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Intrngcmg autofgrmallzatlon a.s inference | Previous talk
e Preliminary experiments and simple case studies

e Useful constraints/signals for autoformalization?
e How to systematically combine these ingredients? This talk
e Preliminary experimental results



Formalizing Mathematics in Lean
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Fermat's last theorem puzzled mathematicians for centuries until it was finally proven in 1993. Now,|S Welcome Computer'aSSiSted
researchers want to create a version of the proof that can be formally checked by a computer for any uniﬁcation’ theory

errors in logic
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Challenges of (in)formalization
If x is an element of theorem formal

infinite order in G, (G : Typex) [Group G] (x : G)
prove that the (h:V¥n:N x~n=1)

elements x™ are all
. . : # Va s # A\
distinct. Vmn:Z, m#n-X"m#X " n

" informalize := by ... — proof
Proof. ...
Challenge Example
Nontrivial syntax Type* is custom syntax defined in mathlib
Implicit types n is implicitly a natural number / integer
Implicit algebraic structure G is implicitly a group
Informal shorthand “infinite” order — formalized without infinity

Language and library evolution group (mathlib 3) —» Group (mathlib 4)



Probabilistic Viewpoint (cf. previous talk)

e Probabilistic reasoning is key in formal math
o disambiguate shorthand and overloaded statements
o infer missing steps and assumptions
o fix errors and statements that are helpful but not literally correct
o fuse hard constraints (parsing, type-checking, validity) with soft signals (plausibility, clarity,
style)
o calibrate uncertainty and quantify confidence
e Language models give us a distribution over text/code

e But we want to tweak this distribution (e.g. enforce Lean 4 instead of Lean 3
code)
e Lack of data — leverage compute at inference time



Perplex:
#1 !
#2

LM generation samples 1§ G""i 5 uarou

4 #4  _Mon

Probability

Prompt:

Natural language: If $x$ is an
element of infinite order in $G3$,
prove that the elements $x*n$

are all distinct.

- 100%

Lean 4 translation:
""" lean4d
import Mathlib

0.25%

theor‘em.G,_, ,_,Gr'oup} P @x I_,G) oChn: IsUnit x)

w2 uIsUnit xAn by]J -- uShow  that

,_,any ,integer .n, X 0.034%

Anisalso a unit .« x
0.0045%

— want to constrain/condition the distribution of texts

theorem formalized....




Autoformalization as Bayesian Inference

P[text] - IP[ constraint | text | ,
, x P[text] - IP[ constraint | text |
y P[constraint] — y

. Y
Posterior Prior Likelihood/Potential

P[text | constraint | =
J

\\

e Prior distribution: completions of an LM prompted to formalize a given

statement

e Conditioned on likelihood/potential:

o Hard constraints (0 or 1)
m  Syntactically valid?
m Well-typed?
m Provable?

o  Soft constraints (continuous signal)
m Plausibility
m Style
m Embedding distances (see previous talk)

e Posterior distribution: “better” formalizations



Potentials for conditioning

Potentials: Likelihood function P(constraint | text)
Binary potentials (hard conditioning): ¢ : Text - {0,1}

e |[s the generated code syntactically valid?
e Does it type check?

e Linter warnings?

e Can a counterexample be found? (cf. plausible tactic in previous talk)

Continuous potentials (soft conditioning): ¢: Text - [0, 1]

e How does another LM score the output?
e Cycle consistency (later in the talk)

Want to sample from prior reweighted by potentials:

P[text | constraint | « IP’[text]J- P[ constraint | textl
|\ |\
.

-
Prior Likelihood/Potential




Language-Model Probabilistic Programming

Task: generate text/code satisfying
constraints

— e.g.: valid SQL query

LM probabilistic pro rammin%
approach: [Loula et al., ICLR 2025]

e Prior:

e Likelirpim(x | prompt) (“potential”)

o Hard ccgy : Text » R., 31X checker,
linter, e f  Tex =0

o  Soft constraints: critique by another

LM, ...
e Posterior;

p(x) < ppy (x | prompt) - ¢(x)

Sampling from p(x)? = SMC

SELECT age SELECT age

’ ?

SELECT age FOR SELECT age FROM

SELECT age FROM SELECT age FROM
customers employees

t



Symbolic constraints for Lean

Potentials: Sequential Monte Carlo with syntax check

e Syntactic correctness X Y S e

e Type correctness ? ?

e Counterexample generation X # y[ fg x#y-Tx

e Validity of proof steps ¢(xﬂ—/T
Challenge: Is given Lean code a X#y->fx# X#zYy-TfX#
prefix of a correct formalization? ‘ 6

- -——
= = = -

X#zy->fTxz(fy) xz2zy->fx=zfy



Sequential Monte Carlo for Bayesian Inference
weight 1

=G, Type—)

theorem formalized

—~G—>,:~.Group—~} XWelghtO

type expected, got
(Group : Type ?u.2 » Type ?u.2) Lean 4
3pa”i0/?3 Group.{u} (G : Type u) : Type u
with weight 1

G uGroup—~; X weight 0

type expected, got
(Group : Type ?u.2 » Type ?u.2) Lean 4




Incremental type checking

1 import Mathlib
2
3 theorenl

Prefixes are rarely valid Lean unexpected end of input;

Run Lean parser & type checker?

h 1 : . .
Ignore errors with a location at the WEDEL b m=n g(_e_n‘e_r_gllzlng mn

end of the input? AR . unsolved goals

Error location unreliable apply this
Check validity after each 3 theorem formal (G : Typex) [Group G] °
parameter, but adding a unexpected end of input;

“‘dummy” conclusion

3 theorem formal (G : Typex) [Group G] : True := by triviag




Being well-typed does not guarantee correctly matching intent

Problem 6: Munkres|exercise_17_4

Informal Statement:

Show that if SUS is open in $X$ and SAS is closed in $XS, then SU-AS is open in $XS, and $A-US is closed in $XS.

All Formalizations:

[GENLEAN 1] X INCORRECT
Formalization: theorem open_diff_closed_eq_open_sub_closed {X : Type*} [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : 3 (U’
Set X), IsOpen U' A U' =U \ A := by sorry

[GENLEAN 2] v/ CORRECT
Formalization: theorem open_diff_closed_eq_open_sub_closed {X : Type*} [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen
(U \ A) A IsClosed (A \ U) := by sorry

[GENLEAN 3] x INCORRECT
Formalization: theorem open_sub_sub_is_open (X : Type*) [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen (U \ A) := by
sorry

[GENLEAN 4] x INCORRECT
Formalization: theorem open_diff_closed_eq_open_sub_closed {X : Type*} [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : 3 (U'
Set X), IsOpen U' A U' =U \ A A IsClosed (A \ U) := by sorry

[BASELINE 1] X INCORRECT
Formalization: theorem open_sub_open_isOpen [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen (U \ A) := by sorry

[BASELINE 2] X INCORRECT
Formalization: theorem open_sub_isOpen [TopologicalSpace X] {U : Set X} (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen (U \ A) := by sorry

[BASELINE 3] X INCORRECT
Formalization: theorem open_sub_equal [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : IsOpen (U \ A) := by sorry

[BASELINE 4] X INCORRECT
Formalization: theorem open_sub_closed_eqs {X : Type*} [TopologicalSpace X] (U : Set X) (hU : IsOpen U) (A : Set X) (hA : IsClosed A) : 2 =U\A A A\NU=2
:= by sorry



Correct formalizations can vary in wording or

Problem 5: Dummit-Foote|exercise_7_1_15

Informal Statement:
Aring SRS is called a Boolean ring if $a*{2}=a$ for all $a \in RS. Prove that every Boolean ring is commutative.

All Formalizations:
[GENLEAN 1] v/ CORRECT

Formalization: theorem [isBoolean_ring_o-F_coeq_mul]{R : Type*} [Ring R] (h : V a : R, a ~ 2 = a)
IsCommutative R := by sorry

[GENLEAN 2] v CORRECT
Formalization: theorem [comm_of_bool_r'ing]{R : Type*} [Ring R] (h : ¥V a : R,/Ja ~ 2 = 3) : IsCommutative R :
by sorry

[GENLEAN 3] v CORRECT
Formalization: theorem isBoolean ring of coeq mul {R : Type*} [Ring R] (h : V a : R, a * a = a)
IsCommutative R := by sorry

[BASELINE 1] X INCORRECT

Formalization: theorem is_bool_ring_commutative (R : Type*) [Ring R] : IsCommutative R := by sorry



For some problems, one key detall is often incorrect

Problem 9: Munkres|exercise_27_4

Informal Statement:

Show that a connected metric space having more than one point is uncountable.

All Formalizations:

[GENLEAN 1] X INCORRECT
Formalization: theorem is_connected_iff_uncountable_of nontrivial (X : Type*) [TopologicalSpace X] (hX : ConnectedSpace X) (hX' : Infinite X) : Uncountable X := by sorry

[GENLEAN 2] X INCORRECT
Formalization: theorem uncountable_iff_connected_nontrivial (X : Type*) [MetricSpace X] [ConnectedSpace X] : Uncountable X := by sorry

[GENLEAN 3] x INCORRECT
Formalization: theorem connected_iff_uncountable (X : Type*) [TopologicalSpace X] (hX : ConnectedSpace X) : Uncountable X := by sorry

[GENLEAN 4] v CORRECT
Formalization: theorem connected_iff_uncountable_in_nontrivial (X : Type*) [MetricSpace X] (hX : ConnectedSpace X) [(hX' : Nontrivial X)]: Uncountable X := by sorry

[GENLEAN 5] x INCORRECT
Formalization: theorem connected_iff_uncountable {X : Type*} [TopologicalSpace X] (h : ConnectedSpace X) : Uncountable X := by sorry

[GENLEAN 6] X INCORRECT
Formalization: theorem connected_uncountable_iff_nontrivial (X : Type*) [TopologicalSpace X] (h : ConnectedSpace X) : Uncountable X := by sorry

[BASELINE 1] X INCORRECT
Formalization: theorem connected_iff_uncountable_of_nontrivial {X : Type*} [TopologicalSpace X] (hX : ConnectedSpace X) [(hX' : Infinite X)]: Uncountable X := by sorry

[BASELINE 2] X INCORRECT
Formalization: theorem connected_iff_uncountable_in_nonempty (X : Type*) [TopologicalSpace X] (hX : ConnectedSpace X) [(h : Nonempty X) |: Uncountable X := by sorry

[BASELINE 3] x INCORRECT
Formalization: theorem connected_iff_uncountable (X : Type*) [MetricSpace X] (h : ConnectedSpace X) : Uncountable X := by sorry

[BASELINE 4] X INCORRECT
Formalization: theorem connected_iff_uncountable (X : Type*) [TopologicalSpace X] (hX : ConnectedSpace X) : Uncountable X := by sorry



Assessing Content, Not Just Form

Well-typed potential checks the “shape” of the Lean code.
But how do we assess the content (i.e. whether it matches the informal meaning)?

Idea: Translating in the other direction (Informalization) is easier for LMs!

P e %
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LTI RTINSty -~ N / \
’ g \ | Formaltheorem (and proof) 1
I e I 1
I Informal math : I |
1 1 I  theorem exists_infinite_primes (n : N) : 3 p, n s p A Prime p := 1
I | 1 let p := minFac (n ! + 1) I
: Theorem 1. There exists an infinite number of primes. | : have f1 : n ! +1 # 1 := ne_of_gt ;I succ_lt_succ <| factorial_pos _ :
have pp : Prime p := minFac_prime f1
I Proof. Let n be an arbitrary positive integer, and let : informalize I have np : n = p := |
I p€ Z* be aprime factor of n!+1. We can derive p > n | 1 le_of_not_ge fun h => |
I by noting that n! + 1 cannot be divided by positive I have h: : p | n ! := dvd_factorial (minFac_pos _) h I
| integers from 2 to n. Since n is arbitrary, we h‘“’_“ : 1 have h2 : p | 1 := (Nat.;vd_add_lff_rlght ;1).2_(m1nFac_dvd 4 1
\ proved that the number of primes is infinite. 5. 1 pp.not_dvd_one h: 1
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Cycle-consistency constraint

autoformalize

Let D be a compact subset of R and __—— —e théas)rjerget R) (f : R » R)

suppose f : D — R is continuous. O~ O~ i1d ’ ) .

Then f(D) is compact <— (hD : IsCompact D) (hf : ContinuousOn f D) :
paor suloinformalise IsCompact (Set.image f D) := by sorry

One might try to enforce the constraint that the round trip (informal — formal — informal)
should be approximately the identity map.

e Long history in natural language translation since the 1950s
e Proposed for autoformalization [Szegedy, CICM 2020]

e Related ideas (“distilled backtranslation”) have been implemented [Azerbayev et al.,
MATHAI@NeurlPS 2022]

(Example (in)formal text from Lean Workbook, Ying et al., NeurlPS 2024)



Cycle consistency potential

(a) samples from the distribution of an LLM which is
prompted to formalize the input

“There are integers

X, Y, z> 0 with
X2+ y2= 272"
-104.5
-105
Informal i

LLM Formalizer - BRI
sample p( ... | B<ZAXAN2+yDr2=242
Formalize: There are ...") T T

ZE SEORARXSARD LR EAS D=0 7 AN

LLM Informalizer Ixyz:Z, xz0Ay=0NA

= i Z =108 AXEA NSNS =R Z D
log p(“There are ..." |
“Infformalize: 3 x y z : Z ...") Formal

(b) scores the formalizations according to the log-probability that the
LLM generates the original input text when it is prompted to informalize

the given formalization




How to measure the quality of the backtranslation?

e logp.y(original informal stmt | “Informalize: {formalization}*)?
o May capture other signals in the probability than truth value

e Cosine similarity of embeddings of ground truth and back translation? (cf. [Li
et al., NeurlPS2024])

o cheap, imprecise
e Ask an LM to rank back-translated informalizations?
o Higher quality, expensive



Rating formalizations — preliminary results

Lean 4 formalization Correct? Cosine LM logprob for | LM rater
(manual | similarity in | informalization* | (Claude
labeling) | embedding Sonnet 4)
space in [-inf, O]
in [0, 1]
in [0, 1]
3 xyz:Z,0<x A0<y Aoc< |4 0.9612 -104.5 1.0

AX?*r"2+yr2=2"2

I3 xyz:Z, x>0 Ay>0Az> |4 0.9657 -105 1.0
0

AX?*r2+yr2=2z2"2
A xyz:Z,x20Ay=20Az=2 X 0.9601 -119 0.8
0 * log prp (original informal stmt | “Informalize: {formalization})?

/\XA2+VA2—L Z



GenLean: GenLM with Lean well-typed potential function

D [ VIN

Cycle-consistency Lean well-typed
potential function potential function

weight 1
A&

~GuiuType—)

—>G—>u:—>u(i£9up—>} 2(wej§;ht0
type expected, got

roup : Type 7u.
Group.{u} (6 : Type u) : Type u

>G> i>uGroup—~} X weight 0
type expected, got

5-shot prompt of
formal-informal pairs

particles

LLM
DeepSeek-R1-Distill-Llama-70B

— ..



Prompt template
(adapted from Poiroux et al., 2024)

1. Natural language example 1
Formal translation of example 1
2. Natural language example 2
Formal translation of example 2
3. Natural language example 3
Formal translation of example 3
4. Natural language example 4
Formal translation of example 4
5. Natural language statement to formalize
Formal translation: ... (to be completed)

Natural language version:
Let $X$ be a topological space; let $A$ be a subset of
containing $x$ such that $U \subset A$. Then $A$ is op
Translate the natural language version to a Lean 4 version:
theorem formalized (X : Type*) [TopologicalSpace X] (A
€S A): IsOpen A := by sorry

Natural language version:
If $z 1, \ldots, z n$ are complex, then $|z 1 + z 2 +
Translate the natural language version to a Lean 4 version:
theorem formalized (n : M) (f : N — ©) : abs () i in
sorry

Natural language version:
If $x$ is an element of infinite order in $G$, prove t
Translate the natural language version to a Lean 4 version:
theorem formalized (G : Type*) [Group G] (x : G) (hx_i
:= by sorry

Natural language version:
A set of vectors $\{v_i\}_{i \in I}$ orthogonal with r
independent if for all $i \in I$, $B(v_i, v_i) \neq 0%
Translate the natural language version to a Lean 4 version:
theorem formalized {V K : Type*} [Field K] [AddCommGro
(hvl : B.IsOrtho v) (hv2 : V (i : n), -B.IsOrtho (v i

Natural language version:
[informal statement to be formalized]

Translate the natural language version to a Lean 4 version:
theorem formalized ...



Preliminary Experiments

e Benchmark: 50 informal/formal pairs from
miniF2F (ICLR 2022)
e LM: DeepSeek-R1-Distill-Llama-70B
e Particles for SMC: 10 (for each
combination of potentials)
e Judge: Claude Sonnet 4
o prediction to be v CORRECT/ x
INCORRECT based on matching intent
of informal text
o ~97% agreement with manual labels
e Evaluation metric: weighted average of
each particle’s score
o  x INCORRECT = 0%
o v correcT = 100%

If x, y, and z are positive
numbers satisfying x +
1/y=4,y+1/z=1,and z
+1/x=7/3thenxyz=1.

theorem amcl2_2000_p20
(xy z: R)
(he : <X A@<yAD<2)
(h: : x + 1/y = 4)
(h2 : y +1/2 = 1)
(hs : z + 1/x = 7/3) :

Xky*z = 1 1= by

miniF2F: informal/formal pair

Constraints

No constraint
Lean validity
Cycle consistency

Both constraints

Weighted score
average

13%
14%
13.7%

16.7%




Summary

e Autoformalization as Bayesian inference
o — language-model probabilistic programming
e Sequential Monte Carlo constrains LM output distribution according to
potential functions

o Lean-validity potential: parses and type checks Lean code incrementally
o Cycle-consistency potential: score with the quality of the backtranslation

e Preliminary results
o Each potential improves the performance on miniF2F

Thank you!

Questions?



