Disambiguating natural language with probabilistic inference

Mauricio Barba da Costa, Katherine Collins, Fabian Zaiser, Romir Patel, Alexander K. Lew, Vikash Mansinghka, Timothy O'Donnell, Joshua Tenenbaum, and Cameron Freer

Auto-formalization

- Given a (potentially imprecise) informal statement, can you extract the formal meaning of the statement?
- How can we resolve ambiguity in Lean 4?

Types of ambiguity in Lean

Type/Domain Ambiguity

Pronoun Ambiguity

Quantifier Scope Ambiguity

For all x, there exists y such that $y^2=x$.

If a function has a derivative, it is continuous.

Each f is bounded by some g.

```
\forall x : \mathbb{N}, \exists y : \mathbb{N}, y^2 = x
```

```
/-- "it" refers to the function -/ \forall (f : \mathbb{R} → \mathbb{R}), Differentiable \mathbb{R} f → Continuous f
```

```
/-- every f has its own bound g -/
∀ f, ∃ g, f ≤ g
```

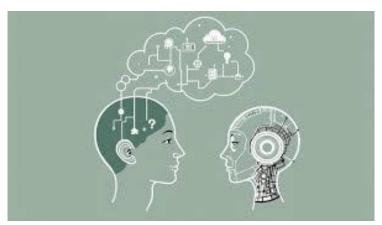
```
\forall x : \mathbb{C}, \exists y : \mathbb{C}, y^2 = x
```

```
/-- "it" refers to the derivative -/
∀ (f : ℝ → ℝ), Differentiable ℝ f →
Continuous (deriv f)
```

```
/-- one g bounds every f -/ \exists g, \forall f, f \leq g
```

Why auto-formalization?

- Can assess how well machines understand the intents of their users. Better auto-formalization means better thought partners
- Understanding how humans alternate between precise reasoning and rough draft type thinking



Defining success for auto-formalization is difficult

- Traditional machine learning approach: compare label to ground truth.
 - o (for propositions) Any true statement implies any other true statement
 - o (for predicates) is undecidable

 $f: \mathbb{C} \to \mathbb{C}$ is a polynomial $\stackrel{?}{=}$

 $f:\mathbb{C}\to\mathbb{C}$ is a polynomial with number of roots equal to its degree.

Defining success for auto-formalization is difficult

- Traditional machine learning approach: compare label to ground truth.
 - o (for propositions) Any true statement implies any other true statement
 - o (for predicates) is undecidable
- Despite this, humans still have an intuition for when two statements are equivalent

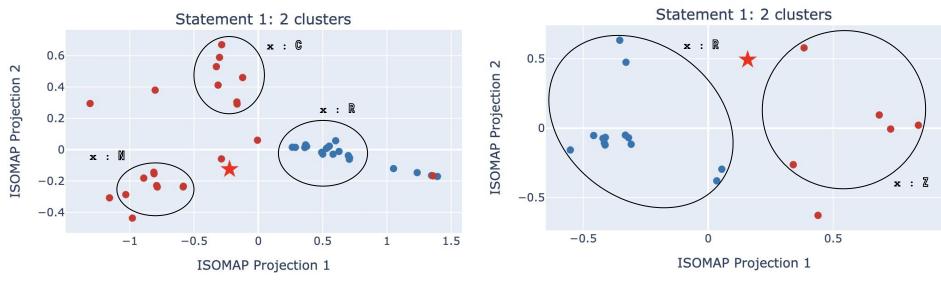
$$f: \mathbb{C} \to \mathbb{C}$$
 is a polynomial $\stackrel{?}{=}$

 $f:\mathbb{C}\to\mathbb{C}$ is a polynomial with number of roots equal to its degree.

Ambiguity via LM

- How well is a language embedding model at distinguishing between unequal formalizations?
- LM attempts to formalize statement 50 times
- Embedding model converts statement to vector
- Reduce dimensionality to view in 2 dimensions.

Ambiguity via LLM



"For all x, there exists y such that $y^2 = x$ "

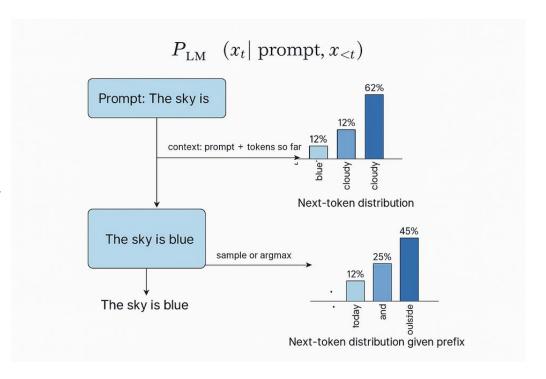
"For any x, $0 \le x^2$ "

Ambiguity via LLM

- Some structure is preserved!
 - Robust to semantic-preserving transformations like reordering hypotheses, renaming hypotheses
 - Gives natural clustering boundaries
 - Different disambiguations are represented
 - o Informal statement is embedded roughly between all the formalization attempts

Can we do something more principled?

- LLMs are trained using next-token prediction. Why should we expect that they can reason about math?
- LMs define conditional distributions for sequences of text



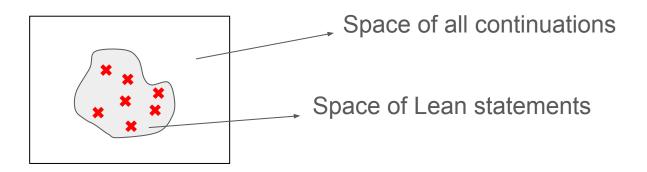
Outline

- Introducing autoformalization as inference
- Preliminary experiments and simple case studies
- > This talk

- Useful constraints/signals for autoformalization?
- How systematically combine these ingredients?
- Preliminary experimental results

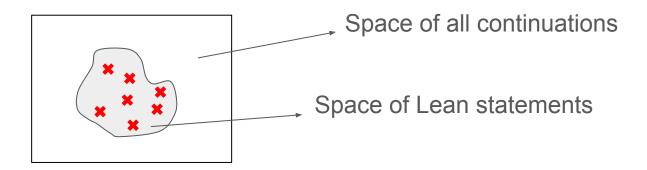
Posterior inference

- Generate samples from a target distribution that is often difficult to compute.
- For instance, "the distribution given by sentences in the English language" conditioned on "all the words must not contain the letter e".



Can we frame auto-formalization as posterior inference?

- Can we use an LLM as a proposal distribution (which is what it was designed for) for sampling from a target distribution?
- What might that target distribution look like?



 Proposal: autoformalization by sampling from a distribution that adjusts for multiple factors

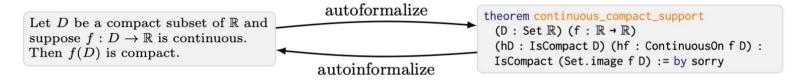
$$P^*(X_{\rm formal}|X_{\rm informal}) \propto P_{\rightarrow}(X_{\rm formal}|X_{\rm informal})P_{\leftarrow}(X_{\rm informal}|X_{\rm formal})\mathbf{1}_{\rm well-typed}\mathbf{1}_{\rm plausible}$$

- We can sample approximately from this distribution
- See more in next talk to see how this is done in practice!

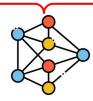
The first two terms correspond to cycle consistency

$$P^*(X_{\text{formal}}|X_{\text{informal}}) \propto P_{\rightarrow}(X_{\text{formal}}|X_{\text{informal}})P_{\leftarrow}(X_{\text{informal}}|X_{\text{formal}})\mathbf{1}_{\text{well-typed}}\mathbf{1}_{\text{plausible}}$$

autoformalization: translate an informal math statement to corresponding formal statement, specifically: English \LaTeX \rightarrow \Longrightarrow



$$P^*(X_{ ext{formal}}|X_{ ext{informal}}) \propto P_{
ightarrow}(X_{ ext{formal}}|X_{ ext{informal}})P_{\leftarrow}(X_{ ext{informal}}|X_{ ext{formal}})\mathbf{1}_{ ext{well-typed}}\mathbf{1}_{ ext{plausible}}$$



- Forward LLM prompt: "Formalize..."
- Reverse LLM prompt: "State this statement in natural language: "
 - Evaluate the likelihood of the continuation

Case Study

Example disambiguating with forward and reverse kernels

- "If f is continuous on a closed interval, then it is bounded."
 - O Which definitions do I use?
 - What is the domain of the interval?
 - What is the domain of f?
 - What is the quantifier of the interval and of *f*?
 - What is the quantifier of the interval?
 - The statement is False.
- Natural language is underspecified, so these sorts of questions need to be answered by an autoformalizer

	log P(formal informal)	log P(informal formal)
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to ContinuousOn f BEST	-85.4375 +	-10.2656
(Set.lcc a b) \rightarrow ∃ M : \mathbb{R} , \forall x \subseteq Set.lcc a b, f x \leq M		

	log P(formal informal)	log P(informal formal)
$\forall f: \mathbb{R} \to \mathbb{R}, \ \forall \ a \ b: \mathbb{R}, \ a \le b \to \dots$ BEST	-85.4375	-10.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, ContinuousOn f (Set.univ) $\to \forall$ a b: \mathbb{R} , a \leq b \to BoundedOn f (Set.lcc a b)	-96.0625	-13.2656

Contrived formalization

	log P(formal informal)	log P(informal formal)
$\forall f: \mathbb{R} \to \mathbb{R}, \ \forall \ a \ b: \mathbb{R}, \ a \le b \to \dots$ BEST	-85.4375	-10.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, ContinuousOn f (Set.univ) $\to \forall$ a b: \mathbb{R} , a \leq b \to BoundedOn f (Set.lcc a b)	-96.0625	-13.2656

Reverse direction is saying something different

	log P(formal informal)	log P(informal formal)
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to BEST	-85.4375	-10.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, ContinuousOn f	-96.0625	-13.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, (\exists a b: \mathbb{R} , a \leq b \land ContinuousOn f (Set.lcc a b)) \to \exists a b: \mathbb{R} , a \leq b \land BoundedOn f (Set.lcc a b)	-100.3750	-11.3906

Unlikely quantifier

	log P(formal informal)	log P(informal formal)
$\forall f: \mathbb{R} \to \mathbb{R}, \ \forall \ a \ b: \mathbb{R}, \ a \le b \to \dots$ BEST	-85.4375	-10.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, ContinuousOn f	-96.0625	-13.2656
$\forall f: \mathbb{R} \to \mathbb{R}, (\exists ab: \mathbb{R}, a \leq b \land$	-100.3750	-11.3906
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall K: Set \mathbb{R} , IsCompact ContinuousOn f \to BoundedOn f K	-100.1250	-18.5000

IsCompact describes something different

	log P(formal informal)	log P(informal formal)
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to	-85.4375	-10.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, ContinuousOn f	-96.0625	-13.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, (\exists a b: \mathbb{R} , a \leq b $\land \dots$	-100.3750	-11.3906
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall K: Set \mathbb{R} , IsCompact	-100.1250	-18.5000
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to ContinuousOn f BEST	-86.1875 +	-8.7500
(Set.Icc a b) → BoundedOn f (Set.Icc a b)		

	log P(formal informal)	log P(informal formal)
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to ContinuousOn f (Set.Icc a b) \to \exists M: \mathbb{R} , \forall x \in Set.Icc a b, f x \leq M	-85.4375	-10.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, ContinuousOn f	-96.0625	-13.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, (\exists a b: \mathbb{R} , a \leq b $\land \dots$	-100.3750	-11.3906
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall K: Set \mathbb{R} , IsCompact	-100.1250	-18.5000
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to ContinuousOn f BEST (Set.Icc a b) \to BoundedOn f (Set.Icc a b)	-86.1875	-8.7500

Informalization would likely spell out the bound *M*.

	log P(formal informal)	log P(informal formal)
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to	-85.4375	-10.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, ContinuousOn f	-96.0625	-13.2656
\forall f: $\mathbb{R} \to \mathbb{R}$, (\exists a b: \mathbb{R} , a \leq b $\land \dots$	-100.3750	-11.3906
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall K: Set \mathbb{R} , IsCompa complicated	100.1250	-18.5000
$\forall f: \mathbb{R} \to \mathbb{R}, \ \forall \ a \ b: \mathbb{R}, \ a \le b \to \dots$	86.1875	-8.7500
\forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to ContinuousOn f (Set.lcc a b) \to Bdd.above (f " Set.lcc a b) \land Bdd.below (f " Set.lcc a b)	-98.4375	-10.8438

Language model outputs aren't guaranteed to be well-typed

$$P^*(X_{\rm formal}|X_{\rm informal}) \propto P_{\rightarrow}(X_{\rm formal}|X_{\rm informal})P_{\leftarrow}(X_{\rm informal}|X_{\rm formal})\mathbf{1}_{\rm well-typed}\mathbf{1}_{\rm plausible}$$

Well-typed check

- \forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to ...
- \forall f: $\mathbb{R} \to \mathbb{R}$, ContinuousOn f...
- \forall f: $\mathbb{R} \to \mathbb{R}$, (\exists a b: \mathbb{R} , a \leq b \land ...
- \forall f: $\mathbb{R} \to \mathbb{R}$, \forall K: Set \mathbb{R} , IsCompact...
- \forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to ...
- ∀ f: R→R, ∀ a b: R, a ≤ b →
 ContinuousOn f (Set.Icc a b) →
 Bdd.above (f " Set.Icc a b) ∧
 Bdd.below (f " Set.Icc a b)

The Bdd.above and Bdd.below predicates were hallucinated!

Well-typed check

- \forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to ...
- \forall f: $\mathbb{R} \to \mathbb{R}$, ContinuousOn f...
- \forall f: $\mathbb{R} \to \mathbb{R}$, (\exists a b: \mathbb{R} , a \leq b $\land \dots$
- \forall f: $\mathbb{R} \to \mathbb{R}$, \forall K: Set \mathbb{R} , IsCompact...
- \forall f: $\mathbb{R} \to \mathbb{R}$, \forall a b: \mathbb{R} , a \leq b \to ...
- ∀ f: R → R, ∀ a b: R, a ≤ b →
 ContinuousOn f (Set.Icc a b) →
 Bdd.above (f " Set.Icc a b) ∧
 Bdd.below (f " Set.Icc a b)

P(informal formal)	P(formal informal)
-86.1875	-8.7500
-96.0625	-13.2656
-100.3750	-11.3906
-100.1250	-18.5000
-85.4375	-10.2656
-98.4375	-10.8438

Actually, a lot of things were hallucinated

Plausibility check

$$P^*(X_{\rm formal}|X_{\rm informal}) \propto P_{\rightarrow}(X_{\rm formal}|X_{\rm informal})P_{\leftarrow}(X_{\rm informal}|X_{\rm formal})\mathbf{1}_{\rm well-typed}\mathbf{1}_{\rm plausible}$$

Biases during formalization

- Correct statements are more likely to be what was intended
 - This statement "If *f* is continuous on a closed interval, then it is bounded" is false! but you probably know what I meant, or how to easily salvage the statement to make it correct.
- Statements that are falsifiable via a counterexample are less likely to be what was intended
- Statements that cohere with earlier context are more likely to be what was intended
- Non-trivial statements are more likely to be what was intended
- Statements that match with statements stored in my memory are more likely to be what was intended

Biases during formalization

- What did the author mean here?
 - Can I disambiguate what they meant by coming up with a counterexample?
- "Every positive number has a square root"

 - \circ $\exists y : \mathbb{R}, \forall x : \mathbb{R}, y^2 = x$
- "Well, 1 and 2 are positive real numbers and they have different square roots so the correct formalization is more likely to be the first statement"

Thought experiment operationalizing plausibility bias

```
example (a : Z) : a ≥ 0 := by

plausible

example (a : N) : a ≥ 0 := by

plausible
```

Toy example: Formalize "For all x, $x \ge 0$ "

example (a : ℕ) : a ≥ 0 := by plausible	
example (a : ℤ) : a ≥ 0 := by plausible	×
example : $\forall x : \mathbb{N}, x \ge 0 := by$ plausible	
example : $\forall x : \mathbb{N}, 0 \le x := by$ plausible	

Plausibility as assessed by plausible tactic

Toy example: Formalize the associative law

Subtraction is really monus for

natural numbers

example : \forall (x y z : \mathbb{N}), x + y - z = x + (y - z) := by plausible	×
example : ∀ (x y z : ℤ), x + y - z = x + (y - z) := by plausible	V
example : ∀ (x y z : ℚ), x + y - z = x + (y - z) := by plausible	V
example {x y z : ℤ} : x + y - z = x + (y - z) := by plausible	V

$$P^*(X_{\rm formal}|X_{\rm informal}) \propto P_{\rightarrow}(X_{\rm formal}|X_{\rm informal})P_{\leftarrow}(X_{\rm informal}|X_{\rm formal})\mathbf{1}_{\rm well-typed}\mathbf{1}_{\rm plausible}$$

$$\mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} =$$

 $\times P(X_{\text{formal}}|Y_{\text{surrounding context}})$

 $\times \exp(\mathbf{1}_{\text{provable with hammer}})$

 $\times \mathbf{1}_{\mathrm{nontrivial}}$

Outline

- Introducing autoformalization as inference
- Preliminary experiments and simple case studies
- > This talk

- Useful constraints/signals for autoformalization?
- How systematically combine these ingredients?
- Preliminary experimental results

Thank you!