
Natural Logic:
Proof Systems for Reasoning in Natural Language

Larry Moss
Indiana University

EuroProofNet
September 18, 2025

1/41

Natural logic: what it’s all about

Program

Show that significant parts of what people
when they carry out “inference” in natural language
can be done automatically, using surface forms as much as possible.

To re-work logic in light of computational semantics.

The logical systems that one obtains in this way, should all be
decidable, in contrast to standard systems of logic.

To be completely mathematical and hence to work using all tools
and to make connections to fields like
complexity theory, (finite) model theory,
decidable fragments of first-order logic, algebraic logic.
and proof theory,

2/41

Today’s talk

▶ Extended syllogistic logics

▶ Monotonicity calculi

▶ How does it all work in practice?

3/41

The Map

Ari
sto

tle

Ch
urc

h-T
uri
ng

Peano-Frege

S

A

S†

S≥ S≥ adds |p| ≥ |q|
R

R∗

R∗(tr)

R∗(tr , opp)
R†

R†∗

R†∗(tr)

R†∗(tr , opp)

FOL

FO2 + trans

FO2

first-order logic

FO2 + “R is trans”

2 variable FO logic

† adds full N-negation

R + relative clauses

R = relational syllogistic

R∗ + (transitive)

comparative adjs

R∗(tr) + opposites

S + full N-negation

S: all/some/no p are q

A: all p are q

4/41

The simplest logic “of all”

Syntax: Start with a collection of nouns.
Then the sentences are the expressions

All p are q

Semantics: A model M is a set M,
together with an interpretation [[p]] ⊆ M for each noun p.

M |= All p are q iff [[p]] ⊆ [[q]]

5/41

The semantics is trivial, as it should be
Even so, there is an issue with existential import

Let M = {1, 2, 3, 4, 5, 6, 7, 8}.
Let [[a]] = {1, 2, 3, 4, 5, 6}.
Let [[x]] = {1, 4}.
Let [[y]] = {2, 4}.

1 47

8

2

3

5

6

M |= All x are a
M ̸|= All a are x
M ̸|= All y are x
M |= All y are a
M |= All a are a

6/41

Semantic and proof-theoretic notions

If Γ is a set of sentences, we write M |= Γ if for all φ ∈ Γ, M |= φ.

Γ |= φ means that every M |= Γ also has M |= φ.

All of this is semantic.

7/41

Proof system

The rules are

All p are p

All p are n All n are q

All p are q

A proof tree over Γ is a finite tree T
whose nodes are labeled with sentences,
and each node is either an element of Γ,
or comes from its parent(s) by an application of one of the rules.

Γ ⊢ φ means that there is a proof tree T for over Γ
whose root is labeled φ.

8/41

Example

Let Γ be the set

{All a are b,All q are a,All b are d ,All c are d ,All a are q}

Let φ be All q are d .

Here is a proof tree showing that Γ ⊢ φ:

All q are a
All a are b All b are d

All a are d
barbara

All q are d
barbara

9/41

The simplest completeness theorem in logic
If Γ |= All p are q, then Γ ⊢ All p are q

Suppose that Γ |= All p are q.

Build a model M, taking M to be the set of variables.

Define u ≤ v to mean that Γ ⊢ All u are v.
The semantics is [[u]] =↓u.
Then M |= Γ.
Hence for the p and q in our statement, [[p]] ⊆ [[q]].

But by reflexivity, p ∈ [[p]].
And so p ∈ [[q]]; this means that p ≤ q.

But this is exactly what we want:
Γ ⊢ All p are q.

10/41

Syllogistic Logic of All and Some

Syntax: All p are q, Some p are q

Semantics: A model M is a set M,
and for each noun p we have an interpretation [[p]] ⊆ M.

M |= All p are q iff [[p]] ⊆ [[q]]
M |= Some p are q iff [[p]] ∩ [[q]] ̸= ∅

Proof system:

All p are p

All p are n All n are q

All p are q

Some p are q

Some q are p

Some p are q

Some p are p

All q are n Some p are q

Some p are n

11/41

Example
If there is an n, and if all n are p and also q, then some p are q.

Some n are n, All n are p, All n are q ⊢ Some p are q.

The proof tree is

All n are q

All n are p Some n are n

Some n are p

Some p are n

Some p are q

12/41

The languages S and S† add noun-level negation

Let us add complemented atoms p on top of
the language of All and Some,
with interpretation via set complement: [[p]] = M \ [[p]].

So we have

S


All p are q
Some p are q
All p are q ≡ No p are q
Some p are q ≡ Some p aren’t q

Some non-p are non-q


S†

13/41

The logical system for S†

All p are p

Some p are q

Some p are p

Some p are q

Some q are p

All p are n All n are q

All p are q

All n are p Some n are q

Some p are q

All q are q

All q are p
Zero

All q are q

All p are q
One

All p are q

All q are p
Antitone Some p are p

φ Ex falso quodlibet

14/41

A fine point on the logic

The system uses

Some p are p
φ Ex falso quodlibet

and this is prima facie weaker than reductio ad absurdum.

One of the logical issues in this work is to determine exactly where
various principles are needed.

15/41

Inference with relative clauses

What do you think about this one?

All skunks are mammals
All who fear all who respect all skunks fear all who respect all mammals

16/41

Inference with relative clauses

It follows, using an interesting antitonicity principle:

All skunks are mammals
All who respect all mammals respect all skunks

16/41

All + Verbs + Relative Clauses

We start with two sets:

▶ a set of nouns.

▶ a set of verbs.

We make terms as follows:

▶ If x is a noun, then x is a term.

▶ If r is verb and x is a term, then r all x is a term.

We make sentences as follows:

▶ If x and y are terms, then

All x y

is a sentence.

17/41

Examples

Let’s say

▶ P = {dogs, cats, birds, ants, . . . }
▶ R = {see, like, hate, fear, respect, . . . }

Here are some terms of A(RC):

▶ dogs

▶ see all dogs

▶ respect all (see all dogs)

▶ love all (respect all (see all dogs))

Note that there are infinitely many terms, and terms may occur in
terms.

18/41

Examples

Let’s say

▶ P = {dogs, cats, birds, ants, . . . }
▶ R = {see, like, hate, fear, respect, . . . }

Here are some terms of A(RC):

▶ dogs

▶ see all dogs

▶ respect all (see all dogs)
read as respect all who see all dogs

▶ love all (respect all (see all dogs))
read as love all who respect all who see all dogs

Note that there are infinitely many terms, and terms may occur in
terms.
We read these in English using relative clauses.

18/41

Logic

We make proof trees using the following rules

All x x
Axiom

All x y All y z

All x z
Barbara

All y x

All (r all x) (r all y)
Anti

Note that we are using this with x , y , and z as terms, not only as
unary variables.

19/41

Example

All skunks mammals
All (love all mammals) (love all skunks)

anti

All (hate all (love all skunks)) (hate all (love all mammals))
anti

20/41

The Map

Ari
sto

tle

Ch
urc

h-T
uri
ng

Peano-Frege

S

A

S†

S≥ S≥ adds |p| ≥ |q|
R

R∗

R∗(tr)

R∗(tr , opp)
R†

R†∗

R†∗(tr)

R†∗(tr , opp)

FOL

FO2 + trans

FO2

first-order logic

FO2 + “R is trans”

2 variable FO logic

† adds full N-negation

R + relative clauses

R = relational syllogistic

R∗ + (transitive)

comparative adjs

R∗(tr) + opposites

S + full N-negation

S: all/some/no p are q

A: all p are q

21/41

Logic beyond the Aristotle boundary

R† and R†∗ lie beyond the Aristotle boundary,
due to full negation on nouns.

It is possible to formulate a logical system with
a restricted notion of variables,
prove completeness,
and yet stay inside the Turing boundary.

It’s a fairly involved definition, so I’ve hidden the details
to slides after the end of the talk.

Instead, I’ll show examples.

22/41

Example of a proof in the system
From all keys are old items,

infer everyone who owns a key owns an old item

[∃(key , own)(x)]2
[own(x , y)]1

[key(y)]1 ∀(key , old–item)

old–item(y)
∀E

∃(old–item, own)(x)
∃I

∃(old–item, own)(x)
∃E 1

∀(∃(key , own),∃(old–item, own))
∀I 2

23/41

Example of a proof in the system
From all keys are old items,

infer everyone who owns a key owns an old item

1 ∀(key , old–item) hyp

2 ∃(key , own)(x) hyp

3 key(y) ∃E , 2

4 own(x , y) ∃E , 2

5 old–item(y) ∀E , 1, 3

6 ∃(old–item, own)(x) ∃I , 4, 5

7 ∀(∃(key , own),∃(old–item, own)) ∀I , 1–6

23/41

Frederic Fitch, 1973
Natural deduction rules for English, Phil. Studies, 24:2, 89–104.

1 John is a man Hyp

2 Any woman is a mystery to any man Hyp

3 Jane Jane is a woman Hyp

4 Any woman is a mystery to any man R, 2

5 Jane is a mystery to any man Any Elim, 4

6 John is a man R, 1

7 Jane is a mystery to John Any Elim, 6

8 Any woman is a mystery to John Any intro, 3, 7

24/41

Review

Ari
sto

tle

Ch
urc

h-T
uri
ng

Peano-Frege

S

S†

S≥ S≥ adds |p| ≥ |q|
R

R∗

R∗(tr)

R∗(tr , opp)
R†

R†∗

R†∗(tr)

R†∗(tr , opp)

FOL

FO2 + trans

FO2

first-order logic

FO2 + “R is trans”

2 variable FO logic

† adds full N-negation

R + relative clauses

R = relational syllogistic

R∗ + (transitive)

comparative adjs

R∗(tr) + opposites

S + full N-negation

S: all/some/no p are q

25/41

Complexity
(mostly) best possible results on the validity problem

Ari
sto

tle

Ch
urc

h-T
uri
ng

S

S†

BML(tr)
EXPTIME

Lutz & Sattler 2001

in co-NEXPTIME

R

R∗

R∗(tr)

R∗(tr , opp)
R†

R†∗

R†∗(tr)

R†∗(tr , opp)

FOL

FO2 + trans

FO2

undecidable

Church 1936
Grädel, Otto, Rosen 1999

Co-NEXPTIME
Grädel, Kolaitis, Vardi ’97

EXPTIME

Pratt-Hartmann 2004

Co-NP

McAllester & Givan 1992

lower bounds also open

NLOGSPACE

26/41

Other work that I’m not talking about today

▶ A lot more on relational syllogistic logics,
including connections to some modal logics
(with Alex Kruckman).

▶ Logic for reasoning about the sizes of sets,

mostY are X
mostX are Y

?
mostX are X

?
allX are Y

mostX are Y
?

mostX are Y mostY are Z
mostX are Z

?
mostX are Y allY are Z

mostX are Z
?

(with Tri Lai, Joerg Endrullis, Paul Pedersen, and others)

▶ Logics for definite descriptions and names,
including connections to free logic.

▶ Logics in the natural logic area that do have ⊓ and ⊔,
including connections to description logics,
and to lattice theory.
(with Antonio Badia, just completed)

27/41

3 minute video on monotonicity

This is an entry for a United States
National Science Foundation contest
on mathematics outreach for the general public.

28/41

https://youtu.be/-zBPHuBGZAE
https://youtu.be/-zBPHuBGZAE

Rules of CCG

general rules of CCG (a few missing)

Y X\Y
X

<
X/Y Y

X
>

Y
X/(X\Y)

t

X
Y \(Y /X)

t
X/Y Y /Z

X/Z
b

Y \Z X\Y
X\Z

b

A tiny lexicon

word category

every np/n
cat n
that (n\n)/(s/np)

word category

Fido np
chased (s\np)/np
ran s\np

every : np/n

cat : n

that : (n\n)/(s/np)

F : np
F : s/(s\np)

t
ch : (s\np)/np

Fido chased : s/np
b

that Fido chased : n\n
>

cat that Fido chased : n
<

every cat that Fido chased : np
>

ran : s\np
every cat that Fido chased ran : s

<

29/41

Example

The syntax tree is given to us by a CCG parser:

every : np/n

cat : n

that : (n\n)/(s/np)

F : np
F : s/(s\np)

t
ch : (s\np)/np

Fido chased : s/np
b

that Fido chased : n\n
>

cat that Fido chased : n
<

every cat that Fido chased : np
>

ran : s\np
every cat that Fido chased ran : s

<

This tree has a semantics which is suggested below:

every : n → np
cat : n

that : (np → s) → (n → n)

F : np
F : (np → s) → s

t
ch : np → (np → s)

Fido ch : np → s
b

that Fido chased : n → n
>

cat that Fido chased : n
<

every cat that Fido chased : np
>

ran : np → s

every cat that Fido chased ran : s
<

30/41

“The structure of every sentence
is a lesson in logic.”

John Stuart Mill (1867)

Saving on notation by writing W for np+
+→ t:

every↑ : n
−→ np+

cat↓ : n

that↓ : W
+→ (n

+→ n)

F↓ : e

F↓ : np+
j

F↓ : W
+→ t

t ch↓ : e
+→ W

ch↓ : np+
+→ W

j

Fido ch↓ : W
b

that Fido chased↓ : n
+→ n

>

cat that Fido chased↓ : n
<

every cat that Fido chased↑ : np+
>

ran↑ : e
+→ t

ran↑ : W
j

every cat that Fido chased ran↑ : t
<

The arrows could be determined just by parsing from our rules,
but since we want to use the parse given to us by a parser,
we aim for an algorithm that polarizes an upolarized CCG tree.

I am omitting discussion of our actual algorithm.
You could take it to be constraint satisfaction,
but it’s possible to be much more direct.

31/41

Dowty’s armadillos

F↑ : e

ch= : e
+→ pr

ch= : np
+→ pr

k

ch↑ : np
+→ pr

w

....
some cat↑ : np+

some cat↑ : np
m

and : np
+→ (np

+→ np)

....
no arm↓ : np−

no arm↓ : np
m

and no arm : np
+→ np

>

some cat and no armadillo↑ : np
<

chased some cat and no armadillo↑ : pr
>

Fido chased some cat and no armadillo↑ : t
<

We use (m) twice in order conjoin some cat and no armadillo.

32/41

Semantic rules again, with hints about what they mean

Rules

ud : x
m→ y vmd : x

(uv)d : y
>

umd : x

(tu)d : (x
m→ y)

+→ y
t

umd : x
n→ y vmd : y

n→ z

(buv)d : (x
mn−→ z)

b

umd : e → b

(rmu)
d : npm

+→ b
k

ud : x
m→ y

ud : x
·→ y

m
u= : x

m→ y

ud : x
m→ y

w

The > in the application rule is function application.

The t in the type-raising rule is the Montague lift.

The b in the type-raising rule is function composition, backwards.

The rm in the K rule is from our refinement of the Justification Theorem.

In the m rule, we have a trivial inclusion.

The w rule is trivial.

33/41

What our polarized trees mean,
on a semantic level

Example (a polarized syntax tree)

some↑ : pr
+→ np+ dog↑ : pr

some dog↑ : pr
+→ t

>

chased↓ : e
+→ pr

chased↑ : np−
+→ pr

k no↑ : pr
−→ np− cat↓ : pr

no cat↑ : np−
>

chased no cat↑ : pr
>

some dog chased no cat↑ : t
>

Example (Abstract the words and move from syntax to semantics)

v↑ : pr
+→ np+ w↑ : pr

vw↑ : pr
+→ t

>

x↓ : e
+→ pr

r−x
↑ : np−

+→ pr
k y↑ : pr

−→ np− z↓ : pr

yz↑ : np−
>

(r−x)(yz)
↑ : pr

>

τ = (vw)((r−x)(yz))
↑ : t

>

Note that the semantic term τ on the bottom is a combinator term.

The polarity arrows on the leaves mean that in every model,

[[τ]] : P
pr

+→np+
× Ppr × (P

e
+→pr

)op × P
pr

−→np−
× (Ppr)

op +→ Pt

34/41

Monotonicity + Natural Logic at work:
the FRaCaS dataset

entail, contradict or neural?

P: A schoolgirl with a black bag is on a crowded train
H: No schoolgirl is on a crowded train

entail, contradict or neural?

P: A schoolgirl with a black bag is on a crowded train
H: A girl is on a train

35/41

How the algorithm works, roughly

P: A↑ schoolgirl↑ with↑ a↑ black↑ bag↑

is↑ on↑ a↑ crowded↑ train↑

A↑ girl↑ with↑ a↑ black↑ bag↑

is↑ on↑ a↑ crowded↑ train↑

A girl
is on a crowded train

A girl is on a train

A↑ schoolgirl↑ with↑ a↑ bag↑

is↑ on↑ a↑ crowded↑ train↑

......

A↑ schoolgirl↑ is↑

on↑ a↑ crowded↑ train↑

......

No schoolgirl is

on a crowded train

A schoolgirl with a bag

is not on a crowded train

...

co
nt
ra
di
ct
ion

co
nt
ra
di
ct
ion

co
nt
ra
di
ct
ion

36/41

How arrow tagging fits in to
our natural logic inference (NLI) system MonaLog

polarized parses

inference engine
(MonaLog)

knowledge base:
inequalities

(e.g., WordNet)

natural logic rules:
e.g., monotonicity,
conservativity,
modifier rules

CCG parses

premises, possible conclusion
in natural language

output:
inference, contradiction, or neutral

syntactic
variation
help

CCG parser

ccg2mono (Hu & LM’18)

37/41

Results on the SICK dataset

system P R acc.

majority baseline – – 56.36

Natural-logic-based: MonaLog‡

MonaLog + pass2act 89.42 72.18 80.25†

MonaLog + ∃ transformation 89.43 71.53 79.11†

MonaLog + all rewrite help 83.75 70.66 77.19
MonaLog + all rewrite help 89.91 74.23 81.66†

Hybrid: MonaLog + BERT 83.09 85.46 85.38
Hybrid: MonaLog + BERT 85.65 87.33 85.95†

ML/DL-based systems

BERT (base, uncased) 86.81 85.37 86.74
BERT (base, uncased) 84.62 84.27 85.00†

Yin & Schütze’17 – – 87.1
Beltagy et al ’16 – – 85.1

Other logic-based systems

Bjerva et al ’14 93.6 60.6 81.6
Abzianidze’17 97.95 58.11 81.35

Mart́ınez-Gomez et al ’17 97.04 63.64 83.13
Yanaka et al ’18 84.2 77.3 84.3

† = running on a corrected version of the SICK dataset.
‡ = P / R for MonaLog averaged across three labels.

38/41

Using a different parsing system

Two talented undergraduate students

Zeming Chen and Qiyue Gao

built a polarity-tagging system using universal dependency parses
rather than CCG parses.

+ More people can use it.

+ It performs better than ccg2Mono,
partly because the parses are better,
and partly because ccg2Mono misses some arrows,
such as on attitude verbs: John refused to dance↓.

− This form of grammar doesn’t have
a connection to formal semantics,
so one can’t really prove soundness results
the way we can with ccg2Mono.

39/41

Using a different parsing system

Two talented undergraduate students

Zeming Chen and Qiyue Gao

built a polarity-tagging system using universal dependency parses
rather than CCG parses.

It’s called Udep2mono and you can get it at
https://github.com/eric11eca/Udep2Mono.

39/41

https://github.com/eric11eca/Udep2Mono

A hybrid system: NeuralLog

polarized parses

inference engine
(NeuralLog)

common sense
datasets

specialized
controller

Dep. parses

premises, possible conclusion
in natural language

output:
inference, contradiction, or neutral

ALBERT
helps
with
para-
phrase

universal dependency parser

Udep2mono (Chen & Gao’21)

40/41

What my collaborators and I have been doing

Thanks to

Hai Hu, Thomas Icard, Kyle Richardson, Zeming Chen, Qiyue Gao
Valeria de Paiva, Katerina Kalouli

▶ We extended monotonicity from vanilla CG to CCG.
▶ We have an order-enriched version of the typed lambda

calculus.
▶ We have a running system that can polarize input sentences.
▶ We built MonaLog and NeuralLog to solve a large NLI dataset.
▶ The output of these systems is“correct by construction” unlike

what you find with ChatGPT.
▶ We can generate high-quality sentence pairs, helpful to a ML

model.
▶ We have hybridized logic and machine learning and currently

have the
currently-best system for inference on the SICK dataset.

▶ We have re-annotated SICK by hand and have a deep study of
NLI annotation.

▶ We are looking at mathematics, especially connecting
computational linguistics to mathematical AI

41/41

