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A Mathematico-Linguistic Puzzle
(1) A. x and y are prime.
 B. x is prime.

(2) A. x and y are coprime.
B. # x is coprime.

(3) A. P and Q are countable.
B. P is countable.

(4) A. P and Q are equinumerous.
B. # P is equinumerous.

Why does A entail B in (1) and (3), but not in (2) and (4)?

2



1. Linguistic Phenomena in Question

2. Flexible Boolean Semantics and Problems

3. Winter’s Solution and its Problems

4. A Typing Fix

3



Linguistic Phenomena in Question

X and Y are P

Coordination

2 and 3,
The integers and 
the rationals,
The set X and the 
set Y

Distributivity
Prime, countable

Collectivity
Coprime, 
equinumerous

Definite 
Descriptions

The integers 
The set X 

Selectional
Restrictions

Countable, 
equinumerous

Prime, coprime
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Flexible Boolean Semantics and Problems
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Montague Semantics: Building Meaning from 
Parts

Parsing2 is prime primeʼ(2)Semantic Composition
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Montague Semantics in Action: Types

e t et tt e(et) (et)t … 

Linguistic Expression Type

2 is prime t

2 e

prime et
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Montague Semantics in Action: Composition

S

N VP

V ADJ

2

is prime

is prime

2 is prime

2
2 : e

is prime
primeʼ : et

is prime
primeʼ : et

2 is prime
primeʼ (2) : t

primeʼ (2)
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Boolean Extensions of Montague Semantics 

Sentence Syntactic Category Coordinated Types

2 is prime and 3 is prime Sentence t

2 and 3 are prime Noun Phrase e

2 is prime and even Adjective et

Boolean Semantics:
Domains = Boolean algebras
and = meet  
∧ for t
⋂ for σt

⟦2 is prime and 3 is prime⟧
= ⟦2 is prime⟧t ∧ ⟦3 is prime⟧t
= primeʼ(2) ∧ primeʼ(3) 

⟦2 is prime and even⟧
= ⟦prime and even⟧et ⟦2⟧e
= 2 ∊ ⟦prime and even⟧et
= 2 ∊ primeʼ ⋂ evenʼ
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Boolean Operation on Entities?

Sentence Syntactic Category Coordinated Type

2 and 3 are prime Noun Phrase e

Winter, Y.: Flexibility Principles in Boolean Semantics: The Interpretation of Coordination, Plurality, and Scope in Natural 
Language, chap. Coordination and Collectivity. The MIT Press (02 2002).

Boolean Semantics:
Domains = Boolean algebras
And = meet  
∧ for t
⋂ for σt
??? for e

Me(et)t = λxe { Pet | P(x) }

⟦2 and 3⟧(et)t =  M(2)(et)t ⋂ M(3)(et)t

     = { P | P(2) } ⋂ { Q | Q(3) }
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Flexible Boolean Semantics

⟦2 and 3⟧(et)t = M(2) ⋂ M(3)
     = { P | P(2) } ⋂ { Q | Q(3) }

⟦2 and 3 are prime⟧  = primeʼ ∈ ⟦2 and 3⟧(et)t

  = primeʼ ∈ { P | P(2) } ⋂ { Q | Q(3) }
  = primeʼ(2) ∧ primeʼ(3)
  = ⟦2 is prime⟧t ∧ ⟦3 is prime⟧t

  = ⟦2 is prime and 3 is prime⟧ Flexible!
Partee, B., Rooth, M.: Generalized conjunction and type ambiguity. In: Bäuerle, R., Schwarze, C., von Stechow, A. (eds.) 
Meaning, Use, and Interpretation of Language, pp. 361–383. De Gruyter, Berlin, Boston (1983)

Me(et)t = λxe { Pet | P(x) }
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Sets as Subjects

The integers are countable

the integers 

the integers

integer -s

● ⟦-s⟧
● ⟦the⟧
● ⟦integer⟧  

● ⟦countable⟧
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Plural Forming -s

the integers 

the integers

integer -s

⟦integer⟧et = Z

⟦-s⟧(et)(et)t = λPet λQet(Q ≠ ∅ ∧ Q ⊆ P)

 ⟦integers⟧(et)t= ⟦-s⟧ ⟦integer⟧
      = λQet(Q ≠ ∅ ∧ Q ⊆ Z)

Link, G.: The logical analysis of plurals and mass terms: A lattice-theoretical approach. In: Bäuerle, R., Schwarze, C., von 
Stechow, A. (eds.) Meaning, Use, and Interpretation of Language, pp. 302–323. De Gruyter, Berlin, Boston (1983).

Sharvy, R.: A more general theory of definite descriptions. The Philosophical Review 89(4), 607–624 (1980),
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Plural Definite Article

the integers 

the integers

integer -s

⟦the⟧ ((et)t)et =  λP(et)t (unique largest Aet s.t. P(A))

⟦integers⟧(et)t = λQet(Q ≠ ∅ ∧ Q ⊆ Z)

⟦the integers⟧et = ⟦the⟧ ⟦integers⟧ = Z

⟦the reals⟧et = R

Sharvy, R.: A more general theory of definite descriptions. The Philosophical Review 89(4), 607–624 (1980)
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Sets as Subjects: Revisited

countable : (et)t

countableʼ(Z), countableʼ(Q) True
countableʼ(R) False

⟦the integers are countable⟧
⟦countable⟧(et)t ⟦the integers⟧et
= countableʼ(Z)

⟦the reals are countable⟧
⟦countable⟧(et)t ⟦the reals⟧et
= countableʼ(R)
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Where Conventional Typing Goes Wrong
Both sets and properties have type et 

⟦The integers and the reals⟧
= ⟦the integers⟧et ⋂ ⟦the reals⟧et
= Z ⋂ R
= Z

⟦The integers and the reals are 
countable⟧
= countableʼ(Z)
= ⟦The integers are countable⟧

⟦prime and even⟧
= ⟦prime⟧et ⋂ ⟦even⟧et

● x is prime and even
● x belongs to the intersection of 

prime integers and even 
integers

● x is prime and x is even
● primeʼ(x) ∧ evenʼ(x)
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Winter’s Solution and its Problems
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Winter’s Solution

⟦the⟧ ((et)t)(et)t =  λP(et)t. {unique largest Aet s.t. P(A)}

⟦the integers⟧(et)t   = ⟦the⟧ ⟦integers⟧
     = { Z }

countable : (et)t, ⟦the integers⟧: (et)t 

E (σt)(σt)t  = λAσt λBσt ∃Xσ (A(X) ∧ B(X)) 

Winter, Y.: Flexibility Principles in Boolean Semantics: The Interpretation of Coordination, Plurality, and Scope in Natural 
Language, chap. Coordination and Collectivity. The MIT Press (02 2002).

Partee, B.H.: Noun phrase interpretation and type-shifting principles. In: J. Groenendijk, D. de Jongh, M. Stokhof (eds.) Studies 
in Discourse Representation Theory and the Theory of Generalized Quantifiers, pp. 115–144. De Gruyter, Berlin,
Boston (1986)

⟦the integers are countable⟧
= E(countableʼ)(⟦the integers⟧)
= E(countableʼ)({Z})
= ∃Xet(countable(X) ∧ X ∈ {Z})
= countableʼ(Z)
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Problem with Winter’s Solution

1. E(⟦the integers⟧ ⋂ ⟦the reals⟧)(countableʼ)
= ∃Xet(X ∈ {Z} ∩ {R}) ∧ countableʼ(X))
= ∃Xet(X ∈ ∅) ∧ countableʼ(X))

2. (E⟦the integers⟧) ⋂ (E⟦the reals⟧))(countableʼ)
= countableʼ(Z) ∧ countableʼ(R)

the integers and the reals 

the integers the reals

!
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A Typing Fix
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1. Change the type system by adding a unary constructor S

2. Ensure “the integers” and “the reals” have type S(e) instead of et.

⟦-s⟧ : (et)S(e)t and not     ⟦-s⟧ : (et)(et)t
⟦the⟧ : (S(e)t)S(e) and not     ⟦the⟧ : ((et)t)et

3. Do not define “and” as ⋂ for S(e)

A Typing Fix
Core issue: Sets and properties behave differently when coordinated

e t S(e) et        S(e)t (et)t S(S(e))t … 

Fix:
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4. Extend M
M =  λ xe.{ Pet | P(x) }
Mʼ =λ AS(e).{ PS(e)t | P(A) }

⟦The integers and the reals⟧(S(e)t)t   = Mʼ(⟦the integers⟧) ⋂ Mʼ(⟦the reals⟧)
        = Mʼ(Z) ⋂ Mʼ(R)

        = {PS(e)t | P(Z)} ⋂ {QS(e)t | Q(R)}

⟦The integers and the reals are countable⟧
= ⟦The integers and the reals⟧(S(e)t)t ⟦countable⟧S(e)t
= countableʼ ∈ {PS(e)t | P(Z)} ⋂ {QS(e)t | Q(R)}
= countableʼ(Z) ∧ countableʼ(R)
= ⟦The integers are countable and the reals are countable⟧

Typing Fix and Flexibility for Correct Derivations

Fix:
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Conclusion, Limitations and Future Work
● Flexible Boolean Semantics

● Coordination of sets differs 
from coordination of properties

● Typing fix which distinguishes 
between sets and properties

“The integers and reals are 
countable” is true.

ON IT
Winter, Yoad. Flexibility principles in Boolean semantics: The interpretation 
of coordination, plurality, and scope in natural language. MIT press, 2002.

Dowty, David. "Collective predicates, distributive predicates, and all." 
Proceedings of the 3rd ESCOL. Ohio: Ohio State University, 1987.

● Quantificational vs predicative NPs

● Atom (be numerous) vs Set Predicates 
(gather)

● Generalized Quantifier Theory
○ All primes more than y are odd.
○ 6 has exactly m factors.
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