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Formalization examples



Example: Cantor’s theorem formalized in Naproche-ZF

Theorem (Cantor). There exists no surjection fromA to 2A.
Proof. Suppose not. Consider a surjection f fromA to 2A. LetB = {a ∈ A | a ∉ f(a)}. ThenB ∈ 2A.
There exists a′ ∈ A such that f(a′) = B. Now a′ ∈ B iff a′ ∉ f(a′) = B. Contradiction.



Example: proof tasks from proof gaps

Theorem (Cantor). There exists no surjection fromA to 2A.
Proof. Suppose not. Consider a surjection f fromA to 2A. LetB = {a ∈ A | a ∉ f(a)}. ThenB ∈ 2A.
There exists a′ ∈ A such that f(a′) = B. Now a′ ∈ B iff a′ ∉ f(a′) = B. Contradiction.

Negated conjecture from “ThenB ∈ 2A” B ∉ 2A

Global premise from a lemma ∀X.∀Y.X ⊆ Y =⇒ X ∈ 2Y

Global premise from a definition ∀X.∀X.X ⊆ Y ⇐⇒ (∀x. x ∈ X =⇒ x ∈ Y)
...

...
Local premise from “LetB = · · · ” ∀a. a ∈ B ⇐⇒ (a ∈ A ∧ a ∉ f(a))
Local premise from “Consider . . .” f ∈ Surj(A, 2A)
Local premise from “Suppose not” ∃g. g ∈ Surj(A, 2A)
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Example: formalizing in natural language with markup

Theorem (Burali-Forti antimony) There exists no setΩ such that for all 𝛼we have 𝛼 ∈ Ω iff 𝛼 is an
ordinal.
Proof. Suppose not. ConsiderΩ such that for all 𝛼we have 𝛼 ∈ Ω iff 𝛼 is an ordinal. For all x, y such that
x ∈ y ∈ Ωwe have x ∈ Ω. SoΩ is∈-transitive. ThusΩ is an ordinal. HenceΩ ∈ Ω. Contradiction. □

\begin{theorem}[Burali-Forti antimony]\label{burali_forti}
There exists no set $\Omega$ such that
for all $\alpha$ we have $\alpha\in \Omega$ iff $\alpha$ is an ordinal.

\end{theorem}
\begin{proof}

Suppose not.
Consider $\Omega$ such that for all $\alpha$ we have

$\alpha\in \Omega$ iff $\alpha$ is an ordinal.
For all $x, y$ such that $x\in y\in\Omega$ we have $x\in\Omega$.
So $\Omega$ is \in-transitive. Thus $\Omega$ is an ordinal.
Hence $\Omega\in\Omega$. Contradiction.

\end{proof}



Example: phase transition to controlled natural language

Informal statement fromT. Jech, Set Theory, Ex. 24.3:
If 2ℵ𝛼 ≤ ℵ𝛼+2 holds for all cardinals of cofinality𝜔,
then the same holds for all singular cardinals.

Formalized statement in controlled language:
If 2ℵ𝛼 ≤ ℵ𝛼+2 for all cardinals 𝛼 of cofinality𝜔,
then 2ℵ𝛽 ≤ ℵ𝛽+2 for all singular cardinals 𝛽.

Formal translation to first-order form:
(∀𝛼.Card(𝛼) ∧ cf(𝛼) = 𝜔→ 2ℵ𝛼 ≤ ℵ𝛼+2)
→ (∀𝛽. Sing(𝛽) → 2ℵ𝛽 ≤ ℵ𝛽+2)



How did we get here?
Where are we going?



This dissertation describes some investigations into the possible use of a digital computer to check mathematical
proofs of the type that normally appear in textbooks. A computer program called the Proofchecker was written
that verifies proofs written in a specified input format. A two-step process is involved in checking a proof within this
framework: the proof is first translated from the language of the textbook proof into the input language of the
Proofchecker, and the Proofchecker then attempts to translate the input proof into a rigorous proof, i.e., into a
sequence of steps in a formal logical system.

PWAbrahams,Machine Verification of Mathematical Proof (1963)



The original aim of the writer was to take mathematical textbooks such as Landau on the number system,
Hardy–Wright on number theory, Hardy on the calculus, Veblen–Young on projective geometry, the volumes by
Bourbaki, as outlines and to make the machine formalize all the proofs (fill in the gaps),

HaoWang, Toward Mechanical Mathematics (1960)



A biased and incomplete history

1960 resolution, advent of automated theoremproving (Davis, Putnam, et al.)
1961–1963 Proofchecker, attempt to check textbooks proofs in a Lisp representation (Abrahams)
1967 Automath, influential for later proof assistants (de Bruijn)
1973–now Mizar, quasinatural language, various iterations (Trybulec et al.)
1970 Evidence Algorithm ambitions, first attempts (Glushkov et al.)

1998–now Grammatical Framework (Ranta et al.)
2002–2008 SAD as realization of PC/EA dreams, but still at a small scale (Paskevich et al.)
2003–2014 Naproche and earlier related projects (Koepke, Schröder, Cramer et al.)

2018–now Naproche-SAD, scaling SAD to chapter size (Koepke et al.)
2023–now Naproche-ZF, scaling a bit further?
2025–now MALINCA, incl. Godement challenge



Example formalization in SAD

Theorem Tarski.
Let U be a complete lattice and f be an monotone function on U.
Let S be the set of fixed points of f. Then S is a complete lattice.

Proof.
Let T be a subset of S.
Let us show that T has a supremum in S.

Take P = { x << U | f(x) <= x and x is an upper bound of T in U }.
Take an infimum p of P in U.
f(p) is a lower bound of P in U and an upper bound of T in U.
Hence p is a fixed point of f and a supremum of T in S.

End.
Let us show that T has an infimum in S.

Take Q = { x << U | x <= f(x) and x is a lower bound of T in U }.
Take a supremum q of Q in U.
f(q) is an upper bound of Q in U and a lower bound of T in U.
Hence q is a fixed point of f and an infimum of T in S.

End.
QED.



A Proofchecker example revisited

Original Therefore, there exists an element a′ such that aa′ = e.

Proofchecker (IMPLIES (IDENT E G) (EXISTS A1 (EQUAL (GMULT A1 A) E)))

Mizar thus ex a' being Element of G st a * a' = 1.G;

SAD Thus there exists an element a' of G such that a * a' = 1.

Naproche-ZF Therefore, there exists an element $a'$ such that $a\mul a' = \one$.
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(“$a$ is an element” can be defined as an abbreviation of $a\in\carrier$, where \carrier[G] is
the carrier of the group, with the bracketed argument optionally inferred)



Natural language understanding
and proof checking



Syntactic checking Is the text grammatical? Is the vocabulary defined?
Tools tokenizer, scanner, parser
Result token stream, lexicon, syntax tree

Logical checking Does each step follow from the steps before?
Tools automated theoremprover,maybe also equational provers and specialized solvers
Result truth value/proof trace/proof object

Ontological checking Does the textmake sense? Are symbols welldefined at use?
Tools automated theoremprover, type checker,model finder
Result you’re not even wrong: inconsistency of axioms, type derivations, countermodels



Tokenization

Using stateful combinators, to correctly handle differences betweenmath and textmode.

sin ($\sin$ or $\operatorname{sin}$) vs sin ($sin$)

Nesting ofmath and text with \text{...}, &c.

What about symbols as part of text-level lexical items? E.g.,∈-induction, C*-algebra?



Extracting lexical items

Naproche-ZF extracts token patterns of lexical
items fromdefinitions. We can use the context of
the definition to distinguish between nouns, verbs,
adjectives, &c.

Smart paradigms à la GF (Grammatical Framework)
are used to guess plural forms of nouns and verbs.

Use of semanticmacros is encouraged.

Examples:

“f is a function fromX toY iff ...”
⇝ noun: function[/s] (−0) from (−1) to (−2)

“A is amatrix over k iff ...”
⇝ noun: matri[x/ces] (−0) over (−1)

“x is 𝛿-close iff ...”
⇝ adjective: (−1)-close

“m divide[s/]n iff ...”
⇝ verb: divides (−1)

“m < n iff ...”
⇝ relation symbol: <

“x ∪ y = · · · ”
⇝ infix function symbol: ∪



Grammar-oriented approach to NLU: grammar fragment parametrized by lexical items

Dynamic: patterns for lexical items
noun→ set | group | function from term to term | term-ary relation | · · ·
mixfix-operator→ expr + expr | ∪ expr | expr ! | ⟨expr, expr⟩ | · · ·
adjective→ even | continuous | term-close | (expr, expr)-provable | · · ·
relator→ = | ∈ | < | �expr | · · ·

Static: phrases, sentences, blocks
noun-phrase→ adjective-list noun attribute such-that-statement
such-that-statement→ such that statement | 𝜀
statement→ not | if | iff | xor | nor | exists | quantified-phrase | · · ·
atomic-statement→ formula | noun-statement | verb-statement | adjective-statement | · · ·
noun-statement→ term is a noun-phrase | term is not a noun-phrase
let→ let var be a noun phrase. | let var-list ∈ expression.
assumption-list→ suppose statement. assumption-list | let assumption-list | 𝜀
theorem→ assumption-list statement.



Examples: basic syntactic transformation

a, b < c < d
⇝ a < c ∧ b < c ∧ c < d

x R y
⇝ (x, y) ∈ R

For all a < b such thatP(a)we haveQ(a).
⇝ For all awe have if a < b andP(a), thenQ(a).

There exists x such that ...
⇝ Consider x such that ....

Every set is an element of someGrothendieck universe.
⇝ For all sets x there exists a Grothendieck universeU such that x is an element ofU.



Improvements over Naproche in NLU

Remove ambiguities from the language by distinguishingmath and textmode (e.g. variable “a” vs article
“a”) and by enforcing number agreement.

Earley’s algorithmguarantees better asymptotic behaviour than backtrackingmonadic parser
combinators (cubic vs. exponential).

Declarative grammar specification is easier to extend.



Literate formalization

Only content of formal environments such as definition, theorem, and proof is checked by the system.
Everything else is treated as informal commentary.

One can freelymix informal and formalmaterial in the same document.

The formalmaterial is already readable and does not need to be restated in informal language (less
clutter and no issues with syncing).



Natural proof vernacular



What counts as a proof ? Some (in)famous one-liners

“I have discovered a trulymarvellous proof of this, which thismargin is too narrow to contain.”

“Left as an exercise to the reader.”

“Follows by induction.”

“Follows from an easy diagram chase.”

“Easy (using 1.5 of course).”

“Check (part 3 is like 3.6).”

“Think.”



Proof steps for humans vs. computers

Things that are perhaps not obvious to computers:
proofs by analogy, proofs using geometric intuition, proofs using inventive devices, &c.

Obvious to computers:
decidable theories, checking 10000 easy cases, TPTP problemswith a low difficulty rating, &c.

Automated theoremprovers don’t need to think like humans, they just need to be good enough.

Still hard to get 100% coverage for typical human-sized proof steps (long tail problem).

We can use a portfolio approach for better coverage.



Proof rules in Naproche-ZF: some terminals

Γ is the set of global premises, containing all
previous theorems and definitions.

Λ is the set of local premises, containing local
assumptions and claims fromprevious proof steps.

Γsel is a subset ofΓ after optional premise selection.

Γsel;Λ ⊢ATP 𝜑

Γ;Λ ⊢ 𝜑 □

Λ, 𝛾1 , . . . , 𝛾k ⊢ATP 𝜑

Γ;Λ ⊢ 𝜑 by 𝛾1 , . . . , 𝛾k ∈ Γ

Λ ⊢ATP 𝜑

Γ;Λ ⊢ 𝜑 by assumption

Γsel;Λ ⊢ATP ∀x. x ∈ X←→ x ∈ Y
Γ;Λ ⊢ X = Y setext



Proof rules in Naproche-ZF: some intermediate steps

Γ;Λ, 𝜑 ⊢ 𝜓 Γsel;Λ ⊢ATP 𝜑

Γ;Λ ⊢ 𝜓 have𝜑
Γ;Λ ⊢ 𝜑 Γsel;Λ, 𝜑 ⊢ATP 𝜓

Γ;Λ ⊢ 𝜓 suffices𝜑

Γ;Λ, 𝜑 ⊢ 𝜓
Γ;Λ ⊢ 𝜑→ 𝜓

assume𝜑 Γ;Λ, 𝜑 ⊢ ⊥
Γ;Λ ⊢ ¬𝜑 assume𝜑 Γ;Λ,¬𝜑 ⊢ ⊥

Γ;Λ ⊢ 𝜑 suppose not

Γ;Λ, 𝜑1 ⊢ 𝜓 · · · Γ;Λ, 𝜑k ⊢ 𝜓 Γsel;Λ ⊢ATP ∨i 𝜑i

Γ;Λ ⊢ 𝜓 cases𝜑1 , . . . , 𝜑k

Γ;Λ, a ⊢ 𝜑(a)
Γ;Λ ⊢ ∀a.𝜑(a) let a

Γ ⊢ ∀a. (∀b. b ∈ a→ 𝜑(b)) → 𝜑(a)
Γ;Λ ⊢ ∀c. 𝜑(c) ∈-induction

Γ;Λ, a,𝜓(a) ⊢ 𝜑 Γsel;Λ ⊢ATP ∃a.𝜓(a)
Γ;Λ ⊢ 𝜑 consider a such that𝜓(a)



Interaction with the automated theorem prover

Transparency is important when things don’t go smoothly.

The translation to formal logic should be straightforward/unsurprising (e.g. it’s better to report an
ambiguity error than to arbitrarily disambiguate).

The resulting formulas should be easy to inspect (nomore names like “zpzlzuzs”).

Hard problem: how to present ATP proofs to the user?



Autoformalization and informalization
with Mizar and Naproche
Joint workwithMario Carneiro, Atle Hahn, Peter Koepke, and Josef Urban



Informalization and proof compression



Informalization of Mizar statements to controlled natural language

definition let X,Y;
pred X c= Y means for x being object holds x in X implies x in Y;

Definition. Let X,Y be sets. X ⊆ Y iff for all objects x such that x ∈ X we have x ∈ Y.

theorem for C being countable Language, phi wff string of C, X being set st
X c= AllFormulasOf C & phi is X-implied holds phi is X-provable

Theorem (Completeness Theorem). Let L be a countable language, 𝜑 a wellformed
L-formula, and Γ a set of L-formulas such that Γ ⊨ 𝜑. Then Γ ⊢ 𝜑.

theorem Th19:
for T being non empty normal TopSpace, A,B being closed Subset of T st
A <> {} & A misses B holds ex F being Function of T,R^1 st
F is continuous & for x being Point of T holds 0 <= F.x & F.x <= 1 &
(x in A implies F.x = 0) & (x in B implies F.x = 1)

Theorem (Urysohn). Let T be a non-empty normal space. Let A, B be closed subsets of T
such that A ≠ ∅ and A ∩ B = ∅. Then there exists a continuous function f from T to R such
that for all points x of T we have 0 ≤ f(x) ≤ 1 and x ∈ A =⇒ f(x) = 0 and
x ∈ B =⇒ f(x) = 1.



Why Mizar?

Large: MML is the largest quasinatural formal library with 1473 articles by over 260 authors, containing
3.6M lines, 74 k theorems, and 15 k definitions.

Automatable: over 80%of problems from theMML can be solved by ATPs.

Set-theoretic: Mizar’s Tarski–Grothendieck foundations are a stronger version of Zermelo–Fraenkel set
theory which is the standard foundation ofmathematics.

Pre-mapped: Journal of FormalizedMathematics publishing pipeline already includes a vocabulary
mapping fromMizar identifiers to LATEX-markup.

mizar-rs: amodern and performant reimplementation of theMizar systembyMario



Our evil scheme (Part I): auto-informalization combining mizar-rs and Naproche-ZF

Obtain a vocabularymapping fromMizar identifiers to patterns of LaTeXmarkup.

Implement a bidirectional verifiability-preserving syntactic translation from theMizar language to
controlled natural language, adapted from the front-end of Naproche-ZF.

Make the translated resultmore readable (with simple heuristics, LLMs,manual editing, &c.).

Give the theorems useful names and labels (instead of Th01,Th02,…).

The result should be understandable tomathematicians unfamiliar withMizar or other proof assistants.



Vocabulary mapping (11k+) derived from the publishing process for Formalized Mathematics

(functor) [: A,B :] A × B (mixfix)

(functor) X "/\" Y X ⊓ Y (mixfix)

(relation) A c= B A ⊆ B (relation)

(relation) a,b equiv c,d ab � cd (predicate)

(relation) f unifies t1,t2 f unifies t1 with t2 (verb)

(relation) x is_/\-reducible_in X x is ∩-reducible in X (adjective)

(mode) language of Y,S language over Y and S (noun)

(mode) Homomorphism of G,H homomorphism from G to H (noun)

(attribute) subst-forex ∀-∃-substituting (adjective)

(attribute) k-halting k-halting (adjective)



Our evil scheme (Part II): proof automation and compression

Integrate ATPs into theMizar checker.

Semi-automatically compress existingMizar proofs tomake their level of detail more natural.

Canwe develop systematic criteria for naturalness of proofs?



Can natural theorem proving scale?

Mario’smizar-rs can check theMML in under 3minutes on a 128-thread CPU (most of the library finishes
under aminute, but there are a couple of articles that are stragglers).

Grammar-based parser for the controlled language adds a bit of overhead compared to an optimized
parser for the simpler quasinaturalMizar language.

We have to be smart about using ATPs and cache their results.



Autoformalization



Our evil scheme (Part III): LLM-based autoformalization in controlled natural language

Controlled natural language is a promising target for autoformalization, since LLMs have seenmuch
more natural languagemathematics in their training data than formalmathematics.

Restricting to controlled language via promptingworks quite well.

Non-controlled sentences generated by the LLM can indicate where to extend the grammar.

One could use grammar augmentation (syntactically constrained sampling) to force controlled natural
language output.

Other difficulties of autoformalization remain: global coherence, implicitness, high-level informal
reasoning, &c.



Two-step approach to autoformalization: preprocessing with general purpose language models

Extract definitions from source and rewrite them into separate blocks, splitting definitions as needed.

Generate internal labels for each definition.

Each block introduces ones definition, which gets highlightedwith \emph{...} or similarmarkup for
easier processing.

Extract a separate lists ofwell-known concepts that are not explicitly defined in the source text and
generate placeholder definitions for them.



Two-step approach to autoformalization: actual formalization

Formalize the preprocessed definitions with a cheap reasoningmodel, such as DeepSeek R1.

A large prompt constrains the languagemodel to the controlled grammar.

Iterate on formalization attempts with a simple feedback loopwith a syntax checker.



Initial autoformalization results: overview

We chose inverse semigroups as first informalization topic.

82%of proposed formalizations syntactically valid after 10 runs.



Initial autoformalization results: examples

\begin{definition}\label{def_idempotent_pure}
Assume that $\theta$ is an homomorphism of inverse semigroups from $S$ to $T$.
$\theta$ is idempotent-pure iff for all $s \in S_0$ if $\theta(s)$ is an
idempotent in $T$ then $s$ is an idempotent in $S$.

\end{definition}

% Original version: A subset $I$ of a poset $(X, \le)$ is an \emph{order ideal}
%if whenever $ x \le y \in I $, then $ x \in I $.
\begin{definition}\label{def_order_ideal}
$I$ is an order ideal of $P$ iff $P$ is a poset and there exist $X, R$ such that
$P = (X, R)$ and for all $x, y \in X$ if $(x, y) \in R$ and $y \in I$ then $x \in I$.

\end{definition}



Thank you!
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