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Auto-formalization

e Given a (potentially imprecise) informal statement, can you extract the formal
meaning of the statement?
e How can we resolve ambiguity in Lean 47



Types of ambiguity in Lean

Type/Domain Ambiguity Pronoun Ambiguity Quantifier Scope Ambiguity
For all x, there exists y such that If a function has a derivative, .
o : Each f is bounded by some g.
V=X it is continuous.
/-- x and y are natural numbers -/ /== ¢it =refersttolthesfunctiony=/ /-- every f has its own bound g -/

Vx:N, 3y :N, y2 =x V (f : R > R), Differentiable R f - VoF g = p
Continuous f

/-- x and y are complex numbers -/ /-- “it” refers to the derivative -/ /-- one g bounds every f -/
Y C, 4y L, v22 = x V (f : R > R), Differentiable R f - deg, ¥V F, £f=<¢
Continuous (deriv f)




Why auto-formalization?

e Can assess how well machines understand the intents of their users. Better
auto-formalization means better thought partners

e Understanding how humans alternate between precise reasoning and rough
draft type thinking




Defining success for auto-formalization is difficult

e Traditional machine learning approach: compare label to ground truth.

o (for propositions) Any true statement implies any other true statement
o (for predicates) is undecidable

: C — C is a polynomial

~ ||~

: C — C is a polynomial with number of roots equal to its degree.



Defining success for auto-formalization is difficult

e Traditional machine learning approach: compare label to ground truth.

o (for propositions) Any true statement implies any other true statement
o (for predicates) is undecidable

e Despite this, humans still have an intuition for when two statements are
equivalent

: C — C is a polynomial

~ ||~

: C — C is a polynomial with number of roots equal to its degree.



Ambiguity via LM

e How well is a language embedding model at distinguishing between unequal
formalizations?

e LM attempts to formalize statement 50 times

e Embedding model converts statement to vector

e Reduce dimensionality to view in 2 dimensions.



ISOMAP Projection 2

Ambiguity via LLM
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Isomap from Tenenbaum, de Silva, and Langford, Science, 2000



Ambiguity via LLM

e Some structure is preserved!
o Robust to semantic-preserving transformations like reordering hypotheses, renaming
hypotheses
Gives natural clustering boundaries
o Different disambiguations are represented
o Informal statement is embedded roughly between all the formalization attempts



Can we do something more principled?

LLMs are trained using
next-token prediction. Why
should we expect that they
can reason about math?

LMs define conditional
distributions for sequences of
text
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Outline

e |Introducing autoformalization as inference > This talk
e Preliminary experiments and simple case studies

e Useful constraints/signals for autoformalization?
e How systematically combine these ingredients? Next talk
e Preliminary experimental results



Posterior inference

e Generate samples from a target distribution that is often difficult to
compute.

e Forinstance, “the distribution given by sentences in the English language’
conditioned on “all the words must not contain the letter e”.

Space of all continuations

P

Space of Lean statements

.




Can we frame auto-formalization as posterior inference?

e Can we use an LLM as a proposal distribution (which is what it was
designed for) for sampling from a target distribution?
e \What might that target distribution look like?

Space of all continuations
- P

@ |, Space of Lean statements




Auto-formalization as posterior inference

e Proposal: autoformalization by sampling from a distribution that adjusts for
multiple factors

P* (X formal IX informal ) x P — (X formal |X informal ) P — (X informal |X formal) ]-well-typed 1plausible

e \We can sample approximately from this distribution
e See more in next talk to see how this is done in practice!



Auto-formalization as posterior inference

e The first two terms correspond to cycle consistency

P* (Xformal|Xinformal) X P—> (Xformal|Xinformal)P<— (Xinformal|Xformal)]-well—typed]-plausible

o autoformalization: translate an informal math statement to corresponding formal
statement, specifically: English IXTEX - [ 9WVI\|

autoformalize theoren ‘ —
Let D be a compact subset of R and __——— —> (D : SetR) (f . R + R) ol
suppose f : D — R is continuous. h . : hf : : £D) :
Thea D) 5 compact. ‘ (hD : IsCompact D) (hf : ContinuousOn f D) :

: : IsCompact (Set.image f D) := by sorr
autoinformalize pact ( ge f D) := by sorry



Auto-formalization as posterior inference

P* (Xformal|Xinformal) X P—> (Xformal|Xinformal)P<— (Xinformal|Xformal)]-well—typed]-plausible

(S J
Y

e Forward LLM prompt: “Formalize...”

e Reverse LLM prompt: “State this statement in natural language: “
o Evaluate the likelihood of the continuation




Case Study



Example disambiguating with forward and reverse kernels

e “If fis continuous on a closed interval, then it is bounded.”
o  Which definitions do | use?

What is the domain of the interval?

What is the domain of £ ?

What is the quantifier of the interval and of f?

What is the quantifier of the interval?

The statement is False.

e Natural language is underspecified, so these sorts of questions need to be
answered by an autoformalizer

o O O O O



“If fis continuous on a closed interval, then it is bounded”

log P(formal | | log P(informal |
informal) formal)

Vf:R—-R,Vab:R,as<b — ContinuousOn f BEST [ -85.4375 +  -10.2656 ]
(Set.lccab) - 3 M: R,V x € Set.lccab, |[fx|<M




“If fis continuous on a closed interval, then it is bounded”

log P(formal | | log P(informal |

informal) formal)
VIRoR Vab:R, a<b-... BEST -85.4375 -10.2656

-96.0625 -13.2656

V f: R — R, ContinuousOn f (Set.univ) > V ab: R, a

< b — BoundedOn f (Set.lcca b

)

/

/4

Contrived formalization

/




“If fis continuous on a closed interval, then it is bounded”

log P(formal | | log P(informal |
informal) formal)

Vi R—>R, Vab:R,asb-—... BEST -85.4375 -10.2656

V f: R — R, ContinuousOn f (Set.univ) - V ab:R,a |-96.0625 -13.2656

< b — BoundedOn f (Set.lcc a b) /

/7
Reverse direction is saying

something different




“If fis continuous on a closed interval, then it is bounded”

log P(formal | | log P(informal |
informal) formal)
Vi R—>R, Vab:R,asb-—... BEST -85.4375 -10.2656
V f: R — R, ContinuousOn f... -96.0625 -13.2656
VIF:R—R, (3 ab:R,asb A ContinuousOn f -100.3750 -11.3906
(Setdccab)) > 3 ab:R,a<b A BoundedOn f =d
(Set.lcc a b)

Unlikely quantifier



“If fis continuous on a closed interval, then it is bounded”

log P(formal | | log P(informal |
informal) formal)
Vi R—>R, Vab:R,asb-—... BEST -85.4375 -10.2656
V f: R — R, ContinuousOn f... -96.0625 -13.2656
VI:R—>R, (T ab:R,asb A.. -100.3750 -11.3906
VIi:R—> R,V K:SetR, IsCompact ContinuousOn f K | -100.1250 ;8-5000
— BoundedOn f K f e
|~

IsCompact describes
something different




“If fis continuous on a closed interval, then it is bounded”

log P(formal | | log P(informal |
informal) formal)
Vi R—>R, Vab:R,asb-—... -85.4375 -10.2656
V f: R — R, ContinuousOn f... -96.0625 -13.2656
Vf:R—>R (T ab:RasbA.. -100.3750 | -11.3906
Vi:R—-R, VK:SetR, IsCompact... -100.1250 -18.5000
Vf:R—R,Vab:R,asb— ContinuousOnf BEST |-86.1875 87500 |

(Set.lcc a b) — BoundedOn f (Set.lcc a b)




“If fis continuous on a closed interval, then it is bounded”

log P(formal | | log P(informal |
informal) formal)
VIf:R—-R,Vab:R,asb— ContinuousOn f -85.4375 -10.2656
(Set.lccab) - 3 M: R,V x € Set.lccab, |[fx|<M
Vv f: R — R, ContinuousOn f... 96.0625 / 13.2656
Vi R—R (Jab:RasbA.. -100.3750 / 113906
VfR-R, VK:SetR, IsCompact... 100.1250 / 18,5000
BEST -8.7500

VIF:R—-R,Vab:R,asb— ContinuousOn f
(Set.lcc a b) — BoundedOn f (Set.lcc a b)

-86.1875 /

Informalization would likely spell out the bound M.




“If fis continuous on a closed interval, then it is bounded”

log P(formal | | log P(informal |
informal) formal)
VIRoR Vab:R, a<b-... -85.4375 -10.2656
V f: R — R, ContinuousOn f... -96.0625 -13.2656
VI:R—>R, (T ab:R,asb A.. -100.3750 -11.3906
Vf:R—R V K:SetR, IsComps Forward direction overly .100.1250 -18.5000
complicated
VIR->R, Vab:R,asb—... \ -86.1875 -8.7500
-98.4375 -10.8438

VI:R—>R, Vab:[R,asb — ContinuousOn f (Set.lcc
a b) — Bdd.above (f " Set.lcc ab) A Bdd.below (f "
Set.lcc a b)




Auformalization as posterior inference

e Language model outputs aren’t guaranteed to be well-typed

P (Xformal|Xinformal) X P—) (Xformal|Xinformal)P<— (Xinformal|Xformal)1well—typed 1p1ausible



Well-typed check

VIf:R—->R, Vab:R, asb-—...

VvV f: R — R, ContinuousOn f...

Vf:R-R,(Fab:R,asbA...

VIi:R->R, V K:SetRR,
IsCompact...

Vf:R->R, Vab:R, asb-—...

VI:R—>R, Vab:R,asb—
ContinuousOn f (Set.lcc ab) —
Bdd.above (f " Set.lcc ab) A
Bdd.below (f " Set.lcc a b)

The Bdd.above and Bdd.below
predicates were hallucinated!



Well-typed check

VIf:R—->R, Vab:R, asb-—...
VvV f: R — R, ContinuousOn f...
Vf:R-R, (3 ab:R,asbA...
VIi:R-R, V K:SetRR,
IsCompact...

Vf:R->R, Vab:R, asb-—...
Vf:R—-R, Vab:R, asb—
ContinuousOn f (Set.lcca b) —
Bdd.above (f " Set.lcc a b) A
Bdd.below (f " Set.Icc a b)

P(informal | formal)

P(formal | informal)

-86.1875 -8.7500

-06-6625 132656
-1+66-3+56 -+-3566
-166-4256 -18-5606
-8643+5 -1+6-2656
-384375 -16-8438

Actually, a lot of things were

hallucinated




Plausibility check

P* (Xformal |Xinformal) X P—) (Xformal |Xinformal)P<— (Xinformal |Xformal)1well-typed ]-plausible



Biases during formalization

Correct statements are more likely to be what was intended

o This statement “If fis continuous on a closed interval, then it is bounded” is false! but you
probably know what | meant, or how to easily salvage the statement to make it correct.

Statements that are falsifiable via a counterexample are less likely to be
what was intended

Statements that cohere with earlier context are more likely to be what was
intended

Non-trivial statements are more likely to be what was intended

Statements that match with statements stored in my memory are more likely
to be what was intended



Biases during formalization

e \What did the author mean here?
o Can | disambiguate what they meant by coming
up with a counterexample?

e “Every positive number has a square root”
o VX:R, AYy:R,y*2=x
o JAYy:R VX:IR, y*2=x
e “Well, 1 and 2 are positive real numbers
and they have different square roots so the
correct formalization is more likely to be the

first statement”




Thought experiment operationalizing plausibility bias

example (a : Z) : a = 0 := by SR )
| plausible ; ——
v test.lean:5:2
Found a counter-example!
a = -1
issue: @ = -1 does not hold
(0 shrinks)
example (a : N) : a =0 := by _H ¥ Messages (1)
| plausible ¥ test.lean:5:2

Unable to find a counter-example

» All Messages (2)



Toy example: Formalize “For all x, x 2 0"

example (a: N):a =0 :=by
plausible

example (a:Z):a 20 :=by
plausible

example : V x: N, x =0 :=by
plausible

example : V x: N, 0 <x:=by
plausible

N N X N

W_/

Plausibility as assessed by
plausible tactic



Toy example: Formalize the associative law
Subtraction is really monus for

natural numbers.
example: V (xyz:N),x+y-z=x+(y-2z):=by ) ¢
plausible

example: V (xyz:Z),x+y-z=x+(y-2z):=by
plausible

4
example: V (xyz:Q),x+y-z=x+(y-2z):=by _]
plausible

4

example{xyz:Z}:x+y-z=x+(y-2z):=by
plausible



Auto-formalization as posterior inference

P* (Xformal|Xinformal) X P—> (Xforma1|Xinformal)P<— (Xinformal|Xforma1)1well-typed ]-plausible

X eXp(lprovable with hammer)

X 1nontrivial

X P(Xformal |Ysurrounding context)



Outline

e |Introducing autoformalization as inference > This talk
e Preliminary experiments and simple case studies

e Useful constraints/signals for autoformalization?
e How systematically combine these ingredients? Next talk
e Preliminary experimental results



Thank you!



