Mathematical and Computational Linguistics for Proofs

Structural Rules and Algebraic Properties of Intersection Types

Sandra Alves University of Porto (joint work with Mário Florido) September 16, 2025

A long time ago...

Non-idempotent Intersections and Linear Logic Seminal work by Kfoury (2001), which was latter highlighted by de Carvalho (2007).

Intersection types and Simple types Bucciarelli, Piperno and Salvo (1999): Translation of intersection typing derivations into Curry typeable terms, preserving β -reduction.

Intersection types and Linear terms Damas and Florido (2004): Expansion relation between terms typable with intersection types and linear terms.

This started my long lasting interest in resource aware type systems...

A long time ago...

Non-idempotent Intersections and Linear Logic Seminal work by Kfoury (2001), which was latter highlighted by de Carvalho (2007).

Intersection types and Simple types Bucciarelli, Piperno and Salvo (1999): Translation of intersection typing derivations into Curry typeable terms, preserving β -reduction.

Intersection types and Linear terms Damas and Florido (2004): Expansion relation between terms typable with intersection types and linear terms.

This started my long lasting interest in resource aware type systems...

Structural Rules and Algebraic Properties (of Intersection Types)

Substructural Rules: in type/logic systems, these correspond to weakening (W), exchange (E), and contraction (C) rules:

	W	Е	С	Use
Normal	√	√	√	
Relevant		√	√	at least once
	√	√		at most once
		√		

Structural Rules and Algebraic Properties (of Intersection Types)

Substructural Rules: in type/logic systems, these correspond to weakening (W), exchange (E), and contraction (C) rules:

	W	Е	С	Use
Normal	√	√	√	unrestricted
Relevant		√	√	at least once
Affine	√	√		at most once
Linear		√		exactly once
Ordered				exactly once in order

Structural Rules and Algebraic Properties (of Intersection Types)

Algebraic Properties: in intersection type systems the intersection operator \cap can be:

- associative (A)
- commutative (C)
- and idempotent (I)

Our language

The untyped λ -calculus:

$$x \in \mathcal{V} \Rightarrow x \in \Lambda$$

 $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$ (Application)
 $M \in \Lambda, x \in \mathcal{V} \Rightarrow (\lambda x M) \in \Lambda$ (Abstraction)

The usual notion of β -reduction:

$$\beta: (\lambda x.M)N \to M[N/x]$$

Our language

The untyped λ -calculus:

$$x \in \mathcal{V} \Rightarrow x \in \Lambda$$

 $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$ (Application)
 $M \in \Lambda, x \in \mathcal{V} \Rightarrow (\lambda x M) \in \Lambda$ (Abstraction)

The usual notion of β -reduction:

$$\beta: (\lambda x.M)N \to M[N/x]$$

Simple Types

Simple types:

$$\begin{array}{ccc} \alpha, \beta \in \mathbb{V} & \Rightarrow & \alpha, \beta \in \mathbb{T}_{C} \\ \sigma, \tau \in \mathbb{T}_{C} & \Rightarrow & (\tau \to \sigma) \in \mathbb{T}_{C} \end{array}$$

A typing environment Γ is a finite list of pairs $x : \tau$ where **all** term variables x are distinct.

A typing

$$\Gamma \vdash M : \sigma$$

means that M has type σ assuming the type declarations in Γ .

Simple Types

Simple types:

$$\begin{array}{ccc} \alpha, \beta \in \mathbb{V} & \Rightarrow & \alpha, \beta \in \mathbb{T}_{C} \\ \sigma, \tau \in \mathbb{T}_{C} & \Rightarrow & (\tau \to \sigma) \in \mathbb{T}_{C} \end{array}$$

A typing environment Γ is a finite list of pairs $x : \tau$ where **all** term variables x are distinct.

A typing:

$$\Gamma \vdash M : \sigma$$

means that M has type σ assuming the type declarations in Γ .

Simple Types

Simple types:

$$\begin{array}{ccc} \alpha, \beta \in \mathbb{V} & \Rightarrow & \alpha, \beta \in \mathbb{T}_{C} \\ \sigma, \tau \in \mathbb{T}_{C} & \Rightarrow & (\tau \to \sigma) \in \mathbb{T}_{C} \end{array}$$

A typing environment Γ is a finite list of pairs $x : \tau$ where **all** term variables x are distinct.

A typing:

$$\Gamma \vdash M : \sigma$$

means that M has type σ assuming the type declarations in Γ .

$$\frac{}{x:\tau \vdash_{S} x:\tau} (\mathsf{Axiom})$$

$$\frac{\Gamma, x : \tau \vdash_{S} M : \sigma}{\Gamma \vdash_{S} \lambda x. M : \tau \to \sigma} \left(\to \mathsf{Intro}\right)$$

$$\frac{\Gamma_1 \vdash_S M : \tau \to \sigma \qquad \Gamma_2 \vdash_S N : \tau}{\Gamma_1, \Gamma_2 \vdash_S MN : \sigma} \, (\to \mathsf{Elim})$$

$$\frac{\times : \tau}{\text{Axiom}} \vdash_{S} x : \tau \text{ (Axiom)}$$
a single assumption

there is an assumption

$$\frac{\Gamma, x : \tau \qquad \vdash_{S} M : \sigma}{\Gamma \vdash_{S} \lambda x.M : \tau \to \sigma} (\to Intro)$$

$$\frac{\Gamma_1 \vdash_S M : \tau \to \sigma \qquad \Gamma_2 \vdash_S N : \tau}{\Gamma_1, \Gamma_2} \vdash_S MN : \sigma} (\to Elim)$$

list concatenation

$$\frac{\underbrace{x:\tau} \qquad \vdash_{S} x:\tau}{\mathsf{a single assumption}} (\mathsf{Axiom})$$

there is an assumption

$$\frac{\overbrace{\Gamma, x : \tau} \qquad \vdash_{S} M : \sigma}{\Gamma \vdash_{S} \lambda x. M : \tau \to \sigma} (\to \mathsf{Intro})$$

$$\frac{\Gamma_1 \vdash_S M : \tau \to \sigma \qquad \Gamma_2 \vdash_S N : \tau}{\Gamma_1, \Gamma_2} \vdash_S MN : \sigma} (\to Elim)$$

list concatenation

$$\frac{\underbrace{x : \tau} \qquad \vdash_{S} x : \tau}{\text{a single assumption}} (Axiom)$$

there is an assumption

$$\frac{\overbrace{\Gamma, x : \tau} \qquad \vdash_{S} M : \sigma}{\Gamma \vdash_{S} \lambda x. M : \tau \to \sigma} (\to \mathsf{Intro})$$

$$\frac{\Gamma_1 \vdash_S M : \tau \to \sigma \qquad \Gamma_2 \vdash_S N : \tau}{\Gamma_1, \Gamma_2} \qquad \vdash_S MN : \sigma} (\to \mathsf{Elim})$$

list concatenation

The Simple Type System (Structural Rules)

$$\frac{\Gamma_{1}, \Gamma_{2} \vdash_{S} M : \sigma}{\Gamma_{1}, x : \tau, \Gamma_{2} \vdash_{S} M : \sigma}$$
 (Weakening)

$$\frac{\Gamma_1, x : \tau_1, y : \tau_2, \Gamma_2 \vdash_S M : \sigma}{\Gamma_1, y : \tau_2, x : \tau_1, \Gamma_2 \vdash_S M : \sigma}$$
(Exchange)

$$\frac{\Gamma_1, x_1 : \tau, x_2 : \tau, \Gamma_2 \vdash_S M : \sigma}{\Gamma_1, x : \tau, \Gamma_2 \vdash_S M[x/x_1, x/x_2] : \sigma}$$
(Contraction

The Simple Type System (Structural Rules)

$$\frac{\Gamma_{1}, \Gamma_{2} \vdash_{S} M : \sigma}{\Gamma_{1}, x : \tau, \Gamma_{2} \vdash_{S} M : \sigma}$$
 (Weakening)

$$\frac{\Gamma_1, x: \tau_1, y: \tau_2, \Gamma_2 \vdash_S M: \sigma}{\Gamma_1, y: \tau_2, x: \tau_1, \Gamma_2 \vdash_S M: \sigma} \text{ (Exchange)}$$

$$\frac{\Gamma_1, x_1 : \tau, x_2 : \tau, \Gamma_2 \vdash_S M : \sigma}{\Gamma_1, x : \tau, \Gamma_2 \vdash_S M[x/x_1, x/x_2] : \sigma}$$
(Contraction

The Simple Type System (Structural Rules)

$$\frac{\Gamma_{1}, \Gamma_{2} \vdash_{S} M : \sigma}{\Gamma_{1}, x : \tau, \Gamma_{2} \vdash_{S} M : \sigma}$$
 (Weakening)

$$\frac{\Gamma_1, x: \tau_1, y: \tau_2, \Gamma_2 \vdash_S M: \sigma}{\Gamma_1, y: \tau_2, x: \tau_1, \Gamma_2 \vdash_S M: \sigma} \text{ (Exchange)}$$

$$\frac{\Gamma_1, x_1 : \tau, x_2 : \tau, \Gamma_2 \vdash_S M : \sigma}{\Gamma_1, x : \tau, \Gamma_2 \vdash_S M[x/x_1, x/x_2] : \sigma}$$
 (Contraction)

$$\begin{array}{c}
x: \alpha \to \alpha \vdash_{S} x: \alpha \to \alpha \\
\hline
x: \alpha \to \alpha, \mathbf{y}: \beta \vdash_{S} x: \alpha \to \alpha \\
\hline
x: \alpha \to \alpha \vdash_{S} \lambda y. x: \beta \to \alpha \to \alpha \\
\hline
\vdash_{S} \lambda xy. x: (\alpha \to \alpha) \to \beta \to \alpha \to \alpha \\
\hline
\vdash_{S} (\lambda xy. x)(\lambda x. x): \beta \to \alpha \to \alpha
\end{array}$$

$$\begin{array}{c}
x: \alpha \vdash_{S} x: \alpha \\
\vdash_{S} \lambda x. x: \alpha \to \alpha \\
\hline
\vdash_{S} (\lambda xy. x)(\lambda x. x): \beta \to \alpha \to \alpha
\end{array}$$

$$\begin{array}{c}
x: \alpha \to \alpha \vdash_{S} x: \alpha \to \alpha \\
\hline
x: \alpha \to \alpha, \mathbf{y}: \beta \vdash_{S} x: \alpha \to \alpha \\
\hline
x: \alpha \to \alpha \vdash_{S} \lambda y. x: \beta \to \alpha \to \alpha \\
\hline
\vdash_{S} \lambda xy. x: (\alpha \to \alpha) \to \beta \to \alpha \to \alpha \\
\hline
\vdash_{S} (\lambda xy. x)(\lambda x. x): \beta \to \alpha \to \alpha
\end{array}$$

$$\begin{array}{c}
x: \alpha \vdash_{S} x: \alpha \\
\hline
\vdash_{S} \lambda x. x: \alpha \to \alpha \\
\hline
\vdash_{S} (\lambda xy. x)(\lambda x. x): \beta \to \alpha \to \alpha
\end{array}$$

$$\begin{array}{c}
x: \alpha \to \alpha \vdash_{S} x: \alpha \to \alpha \\
\hline
x: \alpha \to \alpha, \mathbf{y}: \beta \vdash_{S} x: \alpha \to \alpha \\
\hline
x: \alpha \to \alpha \vdash_{S} \lambda y. x: \beta \to \alpha \to \alpha \\
\hline
\vdash_{S} \lambda xy. x: (\alpha \to \alpha) \to \beta \to \alpha \to \alpha \\
\hline
\vdash_{S} (\lambda xy. x)(\lambda x. x): \beta \to \alpha \to \alpha
\end{array}$$

$$\begin{array}{c}
x: \alpha \mapsto_{S} x: \alpha \\
\vdash_{S} \lambda xy. x: \alpha \to \alpha \\
\hline
\vdash_{S} (\lambda xy. x)(\lambda x. x): \beta \to \alpha \to \alpha
\end{array}$$

$$\frac{x : \alpha \to \alpha \vdash_{S} x : \alpha \to \alpha}{x : \alpha \to \alpha, \mathbf{y} : \beta \vdash_{S} x : \alpha \to \alpha}$$

$$\frac{x : \alpha \to \alpha, \mathbf{y} : \beta \vdash_{S} x : \alpha \to \alpha}{x : \alpha \to \alpha \vdash_{S} \lambda y.x : \beta \to \alpha \to \alpha}$$

$$\vdash_{S} \lambda xy.x : (\alpha \to \alpha) \to \beta \to \alpha \to \alpha$$

$$\vdash_{S} (\lambda xy.x)(\lambda x.x) : \beta \to \alpha \to \alpha$$

$$\frac{x : \alpha \to \alpha \vdash_{S} x : \alpha \to \alpha}{x : \alpha \to \alpha, \mathbf{y} : \beta \vdash_{S} x : \alpha \to \alpha}$$

$$\frac{x : \alpha \to \alpha, \mathbf{y} : \beta \vdash_{S} x : \alpha \to \alpha}{x : \alpha \to \alpha \vdash_{S} \lambda y.x : \beta \to \alpha \to \alpha}$$

$$\frac{x : \alpha \to \alpha \vdash_{S} \lambda y.x : \beta \to \alpha \to \alpha}{\vdash_{S} \lambda xy.x : (\alpha \to \alpha) \to \beta \to \alpha \to \alpha}$$

$$\frac{x : \alpha \to \alpha \vdash_{S} x : \alpha \to \alpha}{\vdash_{S} \lambda xy.x : \alpha \to \alpha}$$

$$\frac{x : \alpha \to \alpha \vdash_{S} x : \alpha \to \alpha}{x : \alpha \to \alpha, \mathbf{y} : \beta \vdash_{S} x : \alpha \to \alpha}$$

$$\frac{x : \alpha \to \alpha, \mathbf{y} : \beta \vdash_{S} x : \alpha \to \alpha}{x : \alpha \to \alpha \vdash_{S} \lambda y.x : \beta \to \alpha \to \alpha}$$

$$\vdash_{S} \lambda xy.x : (\alpha \to \alpha) \to \beta \to \alpha \to \alpha$$

$$\vdash_{S} (\lambda xy.x)(\lambda x.x) : \beta \to \alpha \to \alpha$$

$$\xrightarrow{\vdash_{S} (\lambda xy.x)(\lambda x.x) : \beta \to \alpha \to \alpha}$$

$$\frac{x : \alpha \to \alpha \vdash_{S} x : \alpha \to \alpha}{x : \alpha \to \alpha, \mathbf{y} : \beta \vdash_{S} x : \alpha \to \alpha}$$

$$\frac{x : \alpha \to \alpha, \mathbf{y} : \beta \vdash_{S} x : \alpha \to \alpha}{x : \alpha \to \alpha \vdash_{S} \lambda y.x : \beta \to \alpha \to \alpha}$$

$$\frac{x : \alpha \to \alpha \vdash_{S} \lambda y.x : \beta \to \alpha \to \alpha}{\vdash_{S} \lambda xy.x : (\alpha \to \alpha) \to \beta \to \alpha \to \alpha}$$

$$\frac{x : \alpha \vdash_{S} x : \alpha \to \alpha}{\vdash_{S} \lambda x.x : \alpha \to \alpha}$$

$$\vdash_{S} (\lambda xy.x)(\lambda x.x) : \beta \to \alpha \to \alpha$$

$$\frac{y:\alpha \to \beta \vdash_{S} y:\alpha \to \beta \qquad x:\alpha \vdash_{S} x:\alpha}{y:\alpha \to \beta, x:\alpha \vdash_{S} yx:\beta}$$

$$\frac{x:\alpha,y:\alpha \to \beta \vdash_{S} yx:\beta}{x:\alpha,y:\alpha \to \beta \vdash_{S} yx:\beta}$$

$$\frac{x:\alpha \vdash_{S} \lambda y.yx:(\alpha \to \beta) \to \beta}{\vdash_{S} (\lambda xy.yx):\alpha \to (\alpha \to \beta) \to \beta}$$

$$\frac{y:\alpha \to \beta \vdash_{S} y:\alpha \to \beta \qquad x:\alpha \vdash_{S} x:\alpha}{\underbrace{y:\alpha \to \beta, x:\alpha \vdash_{S} yx:\beta}_{x:\alpha,y:\alpha \to \beta \vdash_{S} yx:\beta}}$$
$$\underbrace{\frac{x:\alpha,y:\alpha \to \beta \vdash_{S} yx:\beta}_{\vdash_{S} (\lambda xy.yx):\alpha \to (\alpha \to \beta) \to \beta}}$$

$$\frac{y:\alpha \to \beta \vdash_{S} y:\alpha \to \beta \qquad x:\alpha \vdash_{S} x:\alpha}{y:\alpha \to \beta, x:\alpha \vdash_{S} yx:\beta}$$

$$\frac{x:\alpha,y:\alpha \to \beta \vdash_{S} yx:\beta}{x:\alpha \vdash_{S} \lambda y.yx:(\alpha \to \beta) \to \beta}$$

$$\vdash_{S} (\lambda xy.yx):\alpha \to (\alpha \to \beta) \to \beta$$

$$\frac{y:\alpha \to \beta \vdash_{S} y:\alpha \to \beta \qquad x:\alpha \vdash_{S} x:\alpha}{y:\alpha \to \beta, x:\alpha \vdash_{S} yx:\beta}$$

$$\frac{x:\alpha,y:\alpha \to \beta \vdash_{S} yx:\beta}{x:\alpha,y:\alpha \to \beta \vdash_{S} yx:\beta}$$

$$\frac{x:\alpha \vdash_{S} \lambda y.yx:(\alpha \to \beta) \to \beta}{\vdash_{S} (\lambda xy.yx):\alpha \to (\alpha \to \beta) \to \beta}$$

$$\frac{y:\alpha \to \beta \vdash_{S} y:\alpha \to \beta \qquad x:\alpha \vdash_{S} x:\alpha}{y:\alpha \to \beta, x:\alpha \vdash_{S} yx:\beta}$$

$$\frac{x:\alpha,y:\alpha \to \beta \vdash_{S} yx:\beta}{x:\alpha,y:\alpha \to \beta \vdash_{S} yx:\beta}$$

$$\frac{x:\alpha \vdash_{S} \lambda y.yx:(\alpha \to \beta) \to \beta}{\vdash_{S} (\lambda xy.yx):\alpha \to (\alpha \to \beta) \to \beta}$$

The Simple Type System - Contraction

$$\frac{f_{2}: \alpha \to \alpha \vdash_{S} f_{2}: \alpha \to \alpha \qquad x: \alpha \vdash_{S} x: \alpha}{f_{1}: \alpha \to \alpha \qquad f_{2}: \alpha \to \alpha, x: \alpha \vdash_{S} (f_{2}x): \alpha}$$

$$\frac{f_{1}: \alpha \to \alpha, f_{2}: \alpha \to \alpha, x: \alpha \vdash_{S} (f_{2}x): \alpha}{f_{1}: \alpha \to \alpha, x: \alpha \vdash_{S} f(f_{2}x): \alpha}$$

$$\frac{f: \alpha \to \alpha, x: \alpha \vdash_{S} f(f_{2}x): \alpha}{f: \alpha \to \alpha \vdash_{S} \lambda x. f(f_{2}x): \alpha}$$

$$\frac{f: \alpha \to \alpha \vdash_{S} \lambda x. f(f_{2}x): \alpha \to \alpha}{f: \alpha \to \alpha \vdash_{S} \lambda x. f(f_{2}x): \alpha \to \alpha}$$

The Simple Type System - Contraction

$$\frac{f_{2}: \alpha \to \alpha \vdash_{S} f_{2}: \alpha \to \alpha \qquad x: \alpha \vdash_{S} x: \alpha}{f_{2}: \alpha \to \alpha, x: \alpha \vdash_{S} (f_{2}x): \alpha}$$

$$\frac{f_{1}: \alpha \to \alpha \vdash_{S} f_{1}: \alpha \to \alpha}{f_{1}: \alpha \to \alpha, f_{2}: \alpha \to \alpha, x: \alpha \vdash_{S} f_{1}(f_{2}x): \alpha}$$

$$\frac{f_{1}: \alpha \to \alpha, f_{2}: \alpha \to \alpha, x: \alpha \vdash_{S} f_{1}(f_{2}x): \alpha}{f: \alpha \to \alpha, x: \alpha \vdash_{S} f(fx): \alpha}$$

$$\frac{f_{1}: \alpha \to \alpha \vdash_{S} \lambda x. f(fx): \alpha \to \alpha}{f: \alpha \to \alpha \vdash_{S} \lambda x. f(fx): \alpha \to \alpha}$$

The Simple Type System - Contraction

$$\frac{f_{2}: \alpha \to \alpha \vdash_{S} f_{2}: \alpha \to \alpha \qquad x: \alpha \vdash_{S} x: \alpha}{f_{2}: \alpha \to \alpha, x: \alpha \vdash_{S} (f_{2}x): \alpha}$$

$$\frac{f_{1}: \alpha \to \alpha, f_{2}: \alpha \to \alpha, x: \alpha \vdash_{S} (f_{2}x): \alpha}{f_{1}: \alpha \to \alpha, f_{2}: \alpha \to \alpha, x: \alpha \vdash_{S} f_{1}(f_{2}x): \alpha}$$

$$\frac{f: \alpha \to \alpha, x: \alpha \vdash_{S} f(fx): \alpha}{f: \alpha \to \alpha \vdash_{S} \lambda x. f(fx): \alpha \to \alpha}$$

$$\vdash_{S} \lambda fx. f(fx): (\alpha \to \alpha) \to \alpha$$

From Simple Types to Substructural Types

Simple Types are not expressive enough to reason about restricted use of computational resources.

What happens when we remove one (or more) structural rule(s)?

Substructural Type Systems are related to Substructural Logics

- Linear logic: the basis of resource aware formalisms.
- Lambek ordered logic: applications to natural language processing.
- Relevant logic.

From Simple Types to Substructural Types

Simple Types are not expressive enough to reason about restricted use of computational resources.

What happens when we remove one (or more) structural rule(s)?

Substructural Type Systems are related to Substructural Logics

- Linear logic: the basis of resource aware formalisms.
- Lambek ordered logic: applications to natural language processing.
- Relevant logic.

From Simple Types to Substructural Types

Simple Types are not expressive enough to reason about restricted use of computational resources.

What happens when we remove one (or more) structural rule(s)?

Substructural Type Systems are related to Substructural Logics

- Linear logic: the basis of resource aware formalisms.
- Lambek ordered logic: applications to natural language processing.
- Relevant logic.

Substructural Type Systems

Type System	W	Е	С	Use of assumptions
Relevant		√	√	at least once
Affine	√	√		at most once
Linear		√		exactly once
Ordered				in order

The Relevant Type System (Structural Rules)

$$\frac{\Gamma_1, x: \tau_1, y: \tau_2, \Gamma_2 \vdash_R M: \sigma}{\Gamma_1, y: \tau_2, x: \tau_1, \Gamma_2 \vdash_R M: \sigma} \text{ (Exchange)}$$

$$\frac{\Gamma_1, x_1 : \tau, x_2 : \tau, \Gamma_2 \vdash_R M : \sigma}{\Gamma_1, x : \tau, \Gamma_2 \vdash_R M[x/x_1, x/x_2] : \sigma}$$
 (Contraction)

No weakening implies that any typed term is a λI -term (in every $\lambda x.N$ in M, x occurs free in N at least once).

For example, $\lambda y.x$ is not typable in the *Relevant Type System*, whereas $\lambda xyz.xz(yz)$ and $\lambda fx.f(fx)$ are typable.

The Relevant Type System (Structural Rules)

$$\frac{\Gamma_1, x: \tau_1, y: \tau_2, \Gamma_2 \vdash_R M: \sigma}{\Gamma_1, y: \tau_2, x: \tau_1, \Gamma_2 \vdash_R M: \sigma} \text{ (Exchange)}$$

$$\frac{\Gamma_1, x_1 : \tau, x_2 : \tau, \Gamma_2 \vdash_R M : \sigma}{\Gamma_1, x : \tau, \Gamma_2 \vdash_R M[x/x_1, x/x_2] : \sigma}$$
 (Contraction)

No weakening implies that any typed term is a λI -term (in every $\lambda x.N$ in M, x occurs free in N at least once).

For example, $\lambda y.x$ is not typable in the *Relevant Type System*, whereas $\lambda xyz.xz(yz)$ and $\lambda fx.f(fx)$ are typable.

The Relevant Type System (Structural Rules)

$$\frac{\Gamma_1, x : \tau_1, y : \tau_2, \Gamma_2 \vdash_R M : \sigma}{\Gamma_1, y : \tau_2, x : \tau_1, \Gamma_2 \vdash_R M : \sigma}$$
(Exchange)

$$\frac{\Gamma_1, x_1 : \tau, x_2 : \tau, \Gamma_2 \vdash_R M : \sigma}{\Gamma_1, x : \tau, \Gamma_2 \vdash_R M[x/x_1, x/x_2] : \sigma}$$
 (Contraction)

No weakening implies that any typed term is a λI -term (in every $\lambda x.N$ in M, x occurs free in N at least once).

For example, $\lambda y.x$ is not typable in the *Relevant Type System*, whereas $\lambda xyz.xz(yz)$ and $\lambda fx.f(fx)$ are typable.

Substructural Type Systems

Type System	W	Е	С	Use of assumptions
Relevant		√	√	at least once
Affine	✓	√		at most once
Linear		√		exactly once
Ordered				in order

$$\frac{\Gamma_1, \Gamma_2 \vdash_A M : \sigma}{\Gamma_1, x : \tau, \Gamma_2 \vdash_A M : \sigma} \text{ (Weakening)}$$

$$\frac{\Gamma_1, x: \tau_1, y: \tau_2, \Gamma_2 \vdash_A M: \sigma}{\Gamma_1, y: \tau_2, x: \tau_1, \Gamma_2 \vdash_A M: \sigma} \text{ (Exchange)}$$

No contraction, means that each variable cannot occur more than once.

For example, $\lambda x.x$ and $\lambda x.y$ are typable in the Affine Type System, whereas $\lambda xyz.xz(yz)$ and $\lambda fx.f(fx)$ are not typable.

$$\frac{\Gamma_1, \Gamma_2 \vdash_A M : \sigma}{\Gamma_1, x : \tau, \Gamma_2 \vdash_A M : \sigma}$$
 (Weakening)

$$\frac{\Gamma_1, x: \tau_1, y: \tau_2, \Gamma_2 \vdash_A M: \sigma}{\Gamma_1, y: \tau_2, x: \tau_1, \Gamma_2 \vdash_A M: \sigma} \text{ (Exchange)}$$

No contraction, means that each variable cannot occur more than once.

For example, $\lambda x.x$ and $\lambda x.y$ are typable in the Affine Type System, whereas $\lambda xyz.xz(yz)$ and $\lambda fx.f(fx)$ are not typable.

$$\frac{\Gamma_1, \Gamma_2 \vdash_A M : \sigma}{\Gamma_1, x : \tau, \Gamma_2 \vdash_A M : \sigma}$$
 (Weakening)

$$\frac{\Gamma_1, x: \tau_1, y: \tau_2, \Gamma_2 \vdash_A M: \sigma}{\Gamma_1, y: \tau_2, x: \tau_1, \Gamma_2 \vdash_A M: \sigma} \text{ (Exchange)}$$

No contraction, means that each variable cannot occur more than once.

For example, $\lambda x.x$ and $\lambda x.y$ are typable in the Affine Type System, whereas $\lambda xyz.xz(yz)$ and $\lambda fx.f(fx)$ are not typable.

Substructural Type Systems

Type System	W	Е	С	Use of assumptions
Relevant		√	√	at least once
Affine	√	√		at most once
Linear		√		exactly once
Ordered				in order

$$\frac{\Gamma_{1}, x: \tau_{1}, y: \tau_{2}, \Gamma_{2} \vdash_{L} M: \sigma}{\Gamma_{1}, y: \tau_{2}, x: \tau_{1}, \Gamma_{2} \vdash_{L} M: \sigma} \text{(Exchange)}$$

No weakening and no contraction means that

- for each subterm $\lambda x.N$ of M, x occurs free in N exactly once;
- each free variable of M has just one occurrence free in M.

For example $\lambda x.x$ and $\lambda xy.xy$ are typable in the *Linear Type System*, whereas $\lambda x.y$ and $\lambda fx.f(fx)$ are not.

$$\frac{\Gamma_1, x : \tau_1, y : \tau_2, \Gamma_2 \vdash_L M : \sigma}{\Gamma_1, y : \tau_2, x : \tau_1, \Gamma_2 \vdash_L M : \sigma}$$
(Exchange)

No weakening and no contraction means that:

- for each subterm $\lambda x.N$ of M, x occurs free in N exactly once;
- ullet each free variable of M has just one occurrence free in M.

For example $\lambda x.x$ and $\lambda xy.xy$ are typable in the *Linear Type System*, whereas $\lambda x.y$ and $\lambda fx.f(fx)$ are not.

$$\frac{\Gamma_1, x : \tau_1, y : \tau_2, \Gamma_2 \vdash_L M : \sigma}{\Gamma_1, y : \tau_2, x : \tau_1, \Gamma_2 \vdash_L M : \sigma}$$
(Exchange)

No weakening and no contraction means that:

- for each subterm $\lambda x.N$ of M, x occurs free in N exactly once;
- ullet each free variable of M has just one occurrence free in M.

For example $\lambda x.x$ and $\lambda xy.xy$ are typable in the *Linear Type System*, whereas $\lambda x.y$ and $\lambda fx.f(fx)$ are not.

$$\frac{\Gamma_{1}, x : \tau_{1}, y : \tau_{2}, \Gamma_{2} \vdash_{L} M : \sigma}{\Gamma_{1}, y : \tau_{2}, x : \tau_{1}, \Gamma_{2} \vdash_{L} M : \sigma}$$
(Exchange)

No weakening and no contraction means that:

- for each subterm $\lambda x.N$ of M, x occurs free in N exactly once;
- ullet each free variable of M has just one occurrence free in M.

For example $\lambda x.x$ and $\lambda xy.xy$ are typable in the *Linear Type System*, whereas $\lambda x.y$ and $\lambda fx.f(fx)$ are not.

$$\frac{\Gamma_{1}, x : \tau_{1}, y : \tau_{2}, \Gamma_{2} \vdash_{L} M : \sigma}{\Gamma_{1}, y : \tau_{2}, x : \tau_{1}, \Gamma_{2} \vdash_{L} M : \sigma} (Exchange)$$

No weakening and no contraction means that:

- for each subterm $\lambda x.N$ of M, x occurs free in N exactly once;
- ullet each free variable of M has just one occurrence free in M.

For example $\lambda x.x$ and $\lambda xy.xy$ are typable in the *Linear Type System*, whereas $\lambda x.y$ and $\lambda fx.f(fx)$ are not.

Substructural Type Systems

Type System	W	Е	С	Use of assumptions
Relevant		√	√	at least once
Affine	√	√		at most once
Linear		√		exactly once
Ordered				exactly once in order

The Ordered Type System (Logical Rules)

$$\frac{x:\tau_1,\Gamma\vdash_OM:\tau_2}{\Gamma\vdash_O\lambda x.M:\tau_1\to_I\tau_2}\left(\to_{\mathsf{I}}\mathsf{Intro}\right) \qquad \frac{\Gamma,x:\tau_1\vdash_OM:\tau_2}{\Gamma\vdash_O\lambda x.M:\tau_1\to_r\tau_2}\left(\to_{\mathsf{r}}\mathsf{Intro}\right)$$

$$\frac{\Gamma_{2} \vdash_{O} N : \tau \longrightarrow_{r} \sigma}{\Gamma_{2}, \Gamma_{1} \vdash_{O} MN : \sigma} (\rightarrow_{l} \text{Elim})$$

$$\frac{\Gamma_{1} \vdash_{O} M : \tau \longrightarrow_{r} \sigma}{\Gamma_{1}, \Gamma_{2} \vdash_{O} MN : \sigma} (\rightarrow_{r} \text{Elim})$$

The Ordered Type System (Logical Rules)

$$\frac{}{x:\tau\vdash x:\tau}\left(\mathsf{Axiom}\right)$$

$$\frac{x:\tau_1,\Gamma\vdash_OM:\tau_2}{\Gamma\vdash_O\lambda x.M:\tau_1\to_I\tau_2}\left(\to_I\mathsf{Intro}\right)\qquad \frac{\Gamma,x:\tau_1\vdash_OM:\tau_2}{\Gamma\vdash_O\lambda x.M:\tau_1\to_r\tau_2}\left(\to_r\mathsf{Intro}\right)$$

$$\frac{\Gamma_{2} \vdash_{O} N : \tau \qquad \Gamma_{1} \vdash_{O} M : \tau \rightarrow_{I} \sigma}{\Gamma_{2}, \Gamma_{1} \vdash_{O} MN : \sigma} (\rightarrow_{I} \text{ Elim})$$

$$\frac{\Gamma_{1} \vdash_{O} M : \tau \rightarrow_{r} \sigma \qquad \Gamma_{2} \vdash_{O} N : \tau}{\Gamma_{1}, \Gamma_{2} \vdash_{O} MN : \sigma} (\rightarrow_{r} \text{ Elim})$$

The Ordered Type System (Logical Rules)

$$\frac{}{x:\tau \vdash x:\tau}$$
 (Axiom)

$$\frac{x:\tau_1,\Gamma\vdash_OM:\tau_2}{\Gamma\vdash_O\lambda x.M:\tau_1\to_I\tau_2}\left(\to_I\mathsf{Intro}\right)\qquad \frac{\Gamma,x:\tau_1\vdash_OM:\tau_2}{\Gamma\vdash_O\lambda x.M:\tau_1\to_r\tau_2}\left(\to_r\mathsf{Intro}\right)$$

$$\frac{\Gamma_{2} \vdash_{O} N : \tau \qquad \Gamma_{1} \vdash_{O} M : \tau \rightarrow_{I} \sigma}{\Gamma_{2}, \Gamma_{1} \vdash_{O} MN : \sigma} (\rightarrow_{I} \text{ Elim})$$

$$\frac{\Gamma_{1} \vdash_{O} M : \tau \rightarrow_{I} \sigma \qquad \Gamma_{2} \vdash_{O} N : \tau}{\Gamma_{1}, \Gamma_{2} \vdash_{O} MN : \sigma} (\rightarrow_{I} \text{ Elim})$$

No contraction (it is a linear system) and no weakening (it is a relevant system)

Plus, no exchange: the order of the assumptions matter!

Is $(\lambda x.xz_2)z_1$ typable in the Ordered Type System? Yes

In fact, we have two (valid) typings:

$$z_1 : \alpha \rightarrow_r \beta, \ z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$$

 $z_2 : \alpha, \ z_1 : \alpha \rightarrow_I \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$

$$z_2 : \alpha, \ z_1 : \alpha \rightarrow_r \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$$

 $z_1 : \alpha \rightarrow_l \beta, \ z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$

No contraction (it is a linear system) and no weakening (it is a relevant system)

Plus, no exchange: the order of the assumptions matter!

Is $(\lambda x.xz_2)z_1$ typable in the Ordered Type System? Yes!

In fact, we have two (valid) typings:

$$z_1 : \alpha \rightarrow_r \beta, \ z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$$

 $z_2 : \alpha, \ z_1 : \alpha \rightarrow_t \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$

$$z_2 : \alpha, \ z_1 : \alpha \rightarrow_r \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$$

 $z_1 : \alpha \rightarrow_l \beta, \ z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$

No contraction (it is a linear system) and no weakening (it is a relevant system)

Plus, no exchange: the order of the assumptions matter!

Is $(\lambda x.xz_2)z_1$ typable in the Ordered Type System? Yes!

In fact, we have two (valid) typings:

$$z_1 : \alpha \rightarrow_r \beta, \ z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$$

 $z_2 : \alpha, \ z_1 : \alpha \rightarrow_I \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$

$$z_2 : \alpha, \ z_1 : \alpha \rightarrow_r \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$$

 $z_1 : \alpha \rightarrow_I \beta, \ z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$

No contraction (it is a linear system) and no weakening (it is a relevant system)

Plus, no exchange: the order of the assumptions matter!

Is $(\lambda x.xz_2)z_1$ typable in the Ordered Type System? Yes!

In fact, we have two (valid) typings:

$$z_1 : \alpha \rightarrow_r \beta, \ z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$$

 $z_2 : \alpha, \ z_1 : \alpha \rightarrow_I \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$

$$z_2 : \alpha, \ z_1 : \alpha \rightarrow_r \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$$

 $z_1 : \alpha \rightarrow_I \beta, \ z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$

about Intersection Types

Now let's slightly detour and talk

Intersection Types System (ITS)

Intersection types [Barendregt, Coppo and Dezani, 1983] give us a characterization of the strongly normalizable λ -terms:

$$\Gamma \vdash_{\cap} M : \sigma \iff M \text{ is strongly normalizable}$$

A term is strongly normalizing if every reduction sequence ends with an irreducible term (a normal form).

Note that, in the Simple Type System:

$$\Gamma \vdash M : \sigma \Rightarrow M$$
 is strongly normalizing

... but the opposite does not hold: the strongly normalizable term $\lambda x.xx$ is not simply typable.

Intersection Types System (ITS)

Intersection types [Barendregt, Coppo and Dezani, 1983] give us a characterization of the strongly normalizable λ -terms:

$$\Gamma \vdash_{\cap} M : \sigma \iff M \text{ is strongly normalizable}$$

A term is strongly normalizing if every reduction sequence ends with an irreducible term (a normal form).

Note that, in the Simple Type System:

$$\Gamma \vdash M : \sigma \Rightarrow M$$
 is strongly normalizing

... but the opposite does not hold: the strongly normalizable term $\lambda x.xx$ is not simply typable.

Intersection Types System (ITS)

Intersection types [Barendregt, Coppo and Dezani, 1983] give us a characterization of the strongly normalizable λ -terms:

$$\Gamma \vdash_{\cap} M : \sigma \iff M \text{ is strongly normalizable}$$

A term is strongly normalizing if every reduction sequence ends with an irreducible term (a normal form).

Note that, in the Simple Type System:

$$\Gamma \vdash M : \sigma \Rightarrow M$$
 is strongly normalizing

... but the opposite does not hold: the strongly normalizable term $\lambda x.xx$ is not simply typable.

$$\frac{}{x:\tau \vdash x:\tau}$$
 (Axiom)

$$\frac{\Gamma \cup \{x : \tau_1 \cap \dots \cap \tau_n\} \vdash M : \sigma}{\Gamma \vdash \lambda x.M : \tau_1 \cap \dots \cap \tau_n \to \sigma} (\to \mathsf{Intro}_{\mathsf{I}})$$

$$\frac{\Gamma \vdash M : \sigma \qquad x \text{ does not occur in } \Gamma}{\Gamma \vdash \lambda x. M : \tau \to \sigma} (\to \mathsf{Intro}_{\mathsf{K}})$$

$$\frac{\Gamma_0 \vdash M : \tau_1 \cap \dots \cap \tau_n \to \sigma \qquad \Gamma_1 \vdash N : \tau_1 \dots \Gamma_n \vdash N : \tau_n}{\Gamma_0 \wedge \Gamma_1 \wedge \dots \wedge \Gamma_n \vdash MN : \sigma} (\to \mathsf{Elim})$$

$$\frac{\Gamma \cup \{x : \tau_1 \cap \dots \cap \tau_n\} \vdash M : \sigma}{\Gamma \vdash \lambda x. M : \tau_1 \cap \dots \cap \tau_n \to \sigma} (\to \mathsf{Intro}_{\mathsf{I}})$$

$$\frac{\Gamma \vdash M : \sigma \qquad x \text{ does not occur in } \Gamma}{\Gamma \vdash \lambda x. M : \tau \to \sigma} \left(\to \mathsf{Intro}_{\mathsf{K}} \right)$$

$$\frac{\Gamma_0 \vdash M : \tau_1 \cap \dots \cap \tau_n \to \sigma \qquad \Gamma_1 \vdash N : \tau_1 \dots \Gamma_n \vdash N : \tau_n}{\Gamma_0 \wedge \Gamma_1 \wedge \dots \wedge \Gamma_n \vdash MN : \sigma} (\to \mathsf{Elim})$$

$$\frac{}{x:\tau\vdash x:\tau}\left(\mathsf{Axiom}\right)$$

$$\frac{\Gamma \cup \{x : \tau_1 \cap \dots \cap \tau_n\} \vdash M : \sigma}{\Gamma \vdash \lambda x. M : \tau_1 \cap \dots \cap \tau_n \to \sigma} (\to \mathsf{Intro}_{\mathsf{I}})$$

$$\frac{\Gamma \vdash M : \sigma \qquad x \text{ does not occur in } \Gamma}{\Gamma \vdash \lambda x. M : \tau \to \sigma} \left(\to \mathsf{Intro}_{\mathsf{K}} \right)$$

$$\frac{\Gamma_0 \vdash M : \tau_1 \cap \dots \cap \tau_n \to \sigma \qquad \Gamma_1 \vdash N : \tau_1 \dots \Gamma_n \vdash N : \tau_n}{\Gamma_0 \wedge \Gamma_1 \wedge \dots \wedge \Gamma_n \vdash MN : \sigma} (\to \mathsf{Elim})$$

$$\frac{}{x:\tau\vdash x:\tau}\left(\mathsf{Axiom}\right)$$

$$\frac{\Gamma \cup \{x : \tau_1 \cap \dots \cap \tau_n\} \vdash M : \sigma}{\Gamma \vdash \lambda x. M : \tau_1 \cap \dots \cap \tau_n \to \sigma} (\to \mathsf{Intro}_{\mathsf{I}})$$

$$\frac{\Gamma \vdash M : \sigma \qquad x \text{ does not occur in } \Gamma}{\Gamma \vdash \lambda x. M : \tau \to \sigma} \left(\to \mathsf{Intro}_{\mathsf{K}} \right)$$

$$\frac{\Gamma_0 \vdash M : \tau_1 \cap \dots \cap \tau_n \to \sigma \qquad \Gamma_1 \vdash N : \tau_1 \ \dots \ \Gamma_n \vdash N : \tau_n}{\Gamma_0 \wedge \Gamma_1 \wedge \dots \wedge \Gamma_n \vdash MN : \sigma} \, (\to \mathsf{Elim})$$

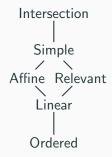
$$\frac{\mathbf{x}: \alpha \to \beta \vdash \mathbf{x}: \alpha \to \beta \qquad \mathbf{x}: \alpha \vdash \mathbf{x}: \alpha}{\mathbf{x}: (\alpha \to \beta) \cap \alpha \vdash \mathbf{x}\mathbf{x}: \beta}$$
$$\vdash (\lambda \mathbf{x}.\mathbf{x}\mathbf{x}): ((\alpha \to \beta) \cap \alpha) \to \beta}$$

$$\frac{\mathbf{x}: \alpha \to \beta \vdash \mathbf{x}: \alpha \to \beta \qquad \mathbf{x}: \alpha \vdash \mathbf{x}: \alpha}{\mathbf{x}: (\alpha \to \beta) \cap \alpha \vdash \mathbf{xx}: \beta}$$
$$\vdash (\lambda \mathbf{x}.\mathbf{xx}): ((\alpha \to \beta) \cap \alpha) \to \beta$$

$$\frac{x : \alpha \to \beta \vdash x : \alpha \to \beta \qquad x : \alpha \vdash x : \alpha}{x : (\alpha \to \beta) \cap \alpha \vdash xx : \beta}$$
$$\vdash (\lambda x. xx) : ((\alpha \to \beta) \cap \alpha) \to \beta$$

$$\frac{x : \alpha \to \beta \vdash x : \alpha \to \beta \qquad x : \alpha \vdash x : \alpha}{x : (\alpha \to \beta) \cap \alpha \vdash xx : \beta}$$
$$\vdash (\lambda x. xx) : ((\alpha \to \beta) \cap \alpha) \to \beta$$

Intersection Types and Substructural Type Systems



Algebraic properties of Intersection and Substructural Systems

Given the ITS typing:

$$\vdash_{\cap} (\lambda x.xx)(\lambda y.y): \alpha \to \alpha$$

Consider the non-linear term:

$$\vdash_{\cap} \lambda x.xx : \underbrace{(\alpha \to \alpha) \to (\alpha \to \alpha)}_{1\text{st occ. of } \times} \cap \underbrace{(\alpha \to \alpha)}_{2\text{nd occ. of } \times}) \to \alpha \to \alpha$$

We expand this into

$$\vdash_L \lambda x_1 x_2 . x_1 x_2 : \underbrace{((\alpha \to \alpha) \to (\alpha \to \alpha))}_{x_1} \to \underbrace{(\alpha \to \alpha)}_{x_2} \to \alpha \to \alpha$$

Obtaining the following typing in the Linear System

$$\vdash_L (\lambda x_1 x_2.x_1 x_2)(\lambda y.y)(\lambda y.y): \alpha \to \alpha$$

Given the ITS typing:

$$\vdash_{\cap} (\lambda x.xx)(\lambda y.y) : \alpha \to \alpha$$

Consider the non-linear term:

$$\vdash_{\cap} \lambda x.xx : \underbrace{(\alpha \to \alpha) \to (\alpha \to \alpha)}_{1st \ occ. \ of \ x} \cap \underbrace{(\alpha \to \alpha)}_{2nd \ occ. \ of \ x}) \to \alpha \to \alpha$$

We expand this into

$$\vdash_L \lambda x_1 x_2 . x_1 x_2 : \underbrace{((\alpha \to \alpha) \to (\alpha \to \alpha))}_{x_1} \to \underbrace{(\alpha \to \alpha)}_{x_2} \to \alpha \to \alpha$$

Obtaining the following typing in the Linear System

$$\vdash_L (\lambda x_1 x_2.x_1 x_2)(\lambda y.y)(\lambda y.y): \alpha \to \alpha$$

Given the ITS typing:

$$\vdash_{\cap} (\lambda x.xx)(\lambda y.y) : \alpha \to \alpha$$

Consider the non-linear term:

$$\vdash_{\cap} \lambda x.xx : \underbrace{(\alpha \to \alpha) \to (\alpha \to \alpha)}_{1st \ occ. \ of \ x} \cap \underbrace{(\alpha \to \alpha)}_{2nd \ occ. \ of \ x}) \to \alpha \to \alpha$$

We expand this into:

$$\vdash_{L} \lambda x_1 x_2.x_1 x_2 : \underbrace{((\alpha \to \alpha) \to (\alpha \to \alpha))}_{x_1} \to \underbrace{(\alpha \to \alpha)}_{x_2} \to \alpha \to \alpha$$

Obtaining the following typing in the Linear System

$$\vdash_L (\lambda x_1 x_2.x_1 x_2)(\lambda y.y)(\lambda y.y): \alpha \to \alpha$$

Given the ITS typing:

$$\vdash_{\cap} (\lambda x.xx)(\lambda y.y) : \alpha \to \alpha$$

Consider the non-linear term:

$$\vdash_{\cap} \lambda x.xx : \underbrace{(\alpha \to \alpha) \to (\alpha \to \alpha)}_{1st \ occ. \ of \ x} \cap \underbrace{(\alpha \to \alpha)}_{2nd \ occ. \ of \ x}) \to \alpha \to \alpha$$

We expand this into:

$$\vdash_{L} \lambda x_1 x_2.x_1 x_2 : \underbrace{((\alpha \to \alpha) \to (\alpha \to \alpha))}_{x_1} \to \underbrace{(\alpha \to \alpha)}_{x_2} \to \alpha \to \alpha$$

Obtaining the following typing in the *Linear System*:

$$\vdash_L (\lambda x_1 x_2.x_1 x_2)(\lambda y.y)(\lambda y.y): \alpha \to \alpha$$

$$\mathcal{E}_{I}(x:\tau) \quad \triangleleft \quad (y,\{x:\{y:\tau\}\})$$

$$\text{if } x \neq y$$

$$\mathcal{E}_{I}(\lambda x.M:\tau_{1} \cap \dots \cap \tau_{n} \rightarrow \sigma) \quad \triangleleft \quad (\lambda x_{1} \dots x_{n}.M^{*},A)$$

$$\text{if } x \text{ occurs in } M \text{ and }$$

$$\mathcal{E}_{I}(M:\sigma) \triangleleft (M^{*},A \cup \{x:\{x_{1}:\tau_{1},\dots,x_{n}:\tau_{n}\}\})$$

$$\mathcal{E}_{I}(\lambda x.M:\tau \rightarrow \sigma) \quad \triangleleft \quad (\lambda y.M^{*},A)$$

$$\text{if } x \text{ does not occur in } M,$$

$$y \text{ is a fresh variable and }$$

$$\mathcal{E}_{I}(M:\sigma) \triangleleft (M^{*},A)$$

$$\mathcal{E}_{I}(MN:\sigma) \quad \triangleleft \quad (M_{0}N_{1}\dots N_{k},A_{0} \uplus A_{1} \uplus \dots \uplus A_{n})$$

$$\text{if for some } k > 0 \text{ and } \tau_{1},\dots\tau_{k},$$

$$\mathcal{E}_{I}(M:\tau_{1} \cap \dots \cap \tau_{k} \rightarrow \sigma) \triangleleft (M_{0},A_{0}) \text{ and }$$

$$\mathcal{E}_{I}(N:\tau_{1}) \triangleleft (N_{i},A_{i}), (1 < i < k)$$

$$\mathcal{E}_{I}(x:\tau) \quad \triangleleft \quad (y,\{x:\{y:\tau\}\})$$
if $x \neq y$

$$\mathcal{E}_{I}(\lambda x.M:\tau_{1} \cap \dots \cap \tau_{n} \rightarrow \sigma) \quad \triangleleft \quad (\lambda x_{1} \dots x_{n}.M^{*},A)$$
if x occurs in M and
$$\mathcal{E}_{I}(M:\sigma) \triangleleft (M^{*},A \cup \{x:\{x_{1}:\tau_{1},\dots,x_{n}:\tau_{n}\}\})$$

$$\mathcal{E}_{I}(\lambda x.M:\tau \rightarrow \sigma) \quad \triangleleft \quad (\lambda y.M^{*},A)$$
if x does not occur in M ,
$$y$$
 is a fresh variable and
$$\mathcal{E}_{I}(M:\sigma) \triangleleft (M^{*},A)$$

$$\mathcal{E}_{I}(MN:\sigma) \quad \triangleleft \quad (M_{0}N_{1} \dots N_{k},A_{0} \uplus A_{1} \uplus \dots \uplus A_{n})$$
if for some $k > 0$ and $\tau_{1},\dots\tau_{k}$,
$$\mathcal{E}_{I}(M:\tau_{1} \cap \dots \cap \tau_{k} \rightarrow \sigma) \triangleleft (M_{0},A_{0}) \text{ and}$$

$$\mathcal{E}_{I}(N:\tau_{i}) \triangleleft (N_{i},A_{i}), (1 \leq i \leq k)$$

$$\mathcal{E}_{I}(x:\tau) \quad \triangleleft \quad (y,\{x:\{y:\tau\}\})$$

$$\text{if } x \neq y$$

$$\mathcal{E}_{I}(\lambda x.M:\tau_{1} \cap \dots \cap \tau_{n} \to \sigma) \quad \triangleleft \quad (\lambda x_{1} \dots x_{n}.M^{*},A)$$

$$\text{if } x \text{ occurs in } M \text{ and}$$

$$\mathcal{E}_{I}(M:\sigma) \triangleleft (M^{*},A \cup \{x:\{x_{1}:\tau_{1},\dots,x_{n}:\tau_{n}\}\})$$

$$\mathcal{E}_{I}(\lambda x.M:\tau \to \sigma) \quad \triangleleft \quad (\lambda y.M^{*},A)$$

$$\text{if } x \text{ does not occur in } M,$$

$$y \text{ is a fresh variable and}$$

$$\mathcal{E}_{I}(M:\sigma) \triangleleft (M^{*},A)$$

$$\mathcal{E}_{I}(MN:\sigma) \quad \triangleleft \quad (M_{0}N_{1} \dots N_{k},A_{0} \uplus A_{1} \uplus \dots \uplus A_{n})$$

$$\text{if for some } k > 0 \text{ and } \tau_{1},\dots\tau_{k},$$

$$\mathcal{E}_{I}(M:\tau_{1} \cap \dots \cap \tau_{k} \to \sigma) \triangleleft (M_{0},A_{0}) \text{ and}$$

$$\mathcal{E}_{I}(N:\tau_{i}) \triangleleft (N_{i},A_{i}), (1 < i < k)$$

$$\mathcal{E}_{I}(x:\tau) \quad \lhd \quad (y,\{x:\{y:\tau\}\})$$

$$\text{if } x \neq y$$

$$\mathcal{E}_{I}(\lambda x.M:\tau_{1} \cap \cdots \cap \tau_{n} \to \sigma) \quad \lhd \quad (\lambda x_{1} \dots x_{n}.M^{*},A)$$

$$\text{if } x \text{ occurs in } M \text{ and }$$

$$\mathcal{E}_{I}(M:\sigma) \lhd (M^{*},A \cup \{x:\{x_{1}:\tau_{1},\dots,x_{n}:\tau_{n}\}\})$$

$$\mathcal{E}_{I}(\lambda x.M:\tau \to \sigma) \quad \lhd \quad (\lambda y.M^{*},A)$$

$$\text{if } x \text{ does not occur in } M,$$

$$y \text{ is a fresh variable and }$$

$$\mathcal{E}_{I}(M:\sigma) \lhd (M^{*},A)$$

$$\mathcal{E}_{I}(MN:\sigma) \quad \lhd \quad (M_{0}N_{1}\dots N_{k},A_{0} \uplus A_{1} \uplus \cdots \uplus A_{n})$$

$$\text{if for some } k > 0 \text{ and } \tau_{1},\dots\tau_{k},$$

$$\mathcal{E}_{I}(M:\tau_{1} \cap \cdots \cap \tau_{k} \to \sigma) \lhd (M_{0},A_{0}) \text{ and }$$

$$\mathcal{E}_{I}(N:\tau_{i}) \lhd (N_{i},A_{i}), (1 < i < k)$$

Let us show step by step how to calculate an expansion of $(\lambda x.xx)(\lambda y.y)$: $\alpha \to \alpha$

$$\mathcal{E}_I(x:(\alpha\to\alpha)\to(\alpha\to\alpha)) \triangleleft (x_1,\{x:\{x_1:(\alpha\to\alpha)\to(\alpha\to\alpha)\}\})$$

and

$$\mathcal{E}_I(x:\alpha\to\alpha)\lhd(x_2,\{x:\{x_2:\alpha\to\alpha\}\})$$

thu

$$\mathcal{E}_{I}(xx:\alpha\to\alpha)\lhd(x_{1}x_{2},\{x:\{x_{1}:(\alpha\to\alpha)\to(\alpha\to\alpha),x_{2}:\alpha\to\alpha\}\})$$

and

$$\mathcal{E}_{I}(\lambda x.xx:(((\alpha \to \alpha) \to (\alpha \to \alpha)) \cap (\alpha \to \alpha)) \to \alpha \to \alpha) \lhd (\lambda x_{1}x_{2}.x_{1}x_{2}, \varnothing$$

It easy to show that

$$\mathcal{E}_I(\lambda y.y:\alpha\to\alpha)\lhd(\lambda z.z,\varnothing)$$

and

$$\mathcal{E}_I(\lambda y.y:(\alpha \to \alpha) \to (\alpha \to \alpha)) \lhd (\lambda z.z,\varnothing)$$

$$\mathcal{E}_{I}((\lambda x.xx)(\lambda y.y): \alpha \to \alpha) \lhd ((\lambda x_{1}x_{2}.x_{1}x_{2})(\lambda z.z)(\lambda z.z), \varnothing)$$

Let us show step by step how to calculate an expansion of $(\lambda x.xx)(\lambda y.y)$: $\alpha \to \alpha$

$$\mathcal{E}_{l}(x:(\alpha \to \alpha) \to (\alpha \to \alpha)) \lhd (x_{1},\{x:\{x_{1}:(\alpha \to \alpha) \to (\alpha \to \alpha)\}\})$$

and

$$\mathcal{E}_I(x:\alpha\to\alpha)\lhd(x_2,\{x:\{x_2:\alpha\to\alpha\}\})$$

thus

$$\mathcal{E}_{I}(xx:\alpha\to\alpha)\lhd(x_{1}x_{2},\{x:\{x_{1}:(\alpha\to\alpha)\to(\alpha\to\alpha),x_{2}:\alpha\to\alpha\}\})$$

and

$$\mathcal{E}_{I}(\lambda x.xx:(((\alpha \to \alpha) \to (\alpha \to \alpha)) \cap (\alpha \to \alpha)) \to \alpha \to \alpha) \lhd (\lambda x_{1}x_{2}.x_{1}x_{2}, \varnothing$$

It easy to show that

$$\mathcal{E}_{I}(\lambda y.y:\alpha \to \alpha) \lhd (\lambda z.z,\varnothing)$$

and

$$\mathcal{E}_{I}(\lambda y.y:(\alpha \to \alpha) \to (\alpha \to \alpha)) \lhd (\lambda z.z,\varnothing)$$

$$\mathcal{E}_{l}((\lambda x.xx)(\lambda y.y):\alpha \to \alpha) \lhd ((\lambda x_{1}x_{2}.x_{1}x_{2})(\lambda z.z)(\lambda z.z),\varnothing)$$

Let us show step by step how to calculate an expansion of ($\lambda x.xx$)($\lambda y.y$) : $\alpha \to \alpha$

$$\mathcal{E}_{I}(x:(\alpha \to \alpha) \to (\alpha \to \alpha)) \lhd (x_{1},\{x:\{x_{1}:(\alpha \to \alpha) \to (\alpha \to \alpha)\}\})$$

and

$$\mathcal{E}_I(x:\alpha\to\alpha)\lhd(x_2,\{x:\{x_2:\alpha\to\alpha\}\})$$

thus

$$\mathcal{E}_{I}(xx:\alpha\to\alpha)\lhd(x_{1}x_{2},\{x:\{x_{1}:(\alpha\to\alpha)\to(\alpha\to\alpha),x_{2}:\alpha\to\alpha\}\})$$

and

$$\mathcal{E}_{I}(\lambda x.xx:(((\alpha \to \alpha) \to (\alpha \to \alpha)) \cap (\alpha \to \alpha)) \to \alpha \to \alpha) \lhd (\lambda x_{1}x_{2}.x_{1}x_{2},\varnothing)$$

It easy to show that

$$\mathcal{E}_I(\lambda y.y:\alpha\to\alpha)\lhd(\lambda z.z,\varnothing)$$

and

$$\mathcal{E}_{I}(\lambda y.y:(\alpha \to \alpha) \to (\alpha \to \alpha)) \lhd (\lambda z.z,\varnothing)$$

$$\mathcal{E}_{l}((\lambda x.xx)(\lambda y.y):\alpha \to \alpha) \lhd ((\lambda x_{1}x_{2}.x_{1}x_{2})(\lambda z.z)(\lambda z.z),\varnothing)$$

Let us show step by step how to calculate an expansion of ($\lambda x.xx$)($\lambda y.y$) : $\alpha \to \alpha$

$$\mathcal{E}_{l}(x:(\alpha \to \alpha) \to (\alpha \to \alpha)) \lhd (x_{1},\{x:\{x_{1}:(\alpha \to \alpha) \to (\alpha \to \alpha)\}\})$$

and

$$\mathcal{E}_I(x:\alpha\to\alpha)\lhd(x_2,\{x:\{x_2:\alpha\to\alpha\}\})$$

thus

$$\mathcal{E}_{I}(xx:\alpha\to\alpha)\lhd(x_{1}x_{2},\{x:\{x_{1}:(\alpha\to\alpha)\to(\alpha\to\alpha),x_{2}:\alpha\to\alpha\}\})$$

and

$$\mathcal{E}_{I}(\lambda x.xx:(((\alpha \to \alpha) \to (\alpha \to \alpha)) \cap (\alpha \to \alpha)) \to \alpha \to \alpha) \lhd (\lambda x_{1}x_{2}.x_{1}x_{2},\varnothing)$$

It easy to show that

$$\mathcal{E}_{I}(\lambda y.y:\alpha \rightarrow \alpha) \triangleleft (\lambda z.z,\varnothing)$$

and

$$\mathcal{E}_{I}(\lambda y.y:(\alpha \to \alpha) \to (\alpha \to \alpha)) \lhd (\lambda z.z,\varnothing)$$

thu

$$\mathcal{E}_{l}((\lambda x.xx)(\lambda y.y): \alpha \to \alpha) \lhd ((\lambda x_{1}x_{2}.x_{1}x_{2})(\lambda z.z)(\lambda z.z), \varnothing)$$

Let us show step by step how to calculate an expansion of ($\lambda x.xx$)($\lambda y.y$) : $\alpha \to \alpha$

$$\mathcal{E}_{l}(x:(\alpha \to \alpha) \to (\alpha \to \alpha)) \lhd (x_{1},\{x:\{x_{1}:(\alpha \to \alpha) \to (\alpha \to \alpha)\}\})$$

and

$$\mathcal{E}_I(x:\alpha\to\alpha)\lhd(x_2,\{x:\{x_2:\alpha\to\alpha\}\})$$

thus

$$\mathcal{E}_{I}(xx:\alpha\to\alpha)\lhd(x_{1}x_{2},\{x:\{x_{1}:(\alpha\to\alpha)\to(\alpha\to\alpha),x_{2}:\alpha\to\alpha\}\})$$

and

$$\mathcal{E}_{I}(\lambda x.xx:(((\alpha \to \alpha) \to (\alpha \to \alpha)) \cap (\alpha \to \alpha)) \to \alpha \to \alpha) \lhd (\lambda x_{1}x_{2}.x_{1}x_{2},\varnothing)$$

It easy to show that

$$\mathcal{E}_I(\lambda y.y:\alpha \to \alpha) \lhd (\lambda z.z,\varnothing)$$

and

$$\mathcal{E}_{I}(\lambda y.y:(\alpha \to \alpha) \to (\alpha \to \alpha)) \lhd (\lambda z.z,\varnothing)$$

$$\mathcal{E}_{l}((\lambda x.xx)(\lambda y.y):\alpha \to \alpha) \lhd ((\lambda x_{1}x_{2}.x_{1}x_{2})(\lambda z.z)(\lambda z.z),\varnothing)$$

Let us now look at one expansion of $\lambda fx.f(fx)$: '

$$\mathcal{E}_I(f:\alpha\to\alpha)\lhd(f_1,\{f:\{f_1:\alpha\to\alpha\}\})$$

and,

$$\mathcal{E}_I(x:\alpha) \triangleleft (x_1, \{x: \{x_1:\alpha\}\})$$

thus

$$\mathcal{E}_{I}((fx):\alpha) \triangleleft (f_{1}x_{1}, \{f: \{f_{1}: \alpha \rightarrow \alpha\}, x: \{x_{1}: \alpha\}\})$$

we also have,

$$\mathcal{E}_I(f:\alpha\to\alpha)\lhd(f_1,\{f:\{f_1:\alpha\to\alpha\}\})$$

therefore,

$$\mathcal{E}_{I}(f(fx):\alpha) \triangleleft (f_{1}(f_{1}x_{1}), \{f: \{f_{1}:\alpha \rightarrow \alpha\}, x: \{x_{1}:\alpha\}\})$$

and

$$\mathcal{E}_{I}(\lambda x.f(fx):\alpha \to \alpha) \lhd (\lambda x_{1}.f_{1}(f_{1}x_{1}),\{f:\{f_{1}:\alpha \to \alpha\}\})$$

$$\mathcal{E}_{I}(\lambda f x. f(f x) : (\alpha \to \alpha) \to \alpha \to \alpha) \lhd \lambda f_{1} x_{1}. f_{1}(f_{1} x_{1})$$

Let us now look at one expansion of $\lambda fx.f(fx)$: '

$$\mathcal{E}_I(f:\alpha\to\alpha)\lhd(f_1,\{f:\{f_1:\alpha\to\alpha\}\})$$

and,

$$\mathcal{E}_I(x:\alpha) \triangleleft (x_1, \{x: \{x_1:\alpha\}\})$$

thus,

$$\mathcal{E}_{I}((fx):\alpha) \triangleleft (f_{1}x_{1},\{f:\{f_{1}:\alpha\rightarrow\alpha\},x:\{x_{1}:\alpha\}\})$$

we also have

$$\mathcal{E}_I(f:\alpha\to\alpha)\lhd(f_1,\{f:\{f_1:\alpha\to\alpha\}\})$$

therefore.

$$\mathcal{E}_I(f(fx):\alpha) \triangleleft (f_1(f_1x_1), \{f: \{f_1:\alpha \to \alpha\}, x: \{x_1:\alpha\}\})$$

and

$$\mathcal{E}_{I}(\lambda x.f(fx):\alpha \to \alpha) \lhd (\lambda x_{1}.f_{1}(f_{1}x_{1}),\{f:\{f_{1}:\alpha \to \alpha\}\})$$

$$\mathcal{E}_{I}(\lambda f x. f(f x) : (\alpha \to \alpha) \to \alpha \to \alpha) \triangleleft \lambda f_{1} x_{1}. f_{1}(f_{1} x_{1})$$

Let us now look at one expansion of $\lambda fx.f(fx)$: '

$$\mathcal{E}_{I}(f:\alpha \to \alpha) \lhd (f_{1}, \{f: \{f_{1}:\alpha \to \alpha\}\})$$

and,

$$\mathcal{E}_I(x:\alpha) \triangleleft (x_1, \{x: \{x_1:\alpha\}\})$$

thus,

$$\mathcal{E}_{I}((fx):\alpha) \triangleleft (f_{1}x_{1}, \{f: \{f_{1}: \alpha \rightarrow \alpha\}, x: \{x_{1}: \alpha\}\})$$

we also have,

$$\mathcal{E}_I(f:\alpha\to\alpha)\lhd(f_1,\{f:\{f_1:\alpha\to\alpha\}\})$$

therefore,

$$\mathcal{E}_{I}(f(fx):\alpha) \triangleleft (f_{1}(f_{1}x_{1}), \{f: \{f_{1}:\alpha \rightarrow \alpha\}, x: \{x_{1}:\alpha\}\})$$

and

$$\mathcal{E}_{I}(\lambda x. f(fx) : \alpha \to \alpha) \lhd (\lambda x_{1}. f_{1}(f_{1}x_{1}), \{f : \{f_{1} : \alpha \to \alpha\}\})$$

$$\mathcal{E}_{I}(\lambda f x. f(f x) : (\alpha \to \alpha) \to \alpha \to \alpha) \triangleleft \lambda f_{1} x_{1}. f_{1}(f_{1} x_{1})$$

Let us now look at one expansion of $\lambda fx.f(fx)$: '

$$\mathcal{E}_I(f:\alpha\to\alpha)\lhd(f_1,\{f:\{f_1:\alpha\to\alpha\}\})$$

and,

$$\mathcal{E}_I(x:\alpha) \triangleleft (x_1, \{x: \{x_1:\alpha\}\})$$

thus,

$$\mathcal{E}_{I}((fx):\alpha) \triangleleft (f_{1}x_{1}, \{f: \{f_{1}: \alpha \rightarrow \alpha\}, x: \{x_{1}: \alpha\}\})$$

we also have,

$$\mathcal{E}_I(f:\alpha\to\alpha)\lhd(f_1,\{f:\{f_1:\alpha\to\alpha\}\})$$

therefore,

$$\mathcal{E}_{I}(f(fx):\alpha) \triangleleft (f_{1}(f_{1}x_{1}), \{f: \{f_{1}:\alpha \rightarrow \alpha\}, x: \{x_{1}:\alpha\}\})$$

and

$$\mathcal{E}_{I}(\lambda x.f(fx):\alpha\to\alpha)\lhd(\lambda x_{1}.f_{1}(f_{1}x_{1}),\{f:\{f_{1}:\alpha\to\alpha\}\})$$

$$\mathcal{E}_{I}(\lambda f x. f(f x) : (\alpha \to \alpha) \to \alpha \to \alpha) \lhd \lambda f_{1} x_{1}. f_{1}(f_{1} x_{1})$$

ACI-Expansion - Properties

We consider the following translation \mathcal{T} from intersection types to simple types:

- $\mathcal{T}(\alpha) = \alpha$, if α is a type variable;
- $\mathcal{T}((\tau_1 \cap \cdots \cap \tau_n) \to \sigma) = \mathcal{T}(\tau_1) \to \cdots \to \mathcal{T}(\tau_n) \to \mathcal{T}(\sigma).$

We have the following properties regarding ACI expansion:

$$\mathcal{E}_I(M:\sigma) \lhd (N,A)$$

- $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{S} N : \mathcal{T}(\sigma)$.
- If M is a λI -term , then $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_R N : \mathcal{T}(\sigma)$.

ACI-Expansion - Properties

We consider the following translation \mathcal{T} from intersection types to simple types:

- $\mathcal{T}(\alpha) = \alpha$, if α is a type variable;
- $\mathcal{T}((\tau_1 \cap \cdots \cap \tau_n) \to \sigma) = \mathcal{T}(\tau_1) \to \cdots \to \mathcal{T}(\tau_n) \to \mathcal{T}(\sigma).$

We have the following properties regarding ACI expansion:

$$\mathcal{E}_I(M:\sigma) \lhd (N,A)$$

- $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{S} N : \mathcal{T}(\sigma)$.
- If M is a λI -term , then $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_R N : \mathcal{T}(\sigma)$.

ACI-Expansion - Properties

We consider the following translation \mathcal{T} from intersection types to simple types:

- $\mathcal{T}(\alpha) = \alpha$, if α is a type variable;
- $\mathcal{T}((\tau_1 \cap \cdots \cap \tau_n) \to \sigma) = \mathcal{T}(\tau_1) \to \cdots \to \mathcal{T}(\tau_n) \to \mathcal{T}(\sigma).$

We have the following properties regarding ACI expansion:

$$\mathcal{E}_I(M:\sigma) \lhd (N,A)$$

- $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{S} N : \mathcal{T}(\sigma)$.
- If M is a λI -term , then $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{R} N : \mathcal{T}(\sigma)$.

AC - Associative, Commutative but not Idempotent $(\tau \cap \tau \neq \tau)$

$$\underbrace{\mathcal{E}_{I}(x:\tau)}_{\mathsf{ACI}} \vartriangleleft (y,\{x:\{y:\tau\}\}), \quad \mathsf{if} \ x \neq y$$

$$\underbrace{\mathcal{E}_{C}(x:\tau)}_{\mathsf{AC}} \vartriangleleft (y,\{x:\{y:\tau\}\}), \quad \mathsf{if} \ y \ \mathsf{is} \ \mathsf{a} \ \mathsf{fresh} \ \mathsf{variable}$$

For example

$$\mathcal{E}_{\mathcal{C}}(\lambda x. x(xx) : ((\alpha \to \alpha) \cap (\alpha \to \alpha) \cap \alpha) \to \alpha)$$
$$\lhd (\lambda x_1 x_2 x_3. x_1(x_2 x_3), \{x : \{x_1 : \alpha \to \alpha, x_2 : \alpha \to \alpha, x_3 : \alpha\}\})$$

AC - Associative, Commutative but not Idempotent $(\tau \cap \tau \neq \tau)$

$$\underbrace{\mathcal{E}_{I}(x:\tau)}_{\mathsf{ACI}} \quad \lhd \quad \big(y,\{x:\{y:\tau\}\}\big), \quad \text{if } x \neq y$$

$$\underbrace{\mathcal{E}_{C}(x:\tau)}_{\mathsf{AC}} \quad \lhd \quad \big(y,\{x:\{y:\tau\}\}\big), \quad \text{if } y \text{ is a fresh variable}$$

For example

$$\mathcal{E}_{C}(\lambda x. x(xx) : ((\alpha \to \alpha) \cap (\alpha \to \alpha) \cap \alpha) \to \alpha)$$

$$\lhd(\lambda x_{1} x_{2} x_{3}. x_{1}(x_{2} x_{3}), \{x : \{x_{1} : \alpha \to \alpha, x_{2} : \alpha \to \alpha, x_{3} : \alpha\}\})$$

AC - Associative, Commutative but not Idempotent $(\tau \cap \tau \neq \tau)$

$$\underbrace{\mathcal{E}_{I}(x:\tau)}_{\mathsf{ACI}} \quad \triangleleft \quad \big(y,\{x:\{y:\tau\}\}\big), \quad \text{if } x \neq y$$

$$\underbrace{\mathcal{E}_{C}(x:\tau)}_{\mathsf{AC}} \quad \triangleleft \quad \big(y,\{x:\{y:\tau\}\}\big), \quad \text{if } y \text{ is a fresh variable}$$

For example:

$$\mathcal{E}_{C}(\lambda x.x(xx):((\alpha \to \alpha) \cap (\alpha \to \alpha) \cap \alpha) \to \alpha)$$
$$\lhd (\lambda x_{1}x_{2}x_{3}.x_{1}(x_{2}x_{3}), \{x:\{x_{1}:\alpha \to \alpha, x_{2}:\alpha \to \alpha, x_{3}:\alpha\}\})$$

AC-Expansion - Properties

In AC expansion the number of types in the intersection is the same as the free occurrences of the parameter in the function body.

We have the following properties regarding AC expansion:

$$\mathcal{E}_{C}(M:\sigma) \lhd (N,C)$$

- $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{A} N : \mathcal{T}(\sigma)$.
- If M is a λI -term, then $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{L} N : \mathcal{T}(\sigma)$.

AC-Expansion - Properties

In AC expansion the number of types in the intersection is the same as the free occurrences of the parameter in the function body.

We have the following properties regarding AC expansion:

$$\mathcal{E}_{\mathcal{C}}(M:\sigma) \lhd (N,\mathcal{C})$$

- $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{A} N : \mathcal{T}(\sigma)$.
- If M is a λI -term, then $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{L} N : \mathcal{T}(\sigma)$.

AC-Expansion - Properties

In AC expansion the number of types in the intersection is the same as the free occurrences of the parameter in the function body.

We have the following properties regarding AC expansion:

$$\mathcal{E}_{\mathcal{C}}(M:\sigma) \lhd (N,\mathcal{C})$$

- $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{A} N : \mathcal{T}(\sigma)$.
- If M is a λI -term, then $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{L} N : \mathcal{T}(\sigma)$.

$$\mathcal{E}_{O}(\lambda x.M:\sigma_{1}\cap\cdots\cap\sigma_{n}\to\sigma) \quad \triangleleft \quad (\lambda y_{1}\dots y_{n}.M_{0}^{\mathcal{T}(\sigma_{1})\to_{r}}\dots\to_{r}\mathcal{T}(\sigma_{n})\to_{r}\mathcal{T}(\sigma)},A),$$
if $x\in \mathsf{fv}(M)$ and
$$\mathcal{E}_{O}(M:\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma)},A+[x:[x_{1}:\mathcal{T}(\sigma_{1}),\dots,x_{n}:\mathcal{T}(\sigma_{n})]])$$

$$\mathcal{E}_{O}(\lambda x.M:\sigma_{1}\cap\cdots\cap\sigma_{n}\to\sigma) \quad \triangleleft \quad (\lambda x_{1}\dots x_{n}.M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}}\dots\to_{l}\mathcal{T}(\sigma_{n})\to_{l}\mathcal{T}(\sigma)},A),$$
if $x\in \mathsf{fv}(M)$ and
$$\mathcal{E}_{O}(M:\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma)},[x:[x_{n}:\mathcal{T}(\sigma_{n}),\dots,x_{1}:\mathcal{T}(\sigma_{1})]]+A)$$

$$\mathcal{E}_{O}(MN:\sigma) \qquad \qquad \triangleleft \quad ((M_{0}N_{1}\dots N_{m})^{\mathcal{T}(\sigma)},A_{0}+A_{1}+\dots+A_{m})$$
if for some $m>0$ and $\sigma_{1},\dots,\sigma_{m}$

$$\mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}}\dots\to_{r}\mathcal{T}(\sigma_{m})\to_{r}\mathcal{T}(\sigma)},A_{0}$$
and
$$\left(\mathcal{E}_{O}(N:\sigma_{i})\triangleleft (N_{i}^{\mathcal{T}(\sigma_{i})},A_{i})\right)_{i=1...m}$$

$$\mathcal{E}_{O}(MN:\sigma) \qquad \qquad \triangleleft \quad ((M_{0}N_{1}\dots N_{m})^{\mathcal{T}(\sigma)},A_{m}+\dots+A_{1}+A_{0}),$$
if for some $m>0$ and $\sigma_{1},\dots,\sigma_{m}$

$$\mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}}\dots\to_{l}\mathcal{T}(\sigma_{m})\to_{l}\mathcal{T}(\sigma)},A_{0})$$
and
$$\left(\mathcal{E}_{O}(N:\sigma_{i})\triangleleft (N_{i}^{\mathcal{T}(\sigma_{i})},A_{i})\right)_{i=1...m}$$

$$\mathcal{E}_{O}(\lambda x.M:\sigma_{1}\cap\cdots\cap\sigma_{n}\to\sigma) \quad \triangleleft \quad (\lambda y_{1}\dots y_{n}.M_{0}^{\mathcal{T}(\sigma_{1})\to_{r}}\cdots\to_{r}\mathcal{T}(\sigma_{n})\to_{r}\mathcal{T}(\sigma)},A),$$
if $x\in \mathsf{fv}(M)$ and
$$\mathcal{E}_{O}(M:\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma)},A+[x:[x_{1}:\mathcal{T}(\sigma_{1}),\dots,x_{n}:\mathcal{T}(\sigma_{n})]])$$

$$\mathcal{E}_{O}(\lambda x.M:\sigma_{1}\cap\cdots\cap\sigma_{n}\to\sigma) \quad \triangleleft \quad (\lambda x_{1}\dots x_{n}.M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}}\cdots\to_{l}\mathcal{T}(\sigma_{n})\to_{l}\mathcal{T}(\sigma)},A),$$
if $x\in \mathsf{fv}(M)$ and
$$\mathcal{E}_{O}(M:\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma)},[x:[x_{n}:\mathcal{T}(\sigma_{n}),\dots,x_{1}:\mathcal{T}(\sigma_{1})]]+A)$$

$$\mathcal{E}_{O}(MN:\sigma) \qquad \qquad \triangleleft \quad ((M_{0}N_{1}\dots N_{m})^{\mathcal{T}(\sigma)},A_{0}+A_{1}+\cdots+A_{m})$$
if for some $m>0$ and $\sigma_{1},\dots,\sigma_{m}$

$$\mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma_{1})\to_{r}}\cdots\to_{r}\mathcal{T}(\sigma_{m})\to_{r}\mathcal{T}(\sigma)},A_{0})$$
and
$$(\mathcal{E}_{O}(N:\sigma_{i}) \triangleleft (N_{i}^{\mathcal{T}(\sigma_{i})},A_{i}))_{i=1...m}$$

$$\mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}}\cdots\to_{l}\mathcal{T}(\sigma_{m})\to_{l}\mathcal{T}(\sigma)},A_{0})$$
and
$$(\mathcal{E}_{O}(N:\sigma_{i}) \triangleleft (N_{i}^{\mathcal{T}(\sigma_{i})},A_{i}))_{i=1...m}$$

$$\mathcal{E}_{O}(\lambda x.M:\sigma_{1}\cap\cdots\cap\sigma_{n}\to\sigma) \quad \triangleleft \quad (\lambda y_{1}\dots y_{n}.M_{0}^{\mathcal{T}(\sigma_{1})\to_{r}\cdots\to_{r}\mathcal{T}(\sigma_{n})\to_{r}\mathcal{T}(\sigma)},A),$$
if $x\in fv(M)$ and
$$\mathcal{E}_{O}(M:\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma)},A+[x:[x_{1}:\mathcal{T}(\sigma_{1}),\dots,x_{n}:\mathcal{T}(\sigma_{n})]])$$

$$\mathcal{E}_{O}(\lambda x.M:\sigma_{1}\cap\cdots\cap\sigma_{n}\to\sigma) \quad \triangleleft \quad (\lambda x_{1}\dots x_{n}.M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}\cdots\to_{l}\mathcal{T}(\sigma_{n})\to_{l}\mathcal{T}(\sigma)},A),$$
if $x\in fv(M)$ and
$$\mathcal{E}_{O}(M:\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma)},[x:[x_{n}:\mathcal{T}(\sigma_{n}),\dots,x_{1}:\mathcal{T}(\sigma_{1})]]+A)$$

$$\mathcal{E}_{O}(MN:\sigma) \qquad \qquad \triangleleft \quad ((M_{0}N_{1}\dots N_{m})^{\mathcal{T}(\sigma)},A_{0}+A_{1}+\dots+A_{m})$$
if for some $m>0$ and $\sigma_{1},\dots,\sigma_{m}$

$$\mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}\cdots\to_{l}\mathcal{T}(\sigma_{m})\to_{l}\mathcal{T}(\sigma)},A_{0})$$
and
$$\left(\mathcal{E}_{O}(N:\sigma_{i})\triangleleft (N_{i}^{\mathcal{T}(\sigma_{i})},A_{i})\right)_{i=1}\dots m$$

$$\mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \triangleleft (M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}\cdots\to_{l}\mathcal{T}(\sigma_{m})\to_{l}\mathcal{T}(\sigma)},A_{0})$$
and
$$\left(\mathcal{E}_{O}(N:\sigma_{i})\triangleleft (N_{i}^{\mathcal{T}(\sigma_{i})},A_{i})\right).$$

$$\mathcal{E}_{O}(\lambda x.M:\sigma_{1}\cap\cdots\cap\sigma_{n}\to\sigma) \ \ \, \triangleleft \ \ \, (\lambda y_{1}\ldots y_{n}.M_{0}^{\mathcal{T}(\sigma_{1})\to_{r}}\cdots\to_{r}\mathcal{T}(\sigma_{n})\to_{r}\mathcal{T}(\sigma)},A), \\ \text{ if } x\in \operatorname{fv}(M) \text{ and } \\ \mathcal{E}_{O}(M:\sigma) \ \, \triangleleft \ \, (M_{0}^{\mathcal{T}(\sigma)},A+[x:[x_{1}:\mathcal{T}(\sigma_{1}),\ldots,x_{n}:\mathcal{T}(\sigma_{n})]]) \\ \mathcal{E}_{O}(\lambda x.M:\sigma_{1}\cap\cdots\cap\sigma_{n}\to\sigma) \ \ \, \triangleleft \ \, (\lambda x_{1}\ldots x_{n}.M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}}\cdots\to_{l}\mathcal{T}(\sigma_{n})\to_{l}\mathcal{T}(\sigma)},A), \\ \text{ if } x\in \operatorname{fv}(M) \text{ and } \\ \mathcal{E}_{O}(M:\sigma) \ \, \triangleleft \ \, (M_{0}^{\mathcal{T}(\sigma)},[x:[x_{n}:\mathcal{T}(\sigma_{n}),\ldots,x_{1}:\mathcal{T}(\sigma_{1})]]+A) \\ \mathcal{E}_{O}(MN:\sigma) \ \ \, \triangleleft \ \, ((M_{0}N_{1}\ldots N_{m})^{\mathcal{T}(\sigma)},A_{0}+A_{1}+\cdots+A_{m}) \\ \text{ if for some } m>0 \text{ and } \sigma_{1},\ldots,\sigma_{m} \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (M_{0}^{\mathcal{T}(\sigma_{1})\to_{r}}\cdots\to_{r}\mathcal{T}(\sigma_{m})\to_{r}\mathcal{T}(\sigma)},A_{0}) \\ \text{ and } \left(\mathcal{E}_{O}(N:\sigma_{l}) \ \, \triangleleft \ \, (M_{0}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (M_{0}^{\mathcal{T}(\sigma_{1})\to_{l}}\cdots\to_{l}\mathcal{T}(\sigma_{m})\to_{l}\mathcal{T}(\sigma)},A_{0}) \\ \text{ and } \left(\mathcal{E}_{O}(N:\sigma_{l}) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (M_{0}^{\mathcal{T}(\sigma_{1})}\to_{l}\cdots\to_{l}\mathcal{T}(\sigma_{m})\to_{l}\mathcal{T}(\sigma)},A_{0}) \\ \text{ and } \left(\mathcal{E}_{O}(N:\sigma_{l}) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})\right)_{i=1}\ldots m \\ \mathcal{E}_{O}(M:\sigma_{1}\cap\cdots\cap\sigma_{m}\to\sigma) \ \, \triangleleft \ \, (N_{l}^{\mathcal{T}(\sigma_{l})},A_{l})$$

$$\mathcal{E}_{O}(\mathbf{x}:\alpha \to \beta) = (\mathbf{x}_{1}^{\alpha \to r\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha \to_{r}\beta]])$$

$$\mathcal{E}_{O}(\mathbf{z}:\beta) = (\mathbf{z}_{1}^{\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\beta]])$$

$$\mathcal{E}_{O}(\mathbf{x}z:\beta) = ((\mathbf{x}_{1}\mathbf{z}_{1})^{\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha \to_{r}\beta], \mathbf{z}:[\mathbf{z}_{1}:\alpha]])$$

$$\mathcal{E}_{O}(\lambda \mathbf{x}.\mathbf{x}\mathbf{z}:(\alpha \to \beta) \to \beta) = ((\lambda \mathbf{x}_{1}.\mathbf{x}_{1}\mathbf{z}_{1})^{(\alpha \to r\beta) \to r\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\alpha]]$$

$$\mathcal{E}_{O}(\mathbf{z}:\alpha \to \beta) = (\mathbf{z}_{0}^{\alpha \to r\beta}, [\mathbf{z}:[\mathbf{z}_{0}:\alpha \to \beta]])$$

$$\mathcal{E}_{\mathcal{O}}((\lambda x.xz)z:\beta) = (((\lambda x_1.x_1z_1)z_2)^{\beta}, [z:[z_2:\alpha \rightarrow_r \beta, z_1:\alpha]])$$

$$\mathcal{E}_{O}(\mathbf{x}:\alpha\to\beta) = (\mathbf{x}_{1}^{\alpha\to r\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha\to_{r}\beta]])$$

$$\mathcal{E}_{O}(\mathbf{z}:\beta) = (\mathbf{z}_{1}^{\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\beta]])$$

$$\mathcal{E}_{O}(\mathbf{x}\mathbf{z}:\beta) = ((\mathbf{x}_{1}\mathbf{z}_{1})^{\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha\to_{r}\beta], \mathbf{z}:[\mathbf{z}_{1}:\alpha]])$$

$$\mathcal{E}_{O}(\lambda\mathbf{x}.\mathbf{x}\mathbf{z}:(\alpha\to\beta)\to\beta) = ((\lambda\mathbf{x}_{1}.\mathbf{x}_{1}\mathbf{z}_{1})^{(\alpha\to_{r}\beta)\to\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\alpha]]$$

$$\mathcal{E}_O((\lambda x.xz)z:\beta) = (((\lambda x_1.x_1z_1)z_2)^{\beta}, [z:[z_2:\alpha \to_r \beta, z_1:\alpha]])$$

$$\mathcal{E}_{O}(\mathbf{x}:\alpha\to\beta) = (\mathbf{x}_{1}^{\alpha\to_{r}\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha\to_{r}\beta]])$$

$$\mathcal{E}_{O}(\mathbf{z}:\beta) = (\mathbf{z}_{1}^{\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\beta]])$$

$$\mathcal{E}_{O}(\mathbf{x}\mathbf{z}:\beta) = ((\mathbf{x}_{1}\mathbf{z}_{1})^{\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha\to_{r}\beta], \mathbf{z}:[\mathbf{z}_{1}:\alpha]])$$

$$\mathcal{E}_{O}(\lambda\mathbf{x}.\mathbf{x}\mathbf{z}:(\alpha\to\beta)\to\beta) = ((\lambda\mathbf{x}_{1}.\mathbf{x}_{1}\mathbf{z}_{1})^{(\alpha\to_{r}\beta)\to_{l}\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\alpha]])$$

$$\mathcal{E}_{O}(z:\alpha\rightarrow\beta)=(z_{2}^{\alpha}, [z:[z_{2}:\alpha\rightarrow_{r}\beta]])$$

$$\mathcal{E}_{\mathcal{O}}((\lambda x.xz)z:\beta) = (((\lambda x_1.x_1z_1)z_2)^{\beta}, [z:[z_2:\alpha \rightarrow_r \beta, z_1:\alpha]])$$

$$\mathcal{E}_{O}(\mathbf{x}:\alpha \to \beta) = (\mathbf{x}_{1}^{\alpha \to_{r}\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha \to_{r}\beta]])$$

$$\mathcal{E}_{O}(\mathbf{z}:\beta) = (\mathbf{z}_{1}^{\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\beta]])$$

$$\mathcal{E}_{O}(\mathbf{x}\mathbf{z}:\beta) = ((\mathbf{x}_{1}\mathbf{z}_{1})^{\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha \to_{r}\beta], \mathbf{z}:[\mathbf{z}_{1}:\alpha]])$$

$$\mathcal{E}_{O}(\lambda \mathbf{x}.\mathbf{x}\mathbf{z}:(\alpha \to \beta) \to \beta) = ((\lambda \mathbf{x}_{1}.\mathbf{x}_{1}\mathbf{z}_{1})^{(\alpha \to_{r}\beta) \to_{l}\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\alpha]])$$

$$\mathcal{E}_{O}(\mathbf{z}:\alpha \to \beta) = (\mathbf{z}_{2}^{\alpha \to_{r}\beta}, [\mathbf{z}:[\mathbf{z}_{2}:\alpha \to_{r}\beta]])$$

$$\mathcal{E}_O((\lambda x.xz)z:\beta) = (((\lambda x_1.x_1z_1)z_2)^{\beta}, [z:[z_2:\alpha \to_r \beta, z_1:\alpha]])$$

$$\mathcal{E}_{O}(\mathbf{x}:\alpha \to \beta) = (\mathbf{x}_{1}^{\alpha \to r\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha \to_{r}\beta]])$$

$$\mathcal{E}_{O}(\mathbf{z}:\beta) = (\mathbf{z}_{1}^{\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\beta]])$$

$$\mathcal{E}_{O}(\mathbf{x}\mathbf{z}:\beta) = ((\mathbf{x}_{1}\mathbf{z}_{1})^{\beta}, [\mathbf{x}:[\mathbf{x}_{1}:\alpha \to_{r}\beta], \mathbf{z}:[\mathbf{z}_{1}:\alpha]])$$

$$\mathcal{E}_{O}(\lambda \mathbf{x}.\mathbf{x}\mathbf{z}:(\alpha \to \beta) \to \beta) = ((\lambda \mathbf{x}_{1}.\mathbf{x}_{1}\mathbf{z}_{1})^{(\alpha \to_{r}\beta) \to_{l}\beta}, [\mathbf{z}:[\mathbf{z}_{1}:\alpha]])$$

$$\mathcal{E}_{O}(\mathbf{z}:\alpha \to \beta) = (\mathbf{z}_{2}^{\alpha \to_{r}\beta}, [\mathbf{z}:[\mathbf{z}_{2}:\alpha \to_{r}\beta]])$$

$$\mathcal{E}_O((\lambda x.xz)z:\beta) = (((\lambda x_1.x_1z_1)z_2)^{\beta}, [z:[z_2:\alpha \to_r \beta, z_1:\alpha]])$$

Ordered Expansion - Properties

We have the following property regarding A expansion:

$$\mathcal{E}_{\mathcal{O}}(M:\sigma) \lhd (N^{\mathcal{T}(\sigma)}, A)$$

If
$$M$$
 is a λI -term, then $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{\mathcal{O}} N : \mathcal{T}(\sigma)$.

But now $\mathcal T$ goes from intersection types to ordered types:

- $\mathcal{T}(\alpha) = \alpha$, if α is a type variable;
- $\mathcal{T}((\tau_1 \cap \cdots \cap \tau_n) \to \sigma) = \mathcal{T}(\tau_1) \to_r \cdots \to_r \mathcal{T}(\tau_n) \to_r \mathcal{T}(\sigma).$

Ordered Expansion - Properties

We have the following property regarding A expansion:

$$\mathcal{E}_{\mathcal{O}}(M:\sigma) \lhd (N^{\mathcal{T}(\sigma)}, A)$$

If M is a λI -term, then $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{\mathcal{O}} N : \mathcal{T}(\sigma)$.

But now $\mathcal T$ goes from intersection types to ordered types:

- $\mathcal{T}(\alpha) = \alpha$, if α is a type variable;
- $\mathcal{T}((\tau_1 \cap \cdots \cap \tau_n) \to \sigma) = \mathcal{T}(\tau_1) \to_r \cdots \to_r \mathcal{T}(\tau_n) \to_r \mathcal{T}(\sigma).$

Ordered Expansion - Properties

We have the following property regarding A expansion:

$$\mathcal{E}_{\mathcal{O}}(M:\sigma) \lhd (N^{\mathcal{T}(\sigma)}, A)$$

If M is a λI -term, then $\Gamma \vdash_{\cap} M : \sigma \Rightarrow \mathcal{T}(\Gamma) \vdash_{\mathcal{O}} N : \mathcal{T}(\sigma)$.

But now ${\mathcal T}$ goes from intersection types to ordered types:

- $\mathcal{T}(\alpha) = \alpha$, if α is a type variable;
- $\mathcal{T}((\tau_1 \cap \cdots \cap \tau_n) \to \sigma) = \mathcal{T}(\tau_1) \to_r \cdots \to_r \mathcal{T}(\tau_n) \to_r \mathcal{T}(\sigma).$

Consider weak head reduction \rightarrow is defined by:

$$(\lambda x.M)N \underset{w}{\rightarrow} M[N/x]$$

and

$$\frac{M \xrightarrow{w} M'}{MN \xrightarrow{w} M'N}$$

In functional programming languages, reduction is weak.

$$\begin{array}{c|c}
M_1 & \longrightarrow & M_2 \\
\varepsilon & & & & \varepsilon \\
N_1 & \longrightarrow & N_2
\end{array}$$

Consider *weak head reduction* $\underset{w}{\rightarrow}$ is defined by:

$$(\lambda x.M)N \underset{w}{\rightarrow} M[N/x]$$

and

$$\frac{M \underset{w}{\rightarrow} M'}{MN \underset{w}{\rightarrow} M'N}$$

In functional programming languages, reduction is weak.

$$\begin{array}{c|c}
M_1 & \longrightarrow & M_2 \\
\varepsilon & & & & \varepsilon \\
N_1 & \longrightarrow & N_2
\end{array}$$

Consider weak head reduction \rightarrow is defined by:

$$(\lambda x.M)N \underset{w}{\rightarrow} M[N/x]$$

and

$$\frac{M \underset{w}{\rightarrow} M'}{MN \underset{w}{\rightarrow} M'N}$$

In functional programming languages, reduction is weak.

$$M_1 \xrightarrow{w} M_2$$

$$\varepsilon \bigvee_{V} \bigvee_{W} \varepsilon$$

$$N_1 \xrightarrow{w} N_2$$

Consider *weak head reduction* $\underset{w}{\rightarrow}$ is defined by:

$$(\lambda x.M)N \underset{w}{\rightarrow} M[N/x]$$

and

$$\frac{M \underset{w}{\rightarrow} M'}{MN \underset{w}{\rightarrow} M'N}$$

In functional programming languages, reduction is weak.

$$\begin{array}{c|c}
M_1 & \longrightarrow & M_2 \\
\varepsilon \downarrow & & \downarrow \varepsilon \\
N_1 & \longrightarrow & N_2
\end{array}$$

Correctness

Expansion commutes with β -reduction in the λI -calculus,

$$\begin{array}{c|c} M_1 \xrightarrow{\beta} M_2 \\ \varepsilon \middle| & & & \varepsilon \\ N_1 \xrightarrow{\beta} N_2 \end{array}$$

but not in the λ -calculus:

$$\lambda x.(\lambda y.z)xx \xrightarrow{\beta} \lambda x.zx$$

$$\varepsilon \downarrow \\ \lambda x_1 x_2.(\lambda y.z)x_1 x_2 \xrightarrow{\beta} \lambda x_1 x_2.zx_2$$

Correctness

Expansion commutes with β -reduction in the λI -calculus,

$$\begin{array}{c|c} M_1 \xrightarrow{\beta} M_2 \\ \varepsilon \middle| & & & \varepsilon \\ N_1 \xrightarrow{\beta} N_2 \end{array}$$

but not in the λ -calculus:

$$\lambda x.(\lambda y.z)xx \xrightarrow{\beta} \lambda x.zx$$

$$\varepsilon \downarrow \\ \lambda x_1 x_2.(\lambda y.z)x_1 x_2 \xrightarrow{\beta} \lambda x_1 x_2.zx_2$$

\cap	Source	Target	Preserves reductions
ACI	λ	Simple Types	Weak Head Reduction
ACI	λI	Relevant Types	eta-reduction
AC		Affine Types	Weak Head Reduction
AC		Linear Types	eta-reduction
А		Ordered Types	eta-reduction

\cap	Source	Target	Preserves reductions
ACI	λ	Simple Types	Weak Head Reduction
ACI	λI	Relevant Types	eta-reduction
AC	λ	Affine Types	Weak Head Reduction
AC		Linear Types β -reduction	
А		Ordered Types	eta-reduction

\cap	Source	Target	Preserves reductions	
ACI	λ	Simple Types	Weak Head Reduction	
ACI	λI	Relevant Types	β -reduction	
AC	λ	Affine Types	Weak Head Reduction	
AC	λI	Linear Types	eta-reduction	
А		Ordered Types	eta-reduction	

\cap	Source	Target	Preserves reductions	
ACI	λ	Simple Types	Weak Head Reduction	
ACI	λI	Relevant Types	eta-reduction	
AC	λ	Affine Types	Weak Head Reduction	
AC	λI	Linear Types	β -reduction	
А	λI	Ordered Types	β -reduction	

\cap	Source	Target	Preserves reductions	
ACI	λ	Simple Types	Weak Head Reduction	
ACI	λI	Relevant Types	eta-reduction	
AC	λ	Affine Types	Weak Head Reduction	
AC	λI	Linear Types β -reduction		
А	λΙ	Ordered Types β -reduction		

How the different structural rules relate to the different expansion relations:

Type System	W	Е	С	Assumptions	Intersection
Relevant		√	√	at least once	ACI
Affine	√	√		at most once	AC
Linear		√		exactly once	AC
Ordered				in order	А

Current and Future Work

What are we currently looking at...

Remember the two (valid) typings:

$$z_1 : \alpha \rightarrow_r \beta$$
, $z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$
 $z_2 : \alpha$, $z_1 : \alpha \rightarrow_I \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$

We would like to be able to have a notion of principal-pair for the ordered type system and a type-inference algorithm.

What else we would like to look at...

- Study in more detail the relation between the linear and the ordered system;
- In theory there are more possible substructural systems... is any of the remaining ones interesting?

Current and Future Work

What are we currently looking at...

Remember the two (valid) typings:

$$z_1 : \alpha \rightarrow_r \beta, \ z_2 : \alpha \vdash_O (\lambda x. x z_2) z_1 : \beta$$

 $z_2 : \alpha, \ z_1 : \alpha \rightarrow_I \beta \vdash_O (\lambda x. x z_2) z_1 : \beta$

We would like to be able to have a notion of principal-pair for the ordered type system and a type-inference algorithm.

What else we would like to look at...

- Study in more detail the relation between the linear and the ordered system;
- In theory there are more possible substructural systems... is any of the remaining ones interesting?

Thank you!