
Mauricio Barba da Costa, Katherine Collins, Fabian Zaiser, Romir Patel, Alexander K. Lew, 
Vikash Mansinghka, Timothy O’Donnell, Joshua Tenenbaum, and Cameron Freer

Disambiguating natural 
language with probabilistic 

inference



Auto-formalization

● Given a (potentially imprecise) informal statement, can you extract the formal 
meaning of the statement?

● How can we resolve ambiguity in Lean 4?



Types of ambiguity in Lean



Why auto-formalization?

● Can assess how well machines understand the intents of their users. Better 
auto-formalization means better thought partners

● Understanding how humans alternate between precise reasoning and rough 
draft type thinking



Defining success for auto-formalization is difficult

● Traditional machine learning approach: compare label to ground truth. 
○ (for propositions) Any true statement implies any other true statement
○ (for predicates) is undecidable



Defining success for auto-formalization is difficult

● Traditional machine learning approach: compare label to ground truth. 
○ (for propositions) Any true statement implies any other true statement
○ (for predicates) is undecidable

● Despite this, humans still have an intuition for when two statements are 
equivalent



Ambiguity via LM

● How well is a language embedding model at distinguishing between unequal 
formalizations?

● LM attempts to formalize statement 50 times
● Embedding model converts statement to vector
● Reduce dimensionality to view in 2 dimensions.



Ambiguity via LLM

Isomap from Tenenbaum, de Silva, and Langford, Science, 2000

“For all x, there exists y such that y^2 = x” “For any x, 0 <= x^2”

x : ℝ

x : ℂ

x : ℕ

x : ℤ

x : ℝ



Ambiguity via LLM

● Some structure is preserved!
○ Robust to semantic-preserving transformations like reordering hypotheses, renaming 

hypotheses
○ Gives natural clustering boundaries
○ Different disambiguations are represented
○ Informal statement is embedded roughly between all the formalization attempts



Can we do something more principled?

● LLMs are trained using 
next-token prediction. Why 
should we expect that they 
can reason about math?

● LMs define conditional 
distributions for sequences of 
text



Outline

● Introducing autoformalization as inference
● Preliminary experiments and simple case studies

● Useful constraints/signals for autoformalization?
● How systematically combine these ingredients?
● Preliminary experimental results

This talk

Next talk



Posterior inference

● Generate samples from a target distribution that is often difficult to 
compute.

● For instance, “the distribution given by sentences in the English language” 
conditioned on “all the words must not contain the letter e”.

Space of all continuations

Space of Lean statements



● Can we use an LLM as a proposal distribution (which is what it was 
designed for) for sampling from a target distribution?

● What might that target distribution look like?

Can we frame auto-formalization as posterior inference?

Space of all continuations

Space of Lean statements



Auto-formalization as posterior inference

● Proposal: autoformalization by sampling from a distribution that adjusts for 
multiple factors

● We can sample approximately from this distribution
● See more in next talk to see how this is done in practice!



Auto-formalization as posterior inference

● The first two terms correspond to cycle consistency



Auto-formalization as posterior inference

● Forward LLM prompt: “Formalize…”
● Reverse LLM prompt: “State this statement in natural language: “

○ Evaluate the likelihood of the continuation



Case Study



Example disambiguating with forward and reverse kernels

● “If f is continuous on a closed interval, then it is bounded.”
○ Which definitions do I use?
○ What is the domain of the interval? 
○ What is the domain of f ?
○ What is the quantifier of the interval and of f ?
○ What is the quantifier of the interval?
○ The statement is False.

● Natural language is underspecified, so these sorts of questions need to be 
answered by an autoformalizer



“If f is continuous on a closed interval, then it is bounded”
log P(formal | 
informal)

log P(informal | 
formal)

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b → ContinuousOn f 
(Set.Icc a b) → ∃ M : ℝ, ∀ x ∈ Set.Icc a b, |f x| ≤ M

-85.4375 -10.2656BEST +



“If f is continuous on a closed interval, then it is bounded”
log P(formal | 
informal)

log P(informal | 
formal)

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →… -85.4375 -10.2656

∀ f : ℝ → ℝ, ContinuousOn f (Set.univ) → ∀ a b : ℝ, a 
≤ b → BoundedOn f (Set.Icc a b)

-96.0625 -13.2656

BEST

Contrived formalization



“If f is continuous on a closed interval, then it is bounded”
log P(formal | 
informal)

log P(informal | 
formal)

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →… -85.4375 -10.2656

∀ f : ℝ → ℝ, ContinuousOn f (Set.univ) → ∀ a b : ℝ, a 
≤ b → BoundedOn f (Set.Icc a b)

-96.0625 -13.2656

BEST

Reverse direction is saying 
something different



“If f is continuous on a closed interval, then it is bounded”
log P(formal | 
informal)

log P(informal | 
formal)

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →… -85.4375 -10.2656

∀ f : ℝ → ℝ, ContinuousOn f… -96.0625 -13.2656

∀ f : ℝ → ℝ, (∃ a b : ℝ, a ≤ b ∧ ContinuousOn f 
(Set.Icc a b)) → ∃ a b : ℝ, a ≤ b ∧ BoundedOn f 
(Set.Icc a b)

-100.3750 -11.3906

Unlikely quantifier

BEST



“If f is continuous on a closed interval, then it is bounded”
log P(formal | 
informal)

log P(informal | 
formal)

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →… -85.4375 -10.2656

∀ f : ℝ → ℝ, ContinuousOn f… -96.0625 -13.2656

∀ f : ℝ → ℝ, (∃ a b : ℝ, a ≤ b ∧… -100.3750 -11.3906

∀ f : ℝ → ℝ, ∀ K : Set ℝ, IsCompact ContinuousOn f K 
→ BoundedOn f K

-100.1250 -18.5000

IsCompact describes 
something different

BEST



“If f is continuous on a closed interval, then it is bounded”
log P(formal | 
informal)

log P(informal | 
formal)

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →… -85.4375 -10.2656

∀ f : ℝ → ℝ, ContinuousOn f… -96.0625 -13.2656

∀ f : ℝ → ℝ, (∃ a b : ℝ, a ≤ b ∧… -100.3750 -11.3906

∀ f : ℝ → ℝ, ∀ K : Set ℝ, IsCompact… -100.1250 -18.5000

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b → ContinuousOn f 
(Set.Icc a b) → BoundedOn f (Set.Icc a b)

-86.1875 -8.7500BEST +



“If f is continuous on a closed interval, then it is bounded”
log P(formal | 
informal)

log P(informal | 
formal)

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b → ContinuousOn f 
(Set.Icc a b) → ∃ M : ℝ, ∀ x ∈ Set.Icc a b, |f x| ≤ M

-85.4375 -10.2656

∀ f : ℝ → ℝ, ContinuousOn f… -96.0625 -13.2656

∀ f : ℝ → ℝ, (∃ a b : ℝ, a ≤ b ∧… -100.3750 -11.3906

∀ f : ℝ → ℝ, ∀ K : Set ℝ, IsCompact… -100.1250 -18.5000

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b → ContinuousOn f 
(Set.Icc a b) → BoundedOn f (Set.Icc a b)

-86.1875 -8.7500BEST

Informalization would likely spell out the bound M.



“If f is continuous on a closed interval, then it is bounded”
log P(formal | 
informal)

log P(informal | 
formal)

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →… -85.4375 -10.2656

∀ f : ℝ → ℝ, ContinuousOn f… -96.0625 -13.2656

∀ f : ℝ → ℝ, (∃ a b : ℝ, a ≤ b ∧… -100.3750 -11.3906

∀ f : ℝ → ℝ, ∀ K : Set ℝ, IsCompact… -100.1250 -18.5000

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →… -86.1875 -8.7500

∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b → ContinuousOn f (Set.Icc 
a b) → Bdd.above (f '' Set.Icc a b) ∧ Bdd.below (f '' 
Set.Icc a b)

-98.4375 -10.8438

Forward direction overly 
complicated



Auformalization as posterior inference

● Language model outputs aren’t guaranteed to be well-typed



Well-typed check

● ∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →…
● ∀ f : ℝ → ℝ, ContinuousOn f…
● ∀ f : ℝ → ℝ, (∃ a b : ℝ, a ≤ b ∧…
● ∀ f : ℝ → ℝ, ∀ K : Set ℝ, 

IsCompact…
● ∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →…
● ∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b → 

ContinuousOn f (Set.Icc a b) → 
Bdd.above (f '' Set.Icc a b) ∧ 
Bdd.below (f '' Set.Icc a b)

The Bdd.above and Bdd.below 
predicates were hallucinated!



Well-typed check

● ∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →…
● ∀ f : ℝ → ℝ, ContinuousOn f…
● ∀ f : ℝ → ℝ, (∃ a b : ℝ, a ≤ b ∧…
● ∀ f : ℝ → ℝ, ∀ K : Set ℝ, 

IsCompact…
● ∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b →…
● ∀ f : ℝ → ℝ, ∀ a b : ℝ, a ≤ b → 

ContinuousOn f (Set.Icc a b) → 
Bdd.above (f '' Set.Icc a b) ∧ 
Bdd.below (f '' Set.Icc a b)

P(informal | formal) P(formal | informal)

-86.1875 -8.7500

-96.0625 -13.2656

-100.3750 -11.3906

-100.1250 -18.5000

-85.4375 -10.2656

-98.4375 -10.8438

Actually, a lot of things were 
hallucinated



Plausibility check



Biases during formalization

● Correct statements are more likely to be what was intended
○ This statement “If f is continuous on a closed interval, then it is bounded” is false! but you 

probably know what I meant, or how to easily salvage the statement to make it correct.
● Statements that are falsifiable via a counterexample are less likely to be 

what was intended
● Statements that cohere with earlier context are more likely to be what was 

intended
● Non-trivial statements are more likely to be what was intended
● Statements that match with statements stored in my memory are more likely 

to be what was intended



Biases during formalization

● What did the author mean here? 
○ Can I disambiguate what they meant by coming 

up with a counterexample? 
● “Every positive number has a square root”

○ ∀ x : ℝ, ∃ y : ℝ, y^2 = x
○ ∃ y : ℝ, ∀ x : ℝ, y^2 = x

● “Well, 1 and 2 are positive real numbers 
and they have different square roots so the 
correct formalization is more likely to be the 
first statement”



Thought experiment operationalizing plausibility bias 



Toy example: Formalize “For all x, x ≥ 0”

example (a : ℕ) : a ≥ 0 := by
  plausible

✅

example (a : ℤ) : a ≥ 0 := by
  plausible

❌

example : ∀ x : ℕ, x ≥ 0 := by
  plausible

✅

example : ∀ x : ℕ, 0 ≤ x := by
  plausible

✅

Plausibility as assessed by 
plausible tactic



Toy example: Formalize the associative law

example : ∀ (x y z : ℕ), x + y - z = x + (y - z) := by
    plausible

❌

example : ∀ (x y z : ℤ), x + y - z = x + (y - z) := by
    plausible

✅

example : ∀ (x y z : ℚ), x + y - z = x + (y - z) := by
    plausible

✅

example {x y z : ℤ} : x + y - z = x + (y - z) := by
    plausible

✅

Subtraction is really monus for 
natural numbers. 



Auto-formalization as posterior inference



Outline

● Introducing autoformalization as inference
● Preliminary experiments and simple case studies

● Useful constraints/signals for autoformalization?
● How systematically combine these ingredients?
● Preliminary experimental results

This talk

Next talk



Thank you!


