Mathematical and Computational Linguistics
for Proofs

Structural Rules and Algebraic Properties of
Intersection Types

Sandra Alves
University of Porto
(joint work with Mario Florido)

September 16, 2025

A long time ago...

Non-idempotent Intersections and Linear Logic Seminal work
by Kfoury (2001), which was latter highlighted by de Carvalho
(2007).

Intersection types and Simple types Bucciarelli, Piperno and
Salvo (1999): Translation of intersection typing derivations into
Curry typeable terms, preserving B-reduction.

Intersection types and Linear terms Damas and Florido (2004):
Expansion relation between terms typable with intersection types

and linear terms.

A long time ago...

Non-idempotent Intersections and Linear Logic Seminal work
by Kfoury (2001), which was latter highlighted by de Carvalho
(2007).

Intersection types and Simple types Bucciarelli, Piperno and
Salvo (1999): Translation of intersection typing derivations into

Curry typeable terms, preserving B-reduction.

Intersection types and Linear terms Damas and Florido (2004):
Expansion relation between terms typable with intersection types
and linear terms.

This started my long lasting interest in resource aware type

systems...

and Algebraic Properties (of Intersection Types)

Substructural Rules: in type/logic systems, these correspond to
weakening (W), exchange (E), and contraction (C) rules:

and Algebraic Properties (of Intersection Types)

Substructural Rules: in type/logic systems, these correspond to
weakening (W), exchange (E), and contraction (C) rules:

| wW|E]|[C| Use |
Normal vV | V|V unrestricted
Relevant vV |V at least once
Affine v |V at most once
Linear v exactly once
Ordered exactly once in order

Structural Rules and (of Intersection Types)

Algebraic Properties: in intersection type systems the
intersection operator M can be:

e associative (A)
e commutative (C)

e and idempotent (1)

Our language

The untyped)-calculus:

xeV = xeA
M,NeA = (MN)eA (Application)
MeNA xeV = (AxM)e N (Abstraction)

Our language

The untyped)-calculus:

xeV = xeA
M,NeA = (MN)eA (Application)
MeNA xeV = (AxM)e N (Abstraction)

The usual notion of S-reduction:

B (Ax.M)N — M[N/x]

Simple Types

Simple types:

a, eV = a,B8€Te
o,r€Te = (r—o0)eTc

Simple Types

Simple types:

a, eV = a,B8€Te
o,r€Te = (r—o0)eTc

A typing environment [is a finite list of pairs x : 7 where all
term variables x are distinct.

Simple Types

Simple types:

a, eV = a,B8€Te
o,r€Te = (r—o0)eTc

A typing environment [is a finite list of pairs x : 7 where all
term variables x are distinct.

A typing:
rMN=M:o

means that M has type o assuming the type declarations in I'.

The Simple Type System (Logical Rules)

—— (Axiom)
X:Thgx:T

x:TFsM: 0o
lFs A M:17—0

(— Intro)

rll—sM:T%U in—sN;T
rl,rzl—sMNZO'

(— Elim)

The Simple Type System (Logical Rules)

(Axiom)

X:T Fex:T
~—~

a single assumption

The Simple Type System (Logical Rules)

(Axiom)

X:T Fex:T
~—~

a single assumption

there is an assumption
—
[x:T FsM:o
Fs AxM:7—0

(— Intro)

The Simple Type System (Logical Rules)

(Axiom)

X:T Fex:T
~—~

a single assumption

there is an assumption
—
[x:T FsM:o
Fs AxM:7—0

(— Intro)

MMFsM:7—0 [hFEs N:7T
M, Fs MN : o
——

(— Elim)

list concatenation

The Simple Type System (Structural Rules)

F1,I’2F5M:o
M,x:7,ToFsM: o

(Weakening)

The Simple Type System (Structural Rules)

F1,I’2F5M:o
M,x:7,ToFsM: o

(Weakening)

M,x:7m,y :m,l2Fs M:o

(Exchange)
M,y :m,x:11,loFs M: o

The Simple Type System (Structural Rules)

F1,I’2F5M:o

Weakening
rl,x:T,I'gl—gM:a()

M,x:7m,y :m,l2Fs M:o
(Exchange)

M,y :m,x:11,loFs M: o

M,xq :m,x0:7,IoFs M:0o

(Contraction)
M,x: 7.l ks M[x/x1,x/x2] : o

The Simple Type System - Weakening

For the A-term (Axy.x)(Ax.x) the following derivation is obtained:

X:a—alFsx:a—a

10

The Simple Type System - Weakening

For the A-term (Axy.x)(Ax.x) the following derivation is obtained:

X:a—alFsx:a—a

X:a—ay:fFsx:a—a

10

The Simple Type System - Weakening

For the A-term (Axy.x)(Ax.x) the following derivation is obtained:

X:a—alFsx:a—a

X:a—ay:fFsx:a—a

X:a—akFsAyx:f—a—a«

10

The Simple Type System - Weakening

For the A-term (Axy.x)(Ax.x) the following derivation is obtained:

X:a—alFsx:a—a

X:a—ay:fFsx:a—a

X:a—akFsAyx:f—a—a«

Fs xyx:(a—a)—=f—a—a

10

The Simple Type System - Weakening

For the A-term (Axy.x)(Ax.x) the following derivation is obtained:

X:a—alFsx:a—a

X:a—ay:fFsx:a—a

X:a—akFsAyx:f—a—a« X:alsx:a

Fs xyx:(a—a)—=f—a—a

10

The Simple Type System - Weakening

For the A-term (Axy.x)(Ax.x) the following derivation is obtained:

X:a—alFsx:a—a

X:a—ay:fFsx:a—a

X:a—akFsAyx:f—a—a« X:alsx:a

Fs xyx:(a—a)—=f—a—a Fs Ax.x:a — «

10

The Simple Type System - Weakening

For the A-term (Axy.x)(Ax.x) the following derivation is obtained:

X:a—alFsx:a—a

X:a—ay:fFsx:a—a

X:a—akFsAyx:f—a—a« X:alsx:a

Fs xyx:(a—a)—=f—a—a Fs Ax.x:a — «

Fs (Axyx)(Ax.x): 8 — a— «

10

The Simple Type System - Exchange

For the A-term Axy.yx the following derivation is obtained:

y:a—=BFrsy: a—p X:absx:«

y:a—=pB,x:iaksyx:f

11

The Simple Type System - Exchange

For the A-term Axy.yx the following derivation is obtained:

y:a—=BFrsy: a—p X:absx:«

y:a—=pB,x:iaksyx:f

X a,y:a— BFsyx: [

11

The Simple Type System - Exchange

For the A-term Axy.yx the following derivation is obtained:

y:a—=BFrsy: a—p X:absx:«

y:a—=pB,x:iaksyx:f

X a,y:a— BFsyx: [

x:absAyyx: (a—p)—p

11

The Simple Type System - Exchange

For the A-term Axy.yx the following derivation is obtained:

y:a—=BFrsy: a—p X:absx:«

y:a—=pB,x:iaksyx:f

X a,y:a— BFsyx: [

x:absAyyx: (a—p)—p

Fs (Axy.yx):a— (a—p)—= 0

11

The Simple Type System - Exchange

For the A-term Axy.yx the following derivation is obtained:

y:a—=BFrsy: a—p X:absx:«

y:a—=pB,x:iaksyx:f

X a,y:a— BFsyx: [

x:absAyyx: (a—p)—p

Fs (Axy.yx):a— (a—p)—= 0

11

The Simple Type System - Contraction

For the A-term Afx.f(fx) the following derivation is obtained:

hL:a—aksh:a—a X oalbsx:a

h:a—abksf:a— h:a—ax:abs (hx):«

fi:a—afh:a—ax:aksfi(fox): «a

12

The Simple Type System - Contraction

For the A-term Afx.f(fx) the following derivation is obtained:

hL:a—aksh:a—a X oalbsx:a

h:a—abksf:a— h:a—ax:abs (hx):«

fi:a—afh:a—ax:aksfi(fox): «a

fra—ax:absf(fx): a

12

The Simple Type System - Contraction

For the A-term Afx.f(fx) the following derivation is obtained:

hL:a—aksh:a—a X oalbsx:a

h:a—abksf:a— h:a—ax:abs (hx):«

fi:a—afh:a—ax:aksfi(fox): «a

fra—ax:absf(fx): a

fra—abs Ax.f(fx): a—«

Fs AMx.f(fx) : (@ = a) = a = «

12

From Simple Types to Substructural Types

Simple Types are not expressive enough to reason about
restricted use of computational resources.

13

From Simple Types to Substructural Types

Simple Types are not expressive enough to reason about
restricted use of computational resources.

What happens when we remove one (or more) structural rule(s)?

13

From Simple Types to Substructural Types

Simple Types are not expressive enough to reason about
restricted use of computational resources.

What happens when we remove one (or more) structural rule(s)?

Substructural Type Systems are related to Substructural
Logics
e Linear logic: the basis of resource aware formalisms.

e Lambek ordered logic: applications to natural language
processing.

e Relevant logic.

13

Substructural Type Systems

Type System ‘ w ‘ E ‘ Cc ‘ Use of assumptions
Relevant v IV at least once
Affine v |V at most once
Linear v exactly once
Ordered in order

14

The Relevant Type System (Structural Rules)

Fl,x T,y 72,F2 I—R M : g

(Exchange)
M,y mx:m,loFrM:o

Fl,xl ZT,XQZT,FQ FRMZO'

(Contraction)
M,x:7,T2Fr M[x/x1,x/x2] : &

ii5)

The Relevant Type System (Structural Rules)

Fl,x T,y 72,F2 I—R M : g

(Exchange)
M,y mx:m,loFrM:o

Fl,xl ZT,XQZT,FQ FRMZO'

M,x:7,T2Fr M[x/x1,x/x2] : &

(Contraction)

No weakening implies that any typed term is a Al-term (in every
Ax.N in M, x occurs free in N at least once).

ii5)

The Relevant Type System (Structural Rules)

Fl,x T,y 72,F2 I—R M : g

(Exchange)
M,y mx:m,loFrM:o

rl,XliT,XQZT,FQFRMZO' .
(Contraction)

M,x:7,T2Fr M[x/x1,x/x2] : &

No weakening implies that any typed term is a Al-term (in every
Ax.N in M, x occurs free in N at least once).

For example, \y.x is not typable in the Relevant Type System,
whereas Axyz.xz(yz) and Afx.f(fx) are typable.

ii5)

Substructural Type Systems

Type System ‘ w ‘ E ‘ Cc ‘ Use of assumptions
Relevant v IV at least once
Affine v |V at most once
Linear v exactly once
Ordered in order

16

The Affine Type System (Structural Rules)

rl,rzl—AMZO'
M,x:7,ToFaM:0o

(Weakening)

Fl,x T,y Tz,rg I—A M : g

(Exchange)
M,y:m,x:7m,loFbaM:o

17

The Affine Type System (Structural Rules)

rl,rzl—AMZO'
M,x:7,ToFaM:0o

(Weakening)

Fl,x T,y Tz,rg I—A M : g

(Exchange)
M,y:m,x:7m,loFbaM:o

No contraction, means that each variable cannot occur more than
once.

17

The Affine Type System (Structural Rules)

rl,rzl—AMZO'
M,x:7,ToFaM:0o

(Weakening)

Fl,x T,y 72,F2 I—A M : g

(Exchange)
M,y:m,x:7m,loFbaM:o

No contraction, means that each variable cannot occur more than

once.

For example, Ax.x and Ax.y are typable in the Affine Type System,
whereas Axyz.xz(yz) and Afx.f(fx) are not typable.

17

Substructural Type Systems

Type System ‘ w ‘ E ‘ Cc ‘ Use of assumptions
Relevant v IV at least once
Affine v IV at most once
Linear v exactly once
Ordered in order

18

The Linear Type System (Structural Rules)

M,x:1,y :mlok M:o
(Exchange)

M,y :mx:m,lo-f M:o

19

The Linear Type System (Structural Rules)

M,x:1,y :mlok M:o

(Exchange)
M,y :mx:m,lo-f M:o

No weakening and no contraction means that:

e for each subterm Ax.N of M, x occurs free in N exactly once;

e each free variable of M has just one occurrence free in M.

19

The Linear Type System (Structural Rules)

M,x:1,y :mlok M:o

(Exchange)
M,y :mx:m,lo-f M:o

No weakening and no contraction means that:

e for each subterm Ax.N of M, x occurs free in N exactly once;

e each free variable of M has just one occurrence free in M.

19

The Linear Type System (Structural Rules)

M,x:1,y :mlok M:o
(Exchange)

M,y :mx:m,lo-f M:o

No weakening and no contraction means that:

e for each subterm Ax.N of M, x occurs free in N exactly once;

e each free variable of M has just one occurrence free in M.

For example Ax.x and Axy.xy are typable in the Linear Type
System, whereas \x.y and Afx.f(fx) are not.

19

The Linear Type System (Structural Rules)

M,x:1,y :mlok M:o

(Exchange)
M,y :mx:m,lo-f M:o

No weakening and no contraction means that:

e for each subterm Ax.N of M, x occurs free in N exactly once;

e each free variable of M has just one occurrence free in M.

For example Ax.x and Axy.xy are typable in the Linear Type
System, whereas \x.y and Afx.f(fx) are not.

The Linear Type System enjoys both Subject Reduction and
Subject Expansion.

19

Substructural Type Systems

Type System ‘ w ‘ E ‘ Cc ‘ Use of assumptions
Relevant v IV at least once
Affine v IV at most once
Linear v exactly once

Ordered exactly once in order

20

The Ordered Type System (Logical Rules)

—— (Axiom
X:T}—X:T()

21

The Ordered Type System (Logical Rules)

—— (Axiom
x:T}—x:T()

x:1,lFoM:m Mx:mmbFoM:m
(—>| Intro) (_>r Intro)
Mo AXx.M .1y —) ™ NFo AXM:11 =,

21

The Ordered Type System (Logical Rules)

—— (Axiom
x:T}—x:T()

x:1,lFoM:m Mx:mmbFoM:m
(—>| Intro) (_>r Intro)
Mo AXx.M .1y —) ™ NFo AXM:11 =,

rgl—oN:T rll—oMZT—HO'
[, T1Fo MN : o

(= Elim)

MMFoM:7T—,0 ko N: T
F1,F2|—OI\/IN:U

(— Elim)

21

The Ordered Type System- Properties

No contraction (it is a linear system) and no weakening (it is a
relevant system)

Plus, no exchange: the order of the assumptions matter!

22

The Ordered Type System- Properties

No contraction (it is a linear system) and no weakening (it is a
relevant system)

Plus, no exchange: the order of the assumptions matter!

Is (Ax.xz2)z1 typable in the Ordered Type System?

22

The Ordered Type System- Properties

No contraction (it is a linear system) and no weakening (it is a
relevant system)

Plus, no exchange: the order of the assumptions matter!
Is (Ax.xz2)z1 typable in the Ordered Type System? Yes!

In fact, we have two (valid) typings:

72—, 0B, zrabo (MAxxz)z i

o, z1:a— Bho (MAxxz)z : B

22

The Ordered Type System- Properties

No contraction (it is a linear system) and no weakening (it is a
relevant system)

Plus, no exchange: the order of the assumptions matter!
Is (Ax.xz2)z1 typable in the Ordered Type System? Yes!

In fact, we have two (valid) typings:
72—, 0B, zrabo (MAxxz)z i
o, z1:a— Bho (MAxxz)z : B

But the following typings are not valid:
o, 71 a—, fro (Axxz)z i

o= B, zo:abo (MAxxz)z i

22

Now let’s slightly detour and talk
about Intersection Types

Intersection Types System (ITS)

Intersection types [Barendregt, Coppo and Dezani, 1983] give us a
characterization of the strongly normalizable \-terms:

kA M : o <= M is strongly normalizable

A term is strongly normalizing if every reduction sequence ends
with an irreducible term (a normal form).

23

Intersection Types System (ITS)

Intersection types [Barendregt, Coppo and Dezani, 1983] give us a
characterization of the strongly normalizable \-terms:

kA M : o <= M is strongly normalizable

A term is strongly normalizing if every reduction sequence ends

with an irreducible term (a normal form).

Note that, in the Simple Type System:

= M:0= M is strongly normalizing

23

Intersection Types System (ITS)

Intersection types [Barendregt, Coppo and Dezani, 1983] give us a
characterization of the strongly normalizable \-terms:

kA M : o <= M is strongly normalizable

A term is strongly normalizing if every reduction sequence ends
with an irreducible term (a normal form).

Note that, in the Simple Type System:
= M:0= M is strongly normalizing

... but the opposite does not hold: the strongly normalizable term
Ax.xx is not simply typable.

23

Intersection Types

—— (Axiom)
X:ThEx:T

24

Intersection Types

—— (Axiom
x:T}—x:T()

FrNu{x:mnNn---Nm}t-M:o

(— Introy)
FrM=AM:mnN---N1p, >0

24

Intersection Types

—— (Axiom
x:T}—x:T()

FrNu{x:mnNn---Nm}t-M:o

(— Introy)
FrM=AM:mnN---N1p, >0

r=M:o x does not occur in I

=X M:7—0

(—> IntroK)

24

Intersection Types

—— (Axiom
x:T}—x:T()

FrNu{x:mnNn---Nm}t-M:o

(— Introy)
FrM=AM:mnN---N1p, >0

r=M:o x does not occur in I

=X M:7—0

(—> IntroK)

[oFM:mnN---N1y >0 MMEN7 - ToEN:T,
f[oAT1A---AT,FEMN:o

(— Elim)

24

Intersection Types-Example

The A-term (Ax.xx) is typable in the Intersection Type System:

x:a—=pfFx:a—0

25

Intersection Types-Example

The A-term (Ax.xx) is typable in the Intersection Type System:

x:a—=pfFx:a—0 x:akFx:a«

25

Intersection Types-Example

The A-term (Ax.xx) is typable in the Intersection Type System:

x:a—=pfFx:a—0 x:akFx:a«

x:(a—=B)Nakxx:p

25

Intersection Types-Example

The A-term (Ax.xx) is typable in the Intersection Type System:

x:a—=pfFx:a—0 x:akFx:a«

x:(a=B)Nakxx:p
F(Axxx): ((a = B)Na) =B

25

Intersection Types and Substructural Type Systems

Intersection

Simple
/7 N\
Affine Relevant

Linear

Ordered

26

Algebraic properties of Intersection
and Substructural Systems

Expansion based on Intersection types

Given the ITS typing:

Fa (Axxx)(Ay.y) :a — «

27

Expansion based on Intersection types

Given the ITS typing:

Fa (Axxx)(Ay.y) :a — «

Consider the non-linear term:

Fadxxx:(a—=a)= (a—=a)N (a—a)) s a—«a
——

Ist occ. of x 2nd occ. of x

27

Expansion based on Intersection types

Given the ITS typing:

Fa (Axxx)(Ay.y) :a — «

Consider the non-linear term:

Fadxxx:(a—=a)= (a—=a)N (a—a)) s a—«a
——

Ist occ. of x 2nd occ. of x

We expand this into:

Fo dxaxexio: ((a—a) = (a—a) 2 (a—a) > a—a
~——

X1 X2

27

Expansion based on Intersection types

Given the ITS typing:

Fa (Axxx)(Ay.y) :a — «

Consider the non-linear term:

Fadxxx:i(a—=a)= (a—=a)nN (a—a)) =2 a—a
——

Ist occ. of x 2nd occ. of x

We expand this into:

Fo dxaxexio: ((a—a) = (a—a) 2 (a—a) > a—a
~——

X1 X2

Obtaining the following typing in the Linear System:
Fio (Axaxexix)(Ay.y)Ayy) ra— «

27

ACI-Expansion

ACI - Associative, Commutative and Idempotent (7 N7 = 7)

Elx:m) < (i dx:{y:7}})
ifx#y

28

ACI-Expansion

ACI - Associative, Commutative and Idempotent (7 N7 = 7)
Ex:m) < (v{x:{y:7}h)
ifx#y
E(MM:min---Nm—0) I (Axi...xp.M* A)

if x occurs in M and
E(M:o)a(M*,AU{x: {x1:71,...,Xn: Tn}})

28

ACI-Expansion

ACI - Associative, Commutative and Idempotent (7 N7 = 7)

Elx:m) < (i dx:{y:7}})
ifx#y

E(MM:min---Nm—0) I (Axi...xp.M* A)
if x occurs in M and
E(M:o)a(M*,AU{x: {x1:71,...,Xn: Tn}})

E(MM:T—0) < (Ay.M* A)
if x does not occur in M,
y is a fresh variable and
E(M o)< (M*,A)

28

ACI-Expansion

ACI - Associative, Commutative and Idempotent (7 N7 = 7)

Elx:m) < (i dx:{y:7}})
ifx#y

E(MM:min---Nm—0) I (Axi...xp.M* A)
if x occurs in M and
E(M:o)a(M*,AU{x: {x1:71,...,Xn: Tn}})

E(MM:T—0) < (Ay.M* A)
if x does not occur in M,
y is a fresh variable and
E(M o)< (M*,A)

8/(MNIO’) < (MoNl...Nk,AoLﬂAlkﬂ-'-ErJAn)
if for some k > 0 and 7q,...7y,
5/(/\/’Z’7’1ﬁ~--ﬁ7’;< —)O’)Q(Mo,Ao) and
5/(/\/ 5 T,') < (N,‘,A,‘),(l <i< k)

28

ACI-Expansion - Example

Let us show step by step how to calculate an expansion of (Ax.xx)(Ay.y): o — «
Eilx:(a—=a) = (a—= o), {x:{x: (¢ = a) = (a— a)}})

and
Eilx:a—=a)d(x,{x:{x:a—a}l})

29

ACI-Expansion - Example

Let us show step by step how to calculate an expansion of (Ax.xx)(Ay.y): o — «
Eilx:(a—=a) = (a—= o), {x:{x: (¢ = a) = (a— a)}})

and
Eilx:a—=a)d(x,{x:{x:a—a}l})

thus

Eilxxta—a) < (xix,{x:{x1: (a0 = a) = (¢ > a),x:a— a}})

29

ACI-Expansion - Example

Let us show step by step how to calculate an expansion of (Ax.xx)(Ay.y): o — «

Eilx:(a—=a) = (a—= o), {x:{x: (¢ = a) = (a— a)}})

and
Eilx:a—=a)d(x,{x:{x:a—a}l})
thus
Eilxxta—a) < (xix,{x:{x1: (a0 = a) = (¢ > a),x:a— a}})
and

Exxx: (= a) = (a—=a))N(a—a)) = a— a)d(Axix.xix, D)

29

ACI-Expansion - Example

Let us show step by step how to calculate an expansion of (Ax.xx)(Ay.y): o — «

Eilx:(a—=a) = (a—= o), {x:{x: (¢ = a) = (a— a)}})

and
Eilx:a—=a)d(x,{x:{x:a—a}l})
thus
Eilxxta—a) < (xix,{x:{x1: (a0 = a) = (¢ > a),x:a— a}})
and

Exxx: (= a) = (a—=a))N(a—a)) = a— a)d(Axix.xix, D)

It easy to show that
Ey.y a—a)<d(\z.z,9)

and
EAyy (a—a) = (a— a)) < (Az.z,9)

29

ACI-Expansion - Example

Let us show step by step how to calculate an expansion of (Ax.xx)(Ay.y): o — «

Eilx:(a—=a) = (a—= o), {x:{x: (¢ = a) = (a— a)}})

and
Eilx:a—=a)d(x,{x:{x:a—a}l})
thus
Eilxxta—a) < (xix,{x:{x1: (a0 = a) = (¢ > a),x:a— a}})
and

Exxx: (= a) = (a—=a))N(a—a)) = a— a)d(Axix.xix, D)
It easy to show that
Ey.y a—a)<d(\z.z,9)

and
EAyy (a—a) = (a— a)) < (Az.z,9)

thus
EI((Axxx)(Ay.y) : a = a) < (Axixe.x1x2)(Az.z)(Az.z), @)

29

ACI-Expansion - Example

Let us now look at one expansion of Afx.f(fx): *
E(f ra—a)< (A {f:{fi:a—a}l})

and,

Ei(x) < (x, {x:{x1:a}})

30

ACI-Expansion - Example

Let us now look at one expansion of Afx.f(fx): *
E(f ra—a)< (A {f:{fi:a—a}l})

and,
Ei(x) < (x, {x:{x1:a}})
thus,
E((fx) o) < (Ax, {f: {Ai:a—a},x:{x1:a}})

30

ACI-Expansion - Example

Let us now look at one expansion of Afx.f(fx): *
E(f ra—a)< (A {f:{fi:a—a}l})
and,
Ei(x) < (x, {x:{x1:a}})

thus,
E((fx) o) < (Ax, {f: {Ai:a—a},x:{x1:a}})

we also have,
Ef ra—a)< (A {f:{fi:a—a}})

therefore,
EN(f(fx) o) < (A(fax),{f : {A:a—a}lx:{x:a}})

30

ACI-Expansion - Example

Let us now look at one expansion of Afx.f(fx): *
E(f ra—a)< (A {f:{fi:a—a}l})
and,
Ei(x) < (x, {x:{x1:a}})

thus,
E((fx) o) < (Ax, {f: {Ai:a—a},x:{x1:a}})

we also have,
Ef ra—a)< (A {f:{fi:a—a}})

therefore,
EN(f(fx) o) < (A(fax),{f : {A:a—a}lx:{x:a}})

and
EI(Axf(x) :a = a) < (Mxq.A(fixi), {f : {h:a— a}})

finally we have,

EI(Mx.f(x) 1 (a = a) = a — a) < Afixi.A(fixt)

30

ACI-Expansion - Properties

We consider the following translation 7 from intersection types to
simple types:

e 7(a) =q, if ais a type variable;

e T((mN---N7p) = 0)=T(11) = - = T(1a) = T(0).

31

ACI-Expansion - Properties

We consider the following translation 7 from intersection types to
simple types:

e 7(a) =q, if ais a type variable;

e T((mN---Nmy) = 0)=T(m1) = - — T(ma) = T(0).
We have the following properties regarding ACIl expansion:

EI(M : o)< (N,A)

31

ACI-Expansion - Properties

We consider the following translation 7 from intersection types to
simple types:

e 7(a) =q, if ais a type variable;

e T((mN---Nmy) = 0)=T(m1) = - — T(ma) = T(0).
We have the following properties regarding ACIl expansion:

EI(M : o)< (N,A)

o [FAM:o = T(IN)FsN:T(o).
o If Misa M-term , then TFAM : 0 = T(I) FrN : T(0).

31

AC-Expansion

AC - Associative, Commutative but not Idempotent (7 N7 # 7)

Ex:7m) < (v, {x:{y:7}}), ifx#y
——
ACl

32

AC-Expansion

AC - Associative, Commutative but not Idempotent (7 N7 # 7)

Ex:7m) < (v, {x:{y:7}}), ifx#y
——
ACl

Ec(x:1) < (v, {x:{y:7}}), if yis a fresh variable
AC

32

AC-Expansion

AC - Associative, Commutative but not Idempotent (7 N7 # 7)

Ex:7m) < (v, {x:{y:7}}), ifx#y
——
ACl

Ec(x:1) < (v, {x:{y:7}}), if yis a fresh variable
AC

For example:

Ec(Mxx(xx): ((a = a)N(a = a)Na) = «a)
A(Axixoxz.xi(xexs), {x {x1:a = a,x:a— a,x3:al})

32

AC-Expansion - Properties

In AC expansion the number of types in the intersection is the
same as the free occurrences of the parameter in the function body.

33

AC-Expansion - Properties

In AC expansion the number of types in the intersection is the
same as the free occurrences of the parameter in the function body.

We have the following properties regarding AC expansion:

Ec(M: o)< (N,C)

33

AC-Expansion - Properties

In AC expansion the number of types in the intersection is the
same as the free occurrences of the parameter in the function body.

We have the following properties regarding AC expansion:

Ec(M: o)< (N,C)

o NFAM 0 = T(I') FaN : T (o).
e If Misa \l-term, then TFAM : 0 = T(I) = N : T (o).

33

Ordered A-Expansion

A - Associative, but not Commutative (T No # o N T) nor

Idempotent (7 N7 # 7)
go(/\X.M coi N Nop —>0’) 4 (>\y1---}’n-MOT(Ul)*)P"HVT(U")*}VT(U%A)7
if x € fv(M) and

Eo(M:a)a(MI A+ [x: [x1: T(01), - : T(an)]])

34

Ordered A-Expansion

A - Associative, but not Commutative (T No # o N T) nor
Idempotent (7 N7 # 7)

go(/\X.M coi N Nop —>0’) 4 (>\y1---}’n-MOT(Ul)*)P"HVT(U")*}VT(U%A)7

if x € fv(M) and
Eo(M:a)a(MI A+ [x: [x1: T(01), - : T(an)]])

EoOxM:o1N--Nan—0) 9 (Ax...xp.My U7 2iTlon=T(e) 4y

if x € £v(M) and
Eo(M: o) a (M [x: [xn: T(an), ..., : T(o1)]] + A)

34

Ordered A-Expansion

A - Associative, but not Commutative (T No # o N T) nor
Idempotent (7 N7 # 7)

go(/\X.M co N Nop — 0’) 4 (>\y1---}’n-MOT(Ul)*)P"HVT(U")*}VT(U%A)7

if x € fv(M) and
Eo(M:a)a(MI A+ [x: [x1: T(01), - : T(an)]])

EoOxM:o1N--Nan—0) 9 (Ax...xp.My U7 2iTlon=T(e) 4y
if x € £v(M) and
Eo(M: o) a (M [x: [xn: T(an), ..., : T(o1)]] + A)

Eo(MN : o) q ((M0N1~.~Nm)T(”),Ao+A1+---+Am)
if for some m >0 and o1,...,0m
EoM:o1N---Nom —0)d (Mg(gl)%"”H’T(Jm)%’ﬁr(o),AO)
and (50(/\/ L o7) < (N,.T(""),A,-))

i=1...m

34

Ordered A-Expansion

A - Associative, but not Commutative (T No # o N T) nor
Idempotent (7 N7 # 7)

go(/\X.M co N Nop — 0’) 4 (>\y1---}’n-MOT(Ul)*)P"HVT(U")*}VT(U%A)7

if x € fv(M) and
Eo(M:a)a(MI A+ [x: [x1: T(01), - : T(an)]])

EoOxM:o1N--Nan—0) 9 (Ax...xp.My U7 2iTlon=T(e) 4y
if x € £v(M) and
Eo(M: o) a (M [x: [xn: T(an), ..., : T(o1)]] + A)

Eo(MN : o) <4 ((MoNy...Nm)T@) Ay + AL+ -+ + Am)
if for some m >0 and o1,...,0m
Eo(M:oiN - Nop— o) (Mg‘(Ul)*ﬂ-u;)rT(O'm)A)rT(U)’AO)
and (50(/\/ L o7) < (N,.T(""),A,-))_
i=1l...m
Eo(MN : o) a ((MoNy...Ny)T@ Ap 4+ -+ Ap + Ag),
if for some m >0 and 01,...,0m
Eo(M:o1N- Nom— o)< (Mg—(m)ﬂl.v.H/T(nm)a/T((r)yAO)
o T(@i) A,
and (EO(N L o7) < (N; ’A‘)>,-:1,..m 2

Ordered Expansion - Example

Let M = (Ax.xz)z. The ordered expansion of M is calculated step
by step as:
Eolx:a—=pB)= ("B [x:[x1:a—,)

Eo(z:8) = (21", [z: [z :)

85

Ordered Expansion - Example

Let M = (Ax.xz)z. The ordered expansion of M is calculated step
by step as:

Colx:a—p)= (Xlo‘_”ﬁ, [x:[xa:a—r0]])

Eo(z:8) = (21", [z: [z :)

Eolxz: B) = ((xaz)?,[x: [x1:a = Bl,z:[z1:]])

85

Ordered Expansion - Example

Let M = (Ax.xz)z. The ordered expansion of M is calculated step
by step as:

Colx:a—p)= (Xlo‘_”ﬁ, [x:[xa:a—r0]])
Eo(z:8) = (21", [z: [z :)
Eolxz: B) = ((xaz)?,[x: [x1:a = Bl,z:[z1:]])

Eo(Mx.xz: (a— B) = B) = (Mxa.x1z) @ P28 [z : [z : o]])

85

Ordered Expansion - Example

Let M = (Ax.xz)z. The ordered expansion of M is calculated step
by step as:

Eo(x:a— f)= (a7, [x: x:a = f])
o(z:)= (2"]z : [21: B]])
Eo(xz: B) = ((az)’,[x: [: o =, B,z [z 1 o]])
Eo(Mxxz : (a = B) = B) = (Maxaz) 7 A)=P [z : [z : o))

Eo(z:a—=B)= (7B [z:[z:a—= 6]

85

Ordered Expansion - Example

Let M = (Ax.xz)z. The ordered expansion of M is calculated step
by step as:

Eo(x:a—)= (x®7P, [x: [a—)
Eo(z:8) = (21", [z: [z :)
Eo(xz: B) = ((az)’,[x: [s a = Bl,z: [z 2 o)
Eo(Mx.xz : (a = B) = B) = (Waxaz) @)= [z 1 [z : o))
Eo(z:a— B)= (270 [z: [z:a—, B]])

Eo((Mxx2)z : B) = (Max1z1)2)P, [z : [z2: a =, B,z1 : a])

85

Ordered Expansion - Properties

We have the following property regarding A expansion:

Eo(M :a) (N7 A)

36

Ordered Expansion - Properties

We have the following property regarding A expansion:

Eo(M :a) (N7 A)

If M is a M-term, then TFAM : o = T(I) FoN : T (o).

36

Ordered Expansion - Properties

We have the following property regarding A expansion:

Eo(M :a) (N7 A)

If M is a M-term, then TFAM : o = T(I) FoN : T (o).

But now 7T goes from intersection types to ordered types:

e T(a)=q, if ais a type variable;

e T((mN---Nm) = 0)=T(m1) =r - —r T(ma) =+ T(0).

36

What about reduction?

37

What about reduction?

Consider weak head reduction — is defined by:

(Ax.M)N - MI[N /x]

and
M — M
w

MN — M'N

37

What about reduction?

Consider weak head reduction — is defined by:

(Ax.M)N - MI[N /x]

and
M — M
MN — M'N

In functional programming languages, reduction is weak.

37

What about reduction?

Consider weak head reduction — is defined by:

(Ax.M)N - MI[N /x]

and
M — M
w

MN — M'N

In functional programming languages, reduction is weak.

Expansion (ACI, AC and A) preserves weak head reduction, thus
the following diagram commutes:

37

Correctness

Expansion commutes with S-reduction in the A/-calculus,

My —— M,

e

/V17>>/V2

38

Correctness

Expansion commutes with S-reduction in the A/-calculus,

My —— M,

e

/V17>>/V2

but not in the A\-calculus:

Ax.(Ay.z)xx —— AX.zX

|

Ax1x2.(Ay.z)x1x2 T AX1X2.2X0

38

To summarize...

How does reduction relates to the different notions of expansion:

‘ N ‘ Source ‘ Target ‘ Preserves reductions ‘
ACI| X | Simple Types | Weak Head Reduction |

39

To summarize...

How does reduction relates to the different notions of expansion:

‘ N ‘ Source ‘ Target ‘ Preserves reductions
ACI A Simple Types | Weak Head Reduction
ACI Al Relevant Types [-reduction

39

To summarize...

How does reduction relates to the different notions of expansion:

‘ N ‘ Source ‘ Target ‘ Preserves reductions
ACI A Simple Types | Weak Head Reduction
ACI Al Relevant Types [-reduction
AC A Affine Types | Weak Head Reduction

39

To summarize...

How does reduction relates to the different notions of expansion:

‘ N ‘ Source ‘ Target ‘ Preserves reductions
ACI A Simple Types | Weak Head Reduction
ACI Al Relevant Types [-reduction
AC A Affine Types | Weak Head Reduction
AC Al Linear Types [-reduction

39

To summarize...

How does reduction relates to the different notions of expansion:

‘ N ‘ Source ‘ Target ‘ Preserves reductions
ACI A Simple Types | Weak Head Reduction
ACI Al Relevant Types [-reduction
AC A Affine Types | Weak Head Reduction
AC Al Linear Types [-reduction
A Al Ordered Types [-reduction

39

To summarize...

How the different structural rules relate to the different expansion

relations:

Type System ‘ W ‘ E ‘ C ‘ Assumptions | Intersection

Relevant v | v | at least once ACI
Affine v | v at most once AC
Linear v exactly once AC

Ordered in order A

40

Current and Future Work

What are we currently looking at...
Remember the two (valid) typings:

zn:a— B, n:abo (Ax.xz)z:
nia, z1:a— Blo (MAxxz)z : B

We would like to be able to have a notion of principal-pair for the
ordered type system and a type-inference algorithm.

41

Current and Future Work

What are we currently looking at...
Remember the two (valid) typings:

zn:a— B, n:abo (Ax.xz)z:
nia, z1:a— Blo (MAxxz)z : B

We would like to be able to have a notion of principal-pair for the
ordered type system and a type-inference algorithm.

What else we would like to look at...

e Study in more detail the relation between the linear and the
ordered system;

e In theory there are more possible substructural systems... is
any of the remaining ones interesting?

41

Thank you!

42

	Now let's slightly detour and talk about Intersection Types
	Algebraic properties of Intersection and Substructural Systems

