
Automatic (In)formalization of Mathematics
via Language-Model Probabilistic Programming

and Cycle Consistency
Fabian Zaiser, Mauricio Barba da Costa, Katherine Collins, Timothy O’Donnell,

Alexander Lew, Joshua Tenenbaum, Vikash Mansinghka, Cameron Freer

Outline

● Introducing autoformalization as inference
● Preliminary experiments and simple case studies

● Useful constraints/signals for autoformalization?
● How to systematically combine these ingredients?
● Preliminary experimental results

Previous talk

This talk

Formalizing Mathematics in Lean

Figure modified from Yang et al., 2024

Precise &
checkable

Lots of informal math

Little formal math

Auto-formalize

Challenges of (in)formalization

Challenge Example

Nontrivial syntax Type* is custom syntax defined in mathlib

Implicit types n is implicitly a natural number / integer

Implicit algebraic structure G is implicitly a group

Informal shorthand “infinite” order → formalized without infinity

Language and library evolution group (mathlib 3) → Group (mathlib 4)

Probabilistic Viewpoint (cf. previous talk)

● Probabilistic reasoning is key in formal math
○ disambiguate shorthand and overloaded statements
○ infer missing steps and assumptions
○ fix errors and statements that are helpful but not literally correct
○ fuse hard constraints (parsing, type-checking, validity) with soft signals (plausibility, clarity,

style)
○ calibrate uncertainty and quantify confidence

● Language models give us a distribution over text/code
● But we want to tweak this distribution (e.g. enforce Lean 4 instead of Lean 3

code)
● Lack of data → leverage compute at inference time

LM generation samples from a distribution on texts

Prompt:
Natural language: If x is an
element of infinite order in G,
prove that the elements x^n
are all distinct.

Lean 4 translation:
```lean4
import Mathlib

theorem formalized‸…

✅

❌
→ want to constrain/condition the distribution of texts



Autoformalization as Bayesian Inference

● Prior distribution: completions of an LM prompted to formalize a given 
statement

● Conditioned on likelihood/potential:
○ Hard constraints (0 or 1)

■ Syntactically valid?
■ Well-typed?
■ Provable?

○ Soft constraints (continuous signal)
■ Plausibility
■ Style
■ Embedding distances (see previous talk)

● Posterior distribution: “better” formalizations

Posterior Prior Likelihood/Potential



Potentials for conditioning
Potentials: Likelihood function P(constraint | text)

Binary potentials (hard conditioning): φ: Text → {0,1}

● Is the generated code syntactically valid?
● Does it type check?
● Linter warnings?
● Can a counterexample be found? (cf. plausible tactic in previous talk)

Continuous potentials (soft conditioning): φ: Text → [0,1]

● How does another LM score the output?
● Cycle consistency (later in the talk)

Want to sample from prior reweighted by potentials:

Prior Likelihood/Potential



Language-Model Probabilistic Programming

Task: generate text/code satisfying 
constraints
→ e.g.: valid SQL query

LM probabilistic programming 
approach: [Loula et al., ICLR 2025]
● Prior: 
● Likelihood:                     (“potential”)

○ Hard constraints: syntax checker, 
linter, test suite, …

○ Soft constraints: critique by another 
LM, …

● Posterior: 



Symbolic constraints for Lean

Potentials:

● Syntactic correctness
● Type correctness
● Counterexample generation
● Validity of proof steps

Challenge: Is given Lean code a 
prefix of a correct formalization?

Sequential Monte Carlo with syntax check



Sequential Monte Carlo for Bayesian Inference

theorem formalized

3 particles
with weight 1

❌ weight 0

❌ weight 0

✅ weight 1

resample …

…

…



Incremental type checking

Ignore errors with a location at the 
end of the input?

Run Lean parser & type checker?

Check validity after each 
parameter, but adding a 
“dummy” conclusion

Prefixes are rarely valid Lean

Error location unreliable



Problem 6: Munkres|exercise_17_4                                                                                                                                 
                                                                                                                                                                  
Informal Statement:                                                                                                                                                

Show that if $U$ is open in $X$ and $A$ is closed in $X$, then $U-A$ is open in $X$, and $A-U$ is closed in $X$.                                                   
                                                                                                                                                                  
All Formalizations:                                                                                                                                                
                                                                                                                                                                  
[GENLEAN 1] ✗ INCORRECT                                                                                                                                            
Formalization: theorem open_diff_closed_eq_open_sub_closed {X : Type*} [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : ∃ (U' : 
Set X), IsOpen U' ∧ U' = U \ A := by sorry                                                                                                                                   
                                                                                                                                                                  
[GENLEAN 2] ✓ CORRECT                                                                                                                                              
Formalization: theorem open_diff_closed_eq_open_sub_closed {X : Type*} [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen 
(U \ A) ∧ IsClosed (A \ U) := by sorry                                                                                                                                        
                                                                                                                                                                  
[GENLEAN 3] ✗ INCORRECT                                                                                                                                            
Formalization: theorem open_sub_sub_is_open (X : Type*) [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen (U \ A) := by 
sorry      
                                                                                                                                                                  
[GENLEAN 4] ✗ INCORRECT                                                                                                                                            
Formalization: theorem open_diff_closed_eq_open_sub_closed {X : Type*} [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : ∃ (U' : 
Set X), IsOpen U' ∧ U' = U \ A ∧ IsClosed (A \ U) := by sorry                                                                                                                
                                                                                                                                                                  
[BASELINE 1] ✗ INCORRECT                                                                                                                                           
Formalization: theorem open_sub_open_isOpen [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen (U \ A) := by sorry                  
                                                                                                                                                                  
[BASELINE 2] ✗ INCORRECT                                                                                                                                           
Formalization: theorem open_sub_isOpen [TopologicalSpace X] {U : Set X} (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen (U \ A) := by sorry                       
                                                                                                                                                                  
[BASELINE 3] ✗ INCORRECT                                                                                                                                           
Formalization: theorem open_sub_equal [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen (U \ A) := by sorry                        
                                                                                                                                                                  
[BASELINE 4] ✗ INCORRECT                                                                                                                                           
Formalization: theorem open_sub_closed_eqs {X : Type*} [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : ∅ = U \ A ∧ A \ U = ∅ 
:= by sorry
                                                                                                                           

Being well-typed does not guarantee correctly matching intent



Problem 5: Dummit-Foote|exercise_7_1_15                                                                                                                            
                                                                                                                                                                  
Informal Statement:                                                                                                                                                
A ring $R$ is called a Boolean ring if $a^{2}=a$ for all $a \in R$. Prove that every Boolean ring is commutative.                                                  
                                                                                                                                                                  
All Formalizations:                                                                                                                                                
                                                                                                                                                                  
[GENLEAN 1] ✓ CORRECT                                                                                                                                              
Formalization: theorem isBoolean_ring_of_coeq_mul {R : Type*} [Ring R] (h : ∀ a : R, a ^ 2 = a) : 
IsCommutative R := by sorry                                           
                                                                                                                                                                  
[GENLEAN 2] ✓ CORRECT                                                                                                                                              
Formalization: theorem comm_of_bool_ring {R : Type*} [Ring R] (h : ∀ a : R, a ^ 2 = a) : IsCommutative R := 
by sorry                                                     
                                                                                                                                                                  
[GENLEAN 3] ✓ CORRECT                                                                                                                                              
Formalization: theorem isBoolean_ring_of_coeq_mul {R : Type*} [Ring R] (h : ∀ a : R, a * a = a) : 
IsCommutative R := by sorry                                            
                                                                                                                                                                  
[BASELINE 1] ✗ INCORRECT                                                                                                                                           
Formalization: theorem is_bool_ring_commutative (R : Type*) [Ring R] : IsCommutative R := by sorry                                                                      

Correct formalizations can vary in wording or details



Problem 9: Munkres|exercise_27_4                                                                                                                                   
                                                                                                                                                                  
Informal Statement:                                                                                                                                                

Show that a connected metric space having more than one point is uncountable.                                                                                      
                                                                                                                                                                  
All Formalizations:                                                                                                                                                
                                                                                                                                                                  
[GENLEAN 1] ✗ INCORRECT                                                                                                                                            
Formalization: theorem is_connected_iff_uncountable_of_nontrivial (X : Type*) [TopologicalSpace X] (hX : ConnectedSpace X) (hX' : Infinite X) : Uncountable X := by sorry
                                                                                                                                                                  
[GENLEAN 2] ✗ INCORRECT                                                                                                                                            
Formalization: theorem uncountable_iff_connected_nontrivial (X : Type*) [MetricSpace X] [ConnectedSpace X] : Uncountable X := by sorry                                    
                                                                                                                                                                  
[GENLEAN 3] ✗ INCORRECT                                                                                                                                            
Formalization: theorem connected_iff_uncountable (X : Type*) [TopologicalSpace X] (hX : ConnectedSpace X) : Uncountable X := by sorry                                     
                                                                                                                                                                  
[GENLEAN 4] ✓ CORRECT                                                                                                                                              
Formalization: theorem connected_iff_uncountable_in_nontrivial (X : Type*) [MetricSpace X] (hX : ConnectedSpace X) (hX' : Nontrivial X) : Uncountable X := by sorry       
                                                                                                                                                                  
[GENLEAN 5] ✗ INCORRECT                                                                                                                                            
Formalization: theorem connected_iff_uncountable {X : Type*} [TopologicalSpace X] (h : ConnectedSpace X) : Uncountable X := by sorry                                      
                                                                                                                                                                  
[GENLEAN 6] ✗ INCORRECT                                                                                                                                            
Formalization: theorem connected_uncountable_iff_nontrivial (X : Type*) [TopologicalSpace X] (h : ConnectedSpace X) : Uncountable X := by sorry                           
                                                                                                                                                                  
[BASELINE 1] ✗ INCORRECT                                                                                                                                           
Formalization: theorem connected_iff_uncountable_of_nontrivial {X : Type*} [TopologicalSpace X] (hX : ConnectedSpace X) (hX' : Infinite X) : Uncountable X := by sorry   
                                                                                                                                                                  
[BASELINE 2] ✗ INCORRECT                                                                                                                                           
Formalization: theorem connected_iff_uncountable_in_nonempty (X : Type*) [TopologicalSpace X] (hX : ConnectedSpace X) (h : Nonempty X) : Uncountable X := by sorry        
                                                                                                                                                                  
[BASELINE 3] ✗ INCORRECT                                                                                                                                           
Formalization: theorem connected_iff_uncountable (X : Type*) [MetricSpace X] (h : ConnectedSpace X) : Uncountable X := by sorry                                           
                                                                                                                                                                  
[BASELINE 4] ✗ INCORRECT                                                                                                                                           
Formalization: theorem connected_iff_uncountable (X : Type*) [TopologicalSpace X] (hX : ConnectedSpace X) : Uncountable X := by sorry                                    
                                                                                                                                                                                                

For some problems, one key detail is often incorrect



Assessing Content, Not Just Form 

Well-typed potential checks the “shape” of the Lean code.

But how do we assess the content (i.e. whether it matches the informal meaning)?

Idea: Translating in the other direction (Informalization) is easier for LMs!

informalize



Cycle-consistency constraint

One might try to enforce the constraint that the round trip (informal → formal → informal)
should be approximately the identity map.

● Long history in natural language translation since the 1950s
● Proposed for autoformalization [Szegedy, CICM 2020]

● Related ideas (“distilled backtranslation”) have been implemented [Azerbayev et al., 
MATHAI@NeurIPS 2022]

 

(Example (in)formal text from Lean Workbook, Ying et al., NeurIPS 2024)



Cycle consistency potential

(b) scores the formalizations according to the log-probability that the 
LLM generates the original input text when it is prompted to informalize 
the given formalization

(a) samples from the distribution of an LLM which is 
prompted to formalize the input



How to measure the quality of the backtranslation?

●
○ May capture other signals in the probability than truth value

● Cosine similarity of embeddings of ground truth and back translation? (cf. [Li 
et al., NeurIPS2024])

○ cheap, imprecise
● Ask an LM to rank back-translated informalizations?

○ Higher quality, expensive



Rating formalizations – preliminary results 

Lean 4 formalization Correct?
(manual 
labeling)

Cosine 
similarity in 
embedding 
space

in [0, 1]

LM logprob for 
informalization*

in [-inf, 0]

LM rater 
(Claude 
Sonnet 4)

in [0, 1]

∃ x y z : ℤ, 0 < x ∧ 0 < y ∧ 0 < 
z
  ∧ x ^ 2 + y ^ 2 = z ^ 2

✅ 0.9612 -104.5 1.0

∃ x y z : ℤ, x > 0 ∧ y > 0 ∧ z > 
0
  ∧ x ^ 2 + y ^ 2 = z ^ 2

✅ 0.9657 -105 1.0

∃ x y z : ℤ, x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 
0
  ∧ x ^ 2 + y ^ 2 = z ^ 2

❌ 0.9601 -119 0.8

*



GenLean: GenLM with Lean well-typed potential function

DeepSeek-R1-Distill-Llama-70B

5-shot prompt of 
formal-informal pairs

SMC

particles

Lean well-typed
potential function

Cycle-consistency 
potential function



Prompt template
(adapted from Poiroux et al., 2024)

Natural language version:
Let $X$ be a topological space; let $A$ be a subset of $X$. Suppose that for each $x \in A$ there is an open set $U$ 
containing $x$ such that $U \subset A$. Then $A$ is open in $X$.

Translate the natural language version to a Lean 4 version:
theorem formalized (X : Type*) [TopologicalSpace X] (A : Set X) (hA : ∀ x ∈ A, ∃ U : Set X, IsOpen U ∧ x ∈ U ∧ U 
⊆ A): IsOpen A := by sorry

Natural language version:
If $z_1, \ldots, z_n$ are complex, then $|z_1 + z_2 + \cdots + z_n| \leq |z_1| + |z_2| + \cdots + |z_n|$.

Translate the natural language version to a Lean 4 version:
theorem formalized (n : ℕ) (f : ℕ → ℂ) : abs (∑ i in Finset.range n, f i) ≤ ∑ i in Finset.range n, abs (f i) := by 
sorry

Natural language version:
If $x$ is an element of infinite order in $G$, prove that the elements $x^n$, $n \in \mathbb{Z}$ are all distinct.

Translate the natural language version to a Lean 4 version:
theorem formalized (G : Type*) [Group G] (x : G) (hx_inf : ∀ n : ℕ, x ^ n ≠ 1) : ∀ m n : ℤ, m ≠ n → x ^ m ≠ x ^ n 
:= by sorry

Natural language version:
A set of vectors $\{v_i\}_{i \in I}$ orthogonal with respect to some bilinear form $B : V \times V \to K$ is linearly 
independent if for all $i \in I$, $B(v_i, v_i) \neq 0$.

Translate the natural language version to a Lean 4 version:
theorem formalized {V K : Type*} [Field K] [AddCommGroup V] [Module K V] {n : Type*} {B : BilinForm K V} {v : n → V} 
(hv1 : B.IsOrtho v) (hv2 : ∀ (i : n), ¬B.IsOrtho (v i) (v i)) : LinearIndependent K v := by sorry

Natural language version:
[informal statement to be formalized]

Translate the natural language version to a Lean 4 version:
theorem formalized ...

1. Natural language example 1
Formal translation of example 1

2. Natural language example 2
Formal translation of example 2

3. Natural language example 3
Formal translation of example 3

4. Natural language example 4
Formal translation of example 4

5. Natural language statement to formalize
Formal translation: … (to be completed)



Preliminary Experiments

● Benchmark: 50 informal/formal pairs from 
miniF2F (ICLR 2022)

● LM: DeepSeek-R1-Distill-Llama-70B
● Particles for SMC: 10 (for each 

combination of potentials)
● Judge: Claude Sonnet 4

○ prediction to be ✓ CORRECT / ✗ 
INCORRECT based on matching intent 
of informal text

○ ~97% agreement with manual labels
● Evaluation metric: weighted average of 

each particle’s score
○ ✗ INCORRECT = 0%
○ ✓ CORRECT = 100%

Constraints Weighted score 
average

No constraint 13%

Lean validity 14%

Cycle consistency 13.7%

Both constraints 16.7%

If x, y, and z are positive 
numbers satisfying x + 
1/y = 4, y + 1/z = 1, and z 
+ 1/x = 7/3 then x y z = 1.

miniF2F: informal/formal pair



Summary

● Autoformalization as Bayesian inference
○ → language-model probabilistic programming

● Sequential Monte Carlo constrains LM output distribution according to 
potential functions

○ Lean-validity potential: parses and type checks Lean code incrementally
○ Cycle-consistency potential: score with the quality of the backtranslation

● Preliminary results
○ Each potential improves the performance on miniF2F

Thank you!

Questions?


