International Conference on Mathematical and Computational Linguistics for Proofs 15-18 September 2025 Paris-Saclay University France https://europroofnet.github.io/MCLP/

On Natural Deduction and Axioms for Propositional and First-Order Logic

Jørgen Villadsen Technical University of Denmark

DTU Compute

Copenhagen

DTU Compute is Denmark's largest mathematics and computer science environment

Thanks to my student Vladimir Kalabukhov for help with proofs

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

But first: Prelude

Grandfather

Natural Language Reasoning Example

A really difficult example is discussed on page 128 of the Handbook of Tableau Methods (Kluwer Academic Publishers 1999):

If every person that is not rich has a rich father, then some rich person must have a rich grandfather.

Formalization with r (rich) and f (father): $\forall x(\neg r(x) \rightarrow r(f(x))) \rightarrow \exists x(r(x) \land r(f(f(x))))$

proposition $\langle (\forall x. \neg r x \rightarrow r (f x)) \rightarrow (\exists x. r x \land r (f (f x))) \rangle$ by auto

... or by blast, by meson or by metis in Isabelle/HOL

Formalizing 1000+ Theorems

https://1000-plus.github.io/

Currently 1198 Theorems (Wikipedia)

https://en.wikipedia.org/wiki/Gödel's_completeness_theorem

https://en.wikipedia.org/wiki/Gödel's_incompleteness_theorem

Currently 6 Proof Assistants (16 September 2025)

Formalizing 100 Theorems

https://www.cs.ru.nl/~freek/100/

Higher-Order Logic Type Theory Set Theory

Isabelle 92 Lean 82 Metamath 74

HOL Light 89 Rocq (Coq) 79 Mizar 71

All 100 Formalized Except Fermat's Last Theorem

Iff_I:
$$(p \Rightarrow q) \Rightarrow (q \Rightarrow p) \Rightarrow p = q$$

Extension:
$$(\Lambda x. f x = g x) \Rightarrow f = g$$

Choice:
$$p c \Rightarrow p (\epsilon p)$$

The usual logical operators can be defined and introduction/elimination rules proved

One axiom and five rules

AT
$$(q \rightarrow r) \rightarrow (r \rightarrow p) \rightarrow q \rightarrow p$$

$$MP \quad q \rightarrow p \quad \Rightarrow \quad q \quad \Rightarrow \quad p$$

$$CR q \rightarrow r \rightarrow p \implies r \rightarrow q \rightarrow p$$

IR
$$(q \rightarrow q) \rightarrow p \Rightarrow p$$

$$DR \quad q \quad \rightarrow \quad p \quad \Longrightarrow \quad r \rightarrow q \rightarrow p$$

$$PR \quad (p \rightarrow q) \rightarrow p \quad \Longrightarrow \quad p$$

AT & MP from Łukasiewicz

BCI/BCK logics by Meredith

CR & IR both added give BCI logic

DR also added gives BCK logic

PR also added gives classical logic

PR = Peirce's Rule

Minimal Sequent Calculus for Teaching First-Order Logic: Lessons Learned

Jørgen Villadsen ThEdu 75-89 2024

A Sequent Calculus for First-Order Logic Formalized in Isabelle/HOL

Asta Halkjær From, Anders Schlichtkrull & Jørgen Villadsen Journal of Logic and Computation 33 818-836 2023

Teaching Higher-Order Logic Using Isabelle

Simon Tobias Lund & Jørgen Villadsen ThEdu 59-78 2023

ProofBuddy: A Proof Assistant for Learning and Monitoring

Nadine Karsten, Frederik Krogsdal Jacobsen, Kim Jana Eiken, Uwe Nestmann & Jørgen Villadsen TFPIE 1-21 2023

Mordechai Ben-Ari

Mathematical Logic for Computer Science

Third Edition

Standard Textbook

Imp (**Uni** (**Con p q**[**0**])) (**Con q**[**a**] **p**)

```
Imp_R
Neg (Uni (Con p q[0]))
Con q[a] p
Uni L
Neg (Con p q[a])
Con q[a] p
Con L
Neg p
Neg q[a]
Con q[a] p
Fxt
Con q[a] p
Neg p
Neg q[a]
Con R
q[a]
Neg p
Neg q[a]
Neg p
Neg q[a]
```

Basic

Minimal Sequent Calculus

MiniCalc Web App

Isabelle Checks Proofs

Example:

 $(\forall x. p \land q x) \longrightarrow q a \land p$

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

```
notation (input) False (<⊥>) and True (<T>)
theorem Imp C: \langle (p \rightarrow q \Rightarrow p) \Rightarrow p \rangle
   using ccontr by iprover
lemma LEM: ⟨p ∨ ¬ p>
proof (rule Imp C)
   assume \langle p \lor \neg p \rightarrow \bot \rangle
   have <- p>
   proof
      assume p
      then have \langle p \lor \neg p \rangle ..
      with \langle p \lor \neg p \rightarrow \bot \rangle show \bot ...
   qed
   then show \langle p \lor \neg p \rangle \dots
qed
```

```
proposition \langle (\forall x. \neg r x \rightarrow r (f x)) \rightarrow (\exists x. r x \land r (f (f x))) \rangle
proof
                                                     from SECRET have grandfather SECRET
  assume SECRET
                                                     have SECRET by (rule LEM)
  fix SECRET
                                                     then show SECRET
  from SECRET have child SECRET
                                                     proof
  have SECRET by (rule LEM)
                                                       assume SECRET
                                                       from SECRET and SECRET have SECRET
  then have
                                                       then show SECRET
  proof
    assume SECRET
                                                     next
                                                       assume SECRET
    then show SECRET
                                                       with grandfather have SECRET
  next
                                                       from SECRET and SECRET have SECRET
    assume SECRET
    with child have SECRET
                                                       then show SECRET
    then show SECRET
                                                     qed
  qed
                                                   next
  then obtain SECRET where SECRET
                                                     assume SECRET
                                                     from father and SECRET have SECRET
  from SECRET have father SECRET
                                                     with SECRET have SECRET
  have SECRET by (rule LEM)
  then show SECRET
                                                     then show SECRET
  proof
                                                   qed
    assume SECRET
                                                 qed
```

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

Axiom 1
$$\vdash (A \to (B \to A))$$

Axiom 2 $\vdash (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
Axiom 3 $\vdash (\neg B \to \neg A) \to (A \to B)$

The *rule of inference* is *modus ponens* (*MP* for short):

$$\frac{\vdash A \to B \quad \vdash A}{\vdash B}$$

Proof

1.
$$\vdash (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$
 Axiom 2
2. $\vdash A \rightarrow ((A \rightarrow A) \rightarrow A)$ Axiom 1
3. $\vdash (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$ MP 1, 2
4. $\vdash A \rightarrow (A \rightarrow A)$ Axiom 1
5. $\vdash A \rightarrow A$ MP 3, 4

Axiom 1: $p \rightarrow q \rightarrow p$ Axiom 2: $(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$

- 1. $(p \rightarrow (p \rightarrow p) \rightarrow p) \rightarrow (p \rightarrow p \rightarrow p) \rightarrow p \rightarrow p$ Axiom 2
- 2. $p \rightarrow (p \rightarrow p) \rightarrow p$ Axiom 1
- 3. $(p \rightarrow p \rightarrow p) \rightarrow p \rightarrow p$
- 4. $p \rightarrow p \rightarrow p$ Axiom 1
- 5. $p \rightarrow p$

lemma S: $(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$ and K: $(p \rightarrow q \rightarrow p)$ by auto

lemma I: ⟨p → p⟩
using mp mp S K K.

The same proof in Isabelle

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

Łukasiewicz's Axioms for Propositional Logic

$$(q \rightarrow r) \rightarrow (r \rightarrow p) \rightarrow q \rightarrow p$$

 $(\neg p \rightarrow p) \rightarrow p$
 $q \rightarrow \neg q \rightarrow p$

Elements of Mathematical Logic
Jan Łukasiewicz, Professor at Warsaw University
Authorized lecture notes prepared by M. Presburger
1929

We do not use negation as a primitive operator, but define negation in terms of implication and falsity like in Isabelle/HOL: $\neg p \equiv p \longrightarrow \bot$

But $(q \rightarrow r) \rightarrow (r \rightarrow p) \rightarrow q \rightarrow p$ is not a single axiom for implicational logic

Bernays-Tarski's Axioms for Implicational Logic

$$p \rightarrow q \rightarrow p$$

 $((p \rightarrow q) \rightarrow p) \rightarrow p$
 $(q \rightarrow r) \rightarrow (r \rightarrow p) \rightarrow q \rightarrow p$

Second axiom is Peirce's law

https://en.wikipedia.org/wiki/Peirce's_law

See also

https://en.wikipedia.org/wiki/Implicational_propositional_calculus

Perhaps Tarski-Bernays is a more appropriate name for the axiomatics

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

```
datatype 'a form =
   Pro 'a (<x>) |
                                                                                                                 Implicational Logic
   Imp \langle a \text{ form} \rangle \langle a \text{ form} \rangle (infixr \langle \rightarrow \rangle 55)
primrec semantics (infix \langle \models \rangle 50) where
   \langle I \models xn = I n \rangle
   \langle I \models p \rightarrow q = (I \models p \longrightarrow I \models q) \rangle
inductive Ax (\leftarrow \rightarrow 50) where
   AK: \langle \vdash p \rightarrow q \rightarrow p \rangle
   AP: \langle \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p \rangle |
   AT: \langle \vdash (p \rightarrow q) \rightarrow (q \rightarrow r) \rightarrow p \rightarrow r \rangle
   MP: \langle \vdash p \rightarrow q \Longrightarrow \vdash p \Longrightarrow \vdash q \rangle
theorem soundness: \langle \vdash p \implies I \models p \rangle
   by (induct p rule: Ax.induct) auto
lemma AC: \langle \vdash (p \rightarrow q \rightarrow r) \rightarrow q \rightarrow p \rightarrow r \rangle
   using MP MP AT AT MP AT MP MP AT MP MP AT AK AT MP MP AT AT AP .
lemma AS: \langle \vdash (p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r \rangle
   using MP MP AT MP MP AT AC MP AC AT MP MP AC AT MP MP AT AT AP .
lemma AI: \langle \vdash p \rightarrow p \rangle
   using MP MP AS AK AK .
```

```
theorem soundness: \langle \vdash p \implies I \models p \rangle
theorem completeness: \langle \forall I. \ I \models p \implies \vdash p \rangle
```

Isabelle -175 lines 1 second

theorem main: $\langle (\vdash p) = (\forall I. \ I \models p) \rangle$ using

soundness and completeness by auto

Alternatively in one go with 73 axioms and rules:

```
lemma AS: \langle \vdash (q \rightarrow r \rightarrow p) \rightarrow (q \rightarrow r) \rightarrow q \rightarrow p \rangle using MP MP AT MP MP AT MP MP AT AT MP MP AT MP MP AT AK AT MP MP AT AT AP MP MP MP AT AT MP MP AT MP MP AT MP MP AT AK AT MP MP AT AT AP AT MP MP MP AT AT MP AT MP MP AT MP MP AT AK AT AK AT MP MP AT AT AP AT MP MP AT AT AP .
```

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

Standard Textbook

Axiom 1
$$\vdash (A \rightarrow (B \rightarrow A))$$

Axiom 2
$$\vdash (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

Axiom 3
$$\vdash (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$

Axiom 4
$$\vdash \forall x A(x) \rightarrow A(a)$$

Axiom 5
$$\vdash \forall x (A \rightarrow B(x)) \rightarrow (A \rightarrow \forall x B(x))$$

- In Axioms 1, 2 and 3, A, B and C are any formulas of first-order logic.
- In Axiom 4, A(x) is a formula with a free variable x.
- In Axiom 5, B(x) is a formula with a free variable x, while x is *not* a free variable of the formula A.

The rules of inference are *modus ponens* and *generalization*:

$$\frac{\vdash A \to B \quad \vdash A}{\vdash B} \qquad \frac{\vdash A(a)}{\vdash \forall x A(x)}$$

Axiomatics for First-Order Logic

We present formalizations in the proof assistant Isabelle/HOL of axiomatics for classical first-order logic, based on natural deduction, where the soundness and completeness theorems hold for languages of arbitrary cardinalities.

$$\begin{array}{c} (r \longrightarrow p) \longrightarrow (q \longrightarrow r) \longrightarrow q \longrightarrow p \\ (q \longrightarrow r \longrightarrow p) \longrightarrow r \longrightarrow q \longrightarrow p \\ (q \longrightarrow p) \longrightarrow r \longrightarrow q \longrightarrow p \\ q \longrightarrow p \Longrightarrow q \Longrightarrow p \\ (q \longrightarrow q) \longrightarrow p \Longrightarrow p \\ (p \longrightarrow q) \longrightarrow p \Longrightarrow p \\ q \longrightarrow \text{False} \Longrightarrow q \longrightarrow p \\ q \longrightarrow (\forall x. p' x) \Longrightarrow q \longrightarrow p' t \\ (\bigwedge x. q \longrightarrow p' x) \Longrightarrow q \longrightarrow (\forall x. p' x) \end{array}$$

Key result BCD-Logic

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

BCD-Logic

$$I p \rightarrow p$$

$$K p \rightarrow q \rightarrow p$$

$$B \qquad (q \rightarrow r) \rightarrow (r \rightarrow p) \rightarrow q \rightarrow p$$

$$C \qquad (q \rightarrow r \rightarrow p) \qquad \rightarrow \qquad r \rightarrow q \rightarrow p$$

$$D \qquad (q \rightarrow p) \rightarrow r \rightarrow q \rightarrow p$$

All weaker than intuitionistic and classical logic

BCI

$$q \longrightarrow p \implies q \implies p$$

$$(\bigwedge x. q \longrightarrow p' x) \Longrightarrow q \longrightarrow (\forall x. p' x)$$

Axiom Replacements

BCD Axioms

Identity Rule Peirce's Rule

$$(q \longrightarrow q) \longrightarrow p \Longrightarrow p$$

 $(p \longrightarrow q) \longrightarrow p \Longrightarrow p$

Explosion Rule Specialization Rule

$$q \longrightarrow False \Longrightarrow q \longrightarrow p$$

 $q \longrightarrow (\forall x. p' x) \Longrightarrow q \longrightarrow p' t$

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

L1 – 3 Axioms / 6 Rules – Formal Soundness and Completeness Theorems

BCD-logic

L2 - 5 Axioms / 2 Rules - Formal Soundness and Completeness Theorems

```
AK: \langle \vdash p \longrightarrow q \longrightarrow p \rangle

AP: \langle \vdash ((p \longrightarrow q) \longrightarrow p) \longrightarrow p \rangle

AT: \langle \vdash (q \longrightarrow r) \longrightarrow (r \longrightarrow p) \longrightarrow q \longrightarrow p \rangle

AX: \langle \vdash \bot \longrightarrow p \rangle

AY: \langle \vdash \forall p \longrightarrow \langle t \rangle p \rangle

MP: \langle \vdash q \longrightarrow p \Longrightarrow \vdash q \Longrightarrow \vdash p \rangle

GR: \langle \vdash q \longrightarrow \langle \star a \rangle p \Longrightarrow \vdash q \longrightarrow \forall p \rangle if \langle \text{new a } p \rangle and \langle \text{new a } q \rangle
```

Bernays-Tarski's axioms for classical implicational logic

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

L1A – 4 Axioms / 2 Rules – Formal Soundness and Completeness Theorems

```
AK: \langle \vdash p \longrightarrow q \longrightarrow p \rangle

AS: \langle \vdash (q \longrightarrow r \longrightarrow p) \longrightarrow (q \longrightarrow r) \longrightarrow q \longrightarrow p \rangle

AY: \langle \vdash \forall p \longrightarrow \langle t \rangle p \rangle

DN: \langle \vdash \neg \neg p \longrightarrow p \rangle

MP: \langle \vdash q \longrightarrow p \Longrightarrow \vdash q \Longrightarrow \vdash p \rangle

GR: \langle \vdash q \longrightarrow \langle \star a \rangle p \Longrightarrow \vdash q \longrightarrow \forall p \rangle if \langle \text{new a } p \rangle and \langle \text{new a } q \rangle
```

Simple double negation axiom added to intuitionistic logic

L2A - 1 Axiom / 8 Rules - Formal Soundness and Completeness Theorems

```
AT: \langle \vdash (q \rightarrow r) \rightarrow (r \rightarrow p) \rightarrow q \rightarrow p \rangle

MP: \langle \vdash q \rightarrow p \Rightarrow \vdash q \Rightarrow \vdash p \rangle

CR: \langle \vdash q \rightarrow r \rightarrow p \Rightarrow \vdash r \rightarrow q \rightarrow p \rangle

DR: \langle \vdash q \rightarrow p \Rightarrow \vdash r \rightarrow q \rightarrow p \rangle

IR: \langle \vdash (q \rightarrow q) \rightarrow p \Rightarrow \vdash p \rangle

PR: \langle \vdash (p \rightarrow q) \rightarrow p \Rightarrow \vdash p \rangle

XR: \langle \vdash q \rightarrow \bot \Rightarrow \vdash q \rightarrow p \rangle

SR: \langle \vdash q \rightarrow \forall p \Rightarrow \vdash q \rightarrow \langle t \rangle p \rangle

GR: \langle \vdash q \rightarrow \langle \star a \rangle p \Rightarrow \vdash q \rightarrow \forall p \rangle if \langle \text{new a } p \rangle and \langle \text{new a } q \rangle
```

BCD-logic variant closer to natural deduction

- Proof of a so-called grandfather formula using natural deduction
- Proof of p → p from standard axioms on paper and in Isabelle
- From propositional logic to implicational logic
- Proof of soundness and completeness for implicational logic
- Axiomatics for first-order logic
- BCD-logic
- Formalizations L1 & L2
- Formalizations L1A & L2A (Alternatives)
- Conclusions

Conclusions

For more than five years we have used the Isabelle proof assistant to teach metatheory of propositional and first-order logic, not only for natural deduction and sequent calculus, but also for axiomatic systems.

Languages of any cardinality are supported.

The focus is on the formal soundness and completeness theorems for classical first-order logic.

The formalizations consist of about 2000 lines of proof in Isabelle/HOL for L1/L2 as well as for L1A/L2A and the verification takes about 10 seconds.