowa’ € Biffa’ ¢ f(a’) = B. Contradiction.

Negated conjecture from “Then B € 24" B ¢ 24

Global premise from a lemma VX.VY.XCY = Xe2¥

Global premise from a definition VXVX.XCY & (Vx.xeX = x€Y)
Local premise from “LetB = ---” Va.aeB & (acANna¢f))

Local premise from “Consider. ..” fesuri(A,24)

Local premise from “Suppose not” Jg.g € Surj(A,24)

Example: proof tasks from proof gaps

Theorem (Cantor). There exists no surjection from A to 24,
Proof. Suppose not. Consider a surjection ffrom Ato24 Let B = {a € A | a ¢ f(a)}. Then B € 2.
Thereexistsa’ € Asuchthatf(a’) = B. Nowa’ € Biffa’ ¢ f(a’) = B. Contradiction.

Negated conjecture from “Then B € 24” B ¢ 24

Global premise from a lemma VX.VY.XCY = Xe2¥

Global premise from a definition VXVX.XCY & (Vx.xeX = x€Y)
Local premise from “LetB = - --” Va.aeB = (acAANaéfla))

Local premise from “Consider. ..” fesuri(A,24)

Local premise from “Suppose not” Jg.g € Surj(A,24)

Example: formalizing in natural language with markup

Theorem (Burali-Forti antimony) There exists no set () such that forall @ we have &« € Q iff aisan
ordinal.

Proof. Suppose not. Consider () such that for all @ we have @ € Qiff awis an ordinal. Forall x, iy such that
x € y € Qwe havex € Q. So Qs €-transitive. Thus Q is an ordinal. Hence Q € Q. Contradiction. O

\begin{theorem}[Burali-Forti antimony]\label{burali forti}
There exists no set Ω such that
for all α we have $\alpha\in \Omega$ iff α is an ordinal.
\end{theorem}
\begin{proof}
Suppose not.
Consider Ω such that for all α we have
$\alpha\in \Omega$ iff α is an ordinal.
For all x, y such that $x\in y\in\Omega$ we have $x\in\Omega$.
So Ω is \in-transitive. Thus Ω is an ordinal.
Hence $\Omega\in\Omega$. Contradiction.
\end{proof}

Example: phase transition to controlled natural language

Informal statement from T. Jech, Set Theory, Ex. 24.3:
If 28« < N ,42 holds for all cardinals of cofinality w,
then the same holds for all singular cardinals.

Formalized statementin controlled language:
If 28 < N 42 forall cardinals a of cofinality w,
then 286 < Nﬁ+2 forall singular cardinals 3.

Formal translation to first-order form:
(Va.Card(a) A cf(a) = w — 28« < N410)
— (VB.Sing(B) — 2% < Ng0)

How did we get here?
Where are we going?

This dissertation describes some investigations into the possible use of a digital computer to check mathematical
proofs of the type that normally appear in textbooks. A computer program called the Proofchecker was written
that verifies proofs written in a specified input format. A two-step process is involved in checking a proof within this
framework: the proofis first translated from the language of the textbook proof into the input language of the
Proofchecker, and the Proofchecker then attempts to translate the input proof into a rigorous proof, i.e., intoa
sequence of steps in a formal logical system.

P W Abrahams, Machine Verification of Mathematical Proof (1963)

The original aim of the writer was to take mathematical textbooks such as Landau on the number system,
Hardy—-Wright on number theory, Hardy on the calculus, Veblen—Young on projective geometry, the volumes by
Bourbaki, as outlines and to make the machine formalize all the proofs (fill in the gaps),

Hao Wang, Toward Mechanical Mathematics (1960)

A biased and incomplete history

1960
1961-1963
1967
1973—now
1970

1998—now
2002-2008
2003-2014

2018—now
2023—now
2025—-now

resolution, advent of automated theorem proving (Davis, Putnam, et al.)
Proofchecker, attempt to check textbooks proofs in a Lisp representation (Abrahams)
Automath, influential for later proof assistants (de Bruijn)

Mizar, quasinatural language, various iterations (Trybulecetal.)

Evidence Algorithm ambitions, first attempts (Glushkov et al.)

Grammatical Framework (Rantaetal.)
SAD as realization of PC/EA dreams, but still at a small scale (Paskevich et al.)
Naproche and earlier related projects (Koepke, Schréoder, Cramer et al.)

Naproche-SAD, scaling SAD to chapter size (Koepke et al.)
Naproche-ZF, scaling a bit further?
MALINCA, incl. Godement challenge

Example formalization in SAD

Theorem Tarski.
Let U be a complete lattice and f be an monotone function on U.
Let S be the set of fixed points of f. Then S is a complete lattice.
Proof.
Let T be a subset of S.
Let us show that T has a supremum in S.
Take P = { x << U | f(x) <= x and x is an upper bound of T in U }.
Take an infimum p of P in U.
f(p) is a lower bound of P in U and an upper bound of T in U.
Hence p is a fixed point of f and a supremum of T in S.
End.
Let us show that T has an infimum in S.
Take Q = { x << U | x <= f(x) and x is a lower bound of T in U }.
Take a supremum q of Q in U.
f(q) is an upper bound of Q in U and a lower bound of T in U.
Hence q is a fixed point of f and an infimum of T in S.
End.
QED.

A Proofchecker example revisited

Original Therefore, there exists an elementa’ such thataa’ = e.

Proofchecker ~ (IMPLIES (IDENT E G) (EXISTS Al (EQUAL (GMULT Al A) E)))
Mizar thus ex a' being Element of G st a * a' = 1.G;

SAD Thus there exists an element a' of G such that a * a' = 1.

Naproche-ZF Therefore, there exists an element a' such that $a\mul a' = \one$.

A Proofchecker example revisited

Original Therefore, there exists an elementa’ such thataa’ = e.

Proofchecker ~ (IMPLIES (IDENT E G) (EXISTS Al (EQUAL (GMULT Al A) E)))

Mizar thus ex a' being Element of G st a * a' = 1.G;
SAD Thus there exists an element a' of G such that a * a' = 1.
Naproche-ZF Therefore, there exists an element a' such that $a\mul a' = \one$.

Therefore, there exists an elementa’ such thataa’ = e.

A Proofchecker example revisited

Original Therefore, there exists an elementa’ such thataa’ = e.

Proofchecker ~ (IMPLIES (IDENT E G) (EXISTS Al (EQUAL (GMULT Al A) E)))

Mizar thus ex a' being Element of G st a * a' = 1.G;
SAD Thus there exists an element a' of G such that a * a' = 1.
Naproche-ZF Therefore, there exists an element a' such that $a\mul a' = \one$.

Therefore, there exists an elementa’ such thataa’ = e.

(“a is an element”can be defined as an abbreviation of $a\in\carrier$, where \carrier[G] is
the carrier of the group, with the bracketed argument optionally inferred)

Natural language understanding
and proof checking

Syntactic checking
Tools
Result

Logical checking
Tools
Result

Ontological checking
Tools
Result

Is the text grammatical? Is the vocabulary defined?
tokenizer, scanner, parser
token stream, lexicon, syntax tree

Does each step follow from the steps before?
automated theorem prover, maybe also equational provers and specialized solvers
truth value/proof trace/proof object

Does the text make sense? Are symbols welldefined at use?
automated theorem prover, type checker, model finder
You're not even wrong: inconsistency of axioms, type derivations, countermodels

Tokenization

Using stateful combinators, to correctly handle differences between math and text mode.
sin (\sin or sin) vs sint (sin)
Nesting of math and text with \text{. ..}, &c

What about symbols as part of text-level lexical items? E.g., e-induction, C*-algebra?

Extracting lexical items
Examples:

“fis a function from X to Y'iff ..
~» noun: function[/s] (—g) from (—1) to (=)

“Ais a matrix over k iff ..”

Naproche-ZF extracts token patterns of lexical
~» noun: matri[x/ces] (—g) over (—1)

items from definitions. We can use the context of
the definition to distinguish between nouns, verbs,

adjectives, &c. x is O-close iff ...

~» adjective: (—1)-close

Smart paradigms a la GF (Grammatical Framework)

are used to guess plural forms of nouns and verbs. m divide[s/] niff ..

~~ verb: divides (—1)

Use of semantic macros is encouraged.
“‘m < niff..”

~» relation symbol: <

CUy =
~» infix function symbol: U

Grammar-oriented approach to NLU: grammar fragment parametrized by lexical items

Dynamic: patterns for lexical items

noun — set | group | function from term to term | term-ary relation | - - -
mixfix-operator — expr + expr | | expr | expr! | (expr, expr) | - -
adjective — even | continuous | term-close | (expr, expr)-provable | - - -

relator — = €| < | Zpp | -+

Static: phrases, sentences, blocks

noun-phrase — adjective-list noun attribute such-that-statement

such-that-statement — such that statement | ¢

statement — not | if | iff | xor | nor | exists | quantified-phrase | - - -

atomic-statement — formula | noun-statement | verb-statement | adjective-statement | - - -
noun-statement — term isa noun-phrase | term isnota noun-phrase

let — let var be a noun phrase. | let var-list € expression.

assumption-list — suppose statement. assumption-list | let assumption-list | &

theorem — assumption-list statement.

Examples: basic syntactic transformation

ab<c<d
~wa<cAb<cAc<d

xRy
~(x,y) €R

Foralla < bsuch that P(a) we have Q(a).
~» Forallawe have ifa < band P(a), then Q(a).

There exists x such that ...
~~» Consider x such that

Every set is an element of some Grothendieck universe.
~» For all sets x there exists a Grothendieck universe U such that x is an element of U.

Improvements over Naproche in NLU

Remove ambiguities from the language by distinguishing math and text mode (e.g. variable “a” vs article
“a”) and by enforcing number agreement.

Earley’s algorithm guarantees better asymptotic behaviour than backtracking monadic parser
combinators (cubic vs. exponential).

Declarative grammar specification is easier to extend.

Literate formalization

Only content of formal environments such as definition, theorem, and proof is checked by the system.
Everything else is treated as informal commentary.

One can freely mix informal and formal material in the same document.

The formal material is already readable and does not need to be restated in informal language (less
clutter and no issues with syncing).

Natural proof vernacular

What counts as a proof ? Some (in)famous one-liners

“I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.”

“Left as an exercise to the reader”
“Follows by induction.”

“Follows from an easy diagram chase.”
“Easy (using 1.5 of course).”

“Check (part3islike 3.6)”

“Think.”

Proof steps for humans vs. computers

Things that are perhaps not obvious to computers:
proofs by analogy, proofs using geometric intuition, proofs using inventive devices, &c.

Obvious to computers:
decidable theories, checking 10000 easy cases, TPTP problems with a low difficulty rating, &c.

Automated theorem provers don't need to think like humans, they just need to be good enough.
Still hard to get 100% coverage for typical human-sized proof steps (long tail problem).

We can use a portfolio approach for better coverage.

Proof rules in Naproche-ZF: some terminals

I'is the set of global premises, containing all
previous theorems and definitions.

Ais the set of local premises, containing local
assumptions and claims from previous proof steps.

Is¢! is a subset of T after optional premise selection.

rseI.A |_ATP 0]
IAr e
A,)/1,...,]/k pATP

INAr @

A FATP

- - t'
TAFg by assumption

AP V. x e X > x €

¢ by y1,...

,)/ker

Y

AFX=Y

setext

Proof rules in Naproche-ZF: some intermediate steps

A ery el A pATP
AR

l";A - [0 rseI;A,(P |_ATP l,b

P
have @ TAF

suffices ¢

LA erY Aok L A, - r L
— 2 ’F T assumeqp T " assumeqp " ' "~ supposenot
Are — 9 AR - IAr e
A @i ey - TiA @k APV, g

LAY

cases p1,..., Pk

I;AaF @(a) I'+Va.(Vb.bea— @) — @)
T A F Vagla) o T; A F Ve o(0)

€-induction

;A a,9@rF@ T AP J0.¢(a)
AR

consider a such that ¢(a)

Interaction with the automated theorem prover

Transparency is important when things don’t go smoothly.

The translation to formal logic should be straightforward/unsurprising (e.g. it's better to report an
ambiguity error than to arbitrarily disambiguate).

The resulting formulas should be easy to inspect (no more names like “zpzlzuzs”).

Hard problem: how to present ATP proofs to the user?

Autoformalization and informalization
with Mizar and Naproche

Joint work with Mario Carneiro, Atle Hahn, Peter Koepke, and Josef Urban

Informalization and proof compression

Informalization of Mizar statements to controlled natural language

definition let X,Y;
pred X c= Y means for x being object holds x in X implies x in Y;

Definition. Let X, Y be sets. X C Y iff for all objects x such that x € X we have x € Y.

theorem for C being countable Language, phi wff string of C, X being set st
X c¢= AllFormulasOf C & phi is X-implied holds phi is X-provable

Theorem (Completeness Theorem). Let L be a countable language, ¢ a wellformed
L-formula, and I' a set of L-formulas such thatI' E ¢. ThenT F ¢.

theorem Th19:

for T being non empty normal TopSpace, A,B being closed Subset of T st

A <> {} & A misses B holds ex F being Function of T,R"1 st

F is continuous & for x being Point of T holds 0 <= F.x & F.x <=1 &

(x in A implies F.x = 0) & (x in B implies F.x = 1)
Theorem (Urysohn). Let T be a non-empty normal space. Let A, B be closed subsets of T
such that A # 0 and A N B = 0. Then there exists a continuous function f from T to R such
that for all points x of T we have 0 < f(x) <landx € A = f(x) =0and
xeB = flx)=1.

Why Mizar?

Large: MML is the largest quasinatural formal library with 1473 articles by over 260 authors, containing
3.6 M lines, 74 k theorems, and 15 k definitions.

Automatable: over 80% of problems from the MML can be solved by ATPs.

Set-theoretic: Mizar’s Tarski—Grothendieck foundations are a stronger version of Zermelo—Fraenkel set
theory which is the standard foundation of mathematics.

Pre-mapped: Journal of Formalized Mathematics publishing pipeline already includes a vocabulary
mapping from Mizar identifiers to BTpX-markup.

mizar-rs: a modern and performant reimplementation of the Mizar system by Mario

Our evil scheme (Part I): auto-informalization combining mizar-rs and Naproche-ZF

Obtain a vocabulary mapping from Mizar identifiers to patterns of LaTeX markup.

Implement a bidirectional verifiability-preserving syntactic translation from the Mizar language to
controlled natural language, adapted from the front-end of Naproche-ZF.

Make the translated result more readable (with simple heuristics, LLMs, manual editing, &c.).
Give the theorems useful names and labels (instead of Th01,Th02,...).

The result should be understandable to mathematicians unfamiliar with Mizar or other proof assistants.

Vocabulary mapping (11k+) derived from the publishing process for Formalized Mathematics

(functor) [: AB:1| AXB (mixfix)
(functor) X"A"Y | XY (mixfix)
(relation) Ac=B || ACB (relation)
(relation) a,b equiv c,d ab = cd (predicate)
(relation) f unifies t1,t2 || funifies t; with tp (verb)
(relation) x is_/\-reducible _in X || xis N-reducible in X (adjective)
(mode) language of Y,S || language over Y and S (noun)
(mode) Homomorphism of G,H || homomorphism from Gto H (noun)
(attribute) subst-forex || V-3-substituting (adjective)
(attribute) k-halting || k-halting (adjective)

Our evil scheme (Part 11): proof automation and compression

Integrate ATPs into the Mizar checker.
Semi-automatically compress existing Mizar proofs to make their level of detail more natural.

Can we develop systematic criteria for naturalness of proofs?

Can natural theorem proving scale?

Mario’s mizar-rs can check the MML in under 3 minutes on a 128-thread CPU (most of the library finishes
under a minute, but there are a couple of articles that are stragglers).

Grammar-based parser for the controlled language adds a bit of overhead compared to an optimized
parser for the simpler quasinatural Mizar language.

We have to be smart about using ATPs and cache their results.

Autoformalization

Our evil scheme (Part I11): LLM-based autoformalization in controlled natural language

Controlled natural language is a promising target for autoformalization, since LLMs have seen much
more natural language mathematics in their training data than formal mathematics.

Restricting to controlled language via prompting works quite well.
Non-controlled sentences generated by the LLM can indicate where to extend the grammar.

One could use grammar augmentation (syntactically constrained sampling) to force controlled natural
language output.

Other difficulties of autoformalization remain: global coherence, implicitness, high-level informal
reasoning, &c.

Two-step approach to autoformalization: preprocessing with general purpose language models

Extract definitions from source and rewrite them into separate blocks, splitting definitions as needed.
Generate internal labels for each definition.

Each block introduces ones definition, which gets highlighted with \emph{. . .} or similar markup for
easier processing.

Extract a separate lists of well-known concepts that are not explicitly defined in the source text and
generate placeholder definitions for them.

Two-step approach to autoformalization: actual formalization

Formalize the preprocessed definitions with a cheap reasoning model, such as DeepSeek R1.
A large prompt constrains the language model to the controlled grammar.

Iterate on formalization attempts with a simple feedback loop with a syntax checker.

Initial autoformalization results: overview

We chose inverse semigroups as first informalization topic.

82% of proposed formalizations syntactically valid after 10 runs.

Initial autoformalization results: examples

\begin{definition}\label{def idempotent pure}
Assume that θ is an homomorphism of inverse semigroups from S to T.
θ is idempotent-pure iff for all $s \in S 0% if $\theta(s)$ is an
idempotent in T then s is an idempotent in S.

\end{definition}

% 0riginal version: A subset I of a poset (X, \le) is an \emph{order ideal}
%if whenever $ x \le y \in I $, then $ x \in I §.
\begin{definition}\label{def order ideal}

I is an order ideal of P iff P is a poset and there exist X, R such that

$P = (X, R)$ and for all $x, y \in X$ if $(x, y) \in R$ and $y \in I$ then $x \in I$.
\end{definition}

Thank you!

	Formalization examples
	How did we get here? Where are we going?
	Natural language understanding and proof checking
	Natural proof vernacular
	Informalization and proof compression
	Autoformalization
	Thank you!

