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Background:
How could AI solve mathematical problems?



https://www.math.inc/ 

https://www.math.inc/


Symbolic AI (theorem provers)
- reliable: no "hallucinations"
- restricted problem solving capacity

Neural AI (large language models)
- unreliable: "hallucinations"
- can find unexpected solutions



LLM Theorem
Prover

guess

Federated systems 

accept

problem

reject



https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/ 

2024: "AI achieves silver-medal standard solving International 
Mathematical Olympiad problems"

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/


https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/ 

"First, the problems were manually translated into formal mathematical language for 
our systems to understand."

AI achieves silver-medal standard solving International Mathematical 
Olympiad problems

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/


Autoformalization
= automatic formalization

= automatic translation from informal to formal

A "hot topic" due to AI such as Google's AlphaProof



Symbolic autoformalization

- Controlled Natural Languages (CNLs)
- "brittle": only covers fragments of informal mathematics

Neural autoformalization

- LLMs "learn" to autoformalize from large amounts of data
- unreliable: typically 30% "adequate with minor corrections"
- problem: lack of training data (formal-informal pairs)



Side track: IMO 2025

At IMO 2024, AlphaGeometry and AlphaProof required experts to first translate problems from natural language into 
domain-specific languages, such as Lean, and vice-versa for the proofs… This year, our advanced Gemini model operated 
end-to-end in natural language.
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-th
e-international-mathematical-olympiad/ 

https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/


Why a side track?
Solutions had to be checked by humans

- just like the human participants' solutions

This is natural in the context of IMO competitions

But it does not scale up to enable automated, reliable AI systems.



LLM Theorem
Prover

guess

Checked informal solutions? 

accept
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reject
Informalizer

informal solution

informal explanation



Kurt Mehlhorn, Certifying Algorithms
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SAPJuly2014.pdf

In a wider picture

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SAPJuly2014.pdf


Kurt Mehlhorn, Certifying Algorithms
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SAPJuly2014.pdf

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SAPJuly2014.pdf


Function value y:
- informal proof from LLM

Proof w:
- the corresponding formal proof

Checker C:
- formal proof checker

Certifying program:
- jointly produces y and w

Remains to verify:
- that the informal proof y really 

matches the formal proof w



formal informal

informalization

 formalization

total

partial

Our most important slide 



Don't guess if you know.
- Kimmo Koskenniemi

- there is no essential need for non-symbolic (neural) informalization
- (except its allegedly low cost)

- However, (auto)formalization may require guessing

- symbolic informalization has things to contribute even there
- synthetic data generation
- verification feedback



The challenge



NeurIPS 2024,

- "informalisation is much easier than formalisation"

- uses an GPT-4 to produce the dataset MMA to fine-tune LLaMA
- ~70% "more or less acceptable"

- resulting autoformalization: 
- 16-18% "acceptable with minimal corrections"

- symbolic informalization



"symbolic informalisation tools

- result in natural language content that lacks the inherent  
diversity and flexibility in expression: they are rigid and not 
natural-language-like. 

- symbolic informalisation tools are hard to design and implement
 

- They also differ a lot for different formal languages, hence the 
approach is not scalable for multiple formal languages. "



Our goal

Symbolic informalization that
                                                                              has

- results in natural language content that lacks the inherent  
diversity and flexibility in expression: they are rigid and not 
natural-language-like. 
                                                    feasible

- symbolic informalisation tools are hard to design and implement 
with proper methods

         can be shared
- They also differ a lot for different formal languages, hence the 

approach is not scalable for multiple formal languages. And 
even for multiple natural languages.



Our goal

Symbolic informalization that
                                                                              has

- results in natural language content that lacks the inherent  
diversity and flexibility in expression: they are rigid and not 
natural-language-like. 
                                                    feasible

- symbolic informalisation tools are hard to design and implement 
with proper methods

         can be shared
- They also differ a lot for different formal languages, hence the 

approach is not scalable for multiple formal languages. And 
even for multiple natural languages.

FLUENT

PRODUCTIVE

MULTI-
LINGUAL



Symbolic informalization



CNL
Trybulec 1973: Mizar

Coscoy, Kahn & Théry 1994: extracting text from Coq proofs

Wenzel 1999: Isabelle-Isar

Hallgren & Ranta 2000: GF-Alfa (Agda)

Paskevich 2007: ForTheL

Cramer, Koepke & al 2009: Naproche

Humayoun & Raffalli 2011: MathNat

Pathak 2023: GF-Lean

Massot 2024: Verbose-Lean4

Kelber, Kohlhase, Schaefer & Schütz: Flexiformal mathematics, 2025



formal informal

informalization

 formalization

to one to many

total

partial

Extending pure CNL: from one to many



formal informal

informalization (symbolic)

 formalization (symbolic)

certain uncertain

total

partial

 formalization (neural)

informalization (neural)

Symbolic vs. neural



Verification feedback



Formal 
mathematics Human 

question

Vision:
- the formal system is a black box that performs verification
- humans communicate with it in natural language

But how can they trust it?

answer
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autoformalization: symbolic



even 4
not (even 5)

NO PARSE

4 is even
5 is not even

5 can't be even

informalization; symbolic

  autoformalization: symbolic



even 4
not (even 5)

NO PARSE

even 5

4 is even
5 is not even

5 can't be even

informalization; symbolic

  autoformalization: symbolic

  autoformalization: LLM



even 4
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4 is even
5 is not even

5 can't be even
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informalization: symbolic

  autoformalization: symbolic

  autoformalization: LLM

feedback informalization: 
symbolic



Formal 
mathematics

Natural 
language

informalization; symbolic

  autoformalization: symbolic

  autoformalization: LLM

feedback informalization: 
symbolic

Vision:
- the formal system is a black box that performs verification
- humans communicate with it in natural language

Symbolic informalization is a certificate of the system's 
understanding.



Project Informath
- informalizing formal mathematics

- multilingual, productive, fluent



Dedukti
                                            

                                           Informath

informalization

formalization

formal
Agda

Rocq

Lean

English

French

Swedish

MathCore

NLG

semantics

informal

to one to many

total

partialhttps://github.com/GrammaticalFramework/informath 

https://github.com/GrammaticalFramework/informath


Multilingual



Agda: 

postulate prop110 : 
  (a : Int) -> (c : Int) -> 
  and (odd a) (odd c) -> all Int (\ b -> 
    even (plus (times a b) (times b c)))

Rocq: 

prop110 : forall a : Int, forall c : Int, 
  (odd a /\ odd c -> forall b : Int, 

   even (a * b + b * c)) .

Lean: 

prop110 (a c : Int) (x : odd a ∧ odd c) 

: 

  ∀ b : Int, even (a * b + b * c)



Agda: 

postulate prop110 : 
  (a : Int) -> (c : Int) -> 
  and (odd a) (odd c) -> all Int (\ b -> 
    even (plus (times a b) (times b c)))

Rocq: 

prop110 : forall a : Int, forall c : Int, 
  (odd a /\ odd c -> forall b : Int, 

   even (a * b + b * c)) .

Lean: 

prop110 (a c : Int) (x : odd a ∧ odd c) 

: 

  ∀ b : Int, even (a * b + b * c)

Dedukti: 

prop110 : (a : Elem Int) -> 
  (c : Elem Int) -> 
    Proof (and (odd a) 
   (odd c)) -> 
    Proof (forall Int 

   (b => even (plus   

   (times a b) (times b c)))).



Dedukti
A "logical framework based on the λΠ-calculus 
modulo in which many theories and logics can be 
expressed"

- Agda, HOL, Lean, Rocq (Coq), TPTP, … 

Simpler but more powerful (i.e. more liberal) than 
any of these individually.

- dependent types and Pi types
- lambda abstracts
- rewrite rules
- (almost) no syntactic sugar

Similar to Martin-Löf's LF from the 1980s and to 
TWELF, ALF,... (for those who remember)

https://deducteam.github.io/ 

https://deducteam.github.io/


Agda: 

postulate prop110 : 
  (a : Int) -> (c : Int) -> 
  and (odd a) (odd c) -> all Int (\ b -> 
    even (plus (times a b) (times b c)))

Rocq: 

prop110 : forall a : Int, forall c : Int, 
  (odd a /\ odd c -> forall b : Int, 

   even (a * b + b * c)) .

Lean: 

prop110 (a c : Int) (x : odd a ∧ odd c) 

: 

  ∀ b : Int, even (a * b + b * c)

Dedukti: 

prop110 : (a : Elem Int) -> 
  (c : Elem Int) -> 
    Proof (and (odd a) 
   (odd c)) -> 
    Proof (forall Int 

   (b => even (plus   

   (times a b) (times b c)))).



Agda: 

postulate prop110 : 
  (a : Int) -> (c : Int) -> 
  and (odd a) (odd c) -> all Int (\ b -> 
    even (plus (times a b) (times b c)))

Rocq: 

prop110 : forall a : Int, forall c : Int, 
  (odd a /\ odd c -> forall b : Int, 

   even (a * b + b * c)) .

Lean: 

prop110 (a c : Int) (x : odd a ∧ odd c) 

: 

  ∀ b : Int, even (a * b + b * c)

Dedukti: 

prop110 : (a : Elem Int) -> 
  (c : Elem Int) -> 
    Proof (and (odd a) 
   (odd c)) -> 
    Proof (forall Int 

   (b => even (plus   

   (times a b) (times b c)))).

GF: 

AxiomJmt (StrLabel "prop110") 
(ConsHypo (LetFormulaHypo (FElem 
(ConsTerm (TIdent (StrIdent "a")) 
(BaseTerm (TIdent (StrIdent "c")))) 
(SetTerm integer_Set))) (ConsHypo 
(PropHypo (AdjProp odd_Adj (AndExp 
(BaseExp (TermExp (TIdent (StrIdent 
"a"))) (TermExp (TIdent (StrIdent 
"c"))))))) BaseHypo)) (PostQuantProp 
(AdjProp even_Adj (TermExp 
(AppOperTerm plus_Oper (TTimes (TIdent 
(StrIdent "a")) (TIdent (StrIdent 
"b"))) (TTimes (TIdent (StrIdent "b")) 
(TIdent (StrIdent "c")))))) 
(AllIdentsKindExp (BaseIdent (StrIdent 
"b")) (SetKind integer_Set)))







Interlude: GF



GF = Grammatical Framework
GF = Logical Framework + Grammar

First release 1998 at Xerox Research Centre Europe, Grenoble

Based on earlier work with ALF (Another LF, predecessor of Agda) 1992

Mission: formalize the grammars of the world and make them available 
for computer applications.

https://www.grammaticalframework.org/ 

https://www.grammaticalframework.org/


https://commons.wikimedia.org/wiki/Maps_of_the_world#/media/File:BlankMap-World-noborders.png
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RGL = Resource Grammars Library, created by the GF community 2001-2025

Lit

https://commons.wikimedia.org/wiki/Maps_of_the_world#/media/File:BlankMap-World-noborders.png


Abstract and concrete syntax: judgements
-- abstract syntax = LF

cat C  Γ

fun f : T

def t = u

-- concrete syntax

lincat C = L

lin f = t

param P = C | … | C

oper h : T = t



Abstract and concrete syntax: examples
-- abstract syntax = LF

cat Prop ; Term

fun commutative : Term -> Prop

def commutative f = 

  forall Obj (\x, y ->

     Id Obj (f x y) (f y x) 

-- concrete syntax

lincat Prop, Term = Str

lin commutative x = 

     x ++ "is commutative"



Concrete syntax: parameters and operations
-- abstract syntax = LF

cat Prop ; Term

fun commutative : Term -> Prop

-- concrete syntax for English

lincat 

  Prop = Str

  Term = {s : Str ; n : Number}

lin commutative x = x.s ++ 

   copula ! x.n ++ "commutative"

param 

  Number = Sg | Pl

oper 

  copula : Number => Str =

    table {Sg => "is" ; Pl => "are"}



Concrete syntax: parameters and operations
-- abstract syntax = LF

cat Prop ; Term

fun commutative : Term -> Prop

-- concrete syntax for French

lincat 

  Prop = Mood => Str

  Term = {s : Str ; g : Gender ; n : Number}

lin commutative x = \\m => x.s ++ 

   copula ! m ! n ++ 

   mkA "commutatif" ! x.g ! x.n

param 

   Number = Sg | Pl 

   Gender = Masc | Fem 

   Mood = Ind | Subj 

oper

  mkA : Str -> Gender => Number = Str = …  

  copula : Mood => Number => Str = … 



Reversible mappings

Abstract syntax

Concrete syntax

linearization parsing



Multilingual grammars

Abstract syntax

Concrete syntax 
2:

English

linearization parsing

Concrete syntax 1:
Lean

Concrete syntax 3:
French







Fluent
- NLG, almost compositional functions
- GF RGL

Productive
- GF RGL
- lexicon and grammar extraction

Multilingual
- Dedukti
- GF      . 



Productive



RGL =
Resource 
Grammar
Library

morphology and 
syntax for ~50 
languages 

http://www.grammaticalframework.org/lib/doc/synopsis/

-- inflection of French adjectives, slightly simplified

mkA : Str -> A = \adj ->
    case adj of {
      _ + "eux"=> <adj, init adj + "se", adj, init adj + "ses"> ;
      _ + "al" => <adj, adj + "e", init adj + "ux", adj + "es"> ;
      _ + "en" => <adj, adj + "ne", adj + "s", adj + "nes"> ;
      _ + "el" => <adj, adj + "le", adj + "s", adj + "les"> ;
      x + "er" => <adj, x + "ère", adj + "s", x + "ères"> ;
      _ + "if" => <adj, init adj + "ve", adj + "s", init adj + "ves"> ;
      _ + "s"  => <adj, adj + "e", adj, adj + "es"> ;
      _ + "e"  => <adj, adj, adj + "s", adj + "s"> ;
      _        => <adj, adj + "e", adj + "s", adj + "es"> 
      } ;

http://www.grammaticalframework.org/lib/doc/synopsis/


RGL 

syntactic combination 
API

shared by all 
languages in the 
library

usable as functor 
interface + instances

http://www.grammaticalframew
ork.org/lib/doc/synopsis/

http://www.grammaticalframework.org/lib/doc/synopsis/
http://www.grammaticalframework.org/lib/doc/synopsis/


Concrete syntax: functor over the RGL
-- abstract syntax code

cat Prop ; Term
fun commutative : Term -> Prop

-- shared functor code

lincat 
  Prop = Cl
  Term = NP

lin 
  commutative x = 
     mkCl x commutative_A

-- added code for each language

-- Eng

  commutative_A = 

    mkA "commutative"   

-- Fre

  commutative_A =

    mkA "commutatif"  

-- Fin

  commutative_A =

    mkA "kommutatiivinen"    

  



Context-free expansions of   'commutative : Term -> Prop' 
Prop_1_0  ::= Term_5 "is" "commutative"
Prop_1_0  ::= Term_6 "are" "commutative"
Prop_1_2  ::= "are" Term_6 "commutative"
Prop_1_2  ::= "is" Term_5 "commutative"
Prop_1_3  ::= Term_5 "is" "not" "commutative"
Prop_1_3  ::= Term_6 "are" "not" "commutative"
Prop_1_5  ::= "are" Term_6 "not" "commutative"
Prop_1_5  ::= "is" Term_5 "not" "commutative"
Prop_1_6  ::= Term_5 "isn't" "commutative"
Prop_1_6  ::= Term_6 "aren't" "commutative"
Prop_1_7  ::= Term_5 "isn't" "commutative"
Prop_1_7  ::= Term_6 "aren't" "commutative"
Prop_1_8  ::= "aren't" Term_6 "commutative"
Prop_1_8  ::= "isn't" Term_5 "commutative"



Context-free expansions of   'commutative : Term -> Prop' 
Prop_1_0  ::= Term_5 "is" "commutative"
Prop_1_0  ::= Term_6 "are" "commutative"
Prop_1_2  ::= "are" Term_6 "commutative"
Prop_1_2  ::= "is" Term_5 "commutative"
Prop_1_3  ::= Term_5 "is" "not" "commutative"
Prop_1_3  ::= Term_6 "are" "not" "commutative"
Prop_1_5  ::= "are" Term_6 "not" "commutative"
Prop_1_5  ::= "is" Term_5 "not" "commutative"
Prop_1_6  ::= Term_5 "isn't" "commutative"
Prop_1_6  ::= Term_6 "aren't" "commutative"
Prop_1_7  ::= Term_5 "isn't" "commutative"
Prop_1_7  ::= Term_6 "aren't" "commutative"
Prop_1_8  ::= "aren't" Term_6 "commutative"
Prop_1_8  ::= "isn't" Term_5 "commutative"

Prop_1_0  ::= Term_1 "est" "commutatif"
Prop_1_0  ::= Term_2 "n'est" "commutatif"
Prop_1_0  ::= Term_3 "sont" "commutatifs"
Prop_1_0  ::= Term_4 "ne" "sont" "commutatifs"
Prop_1_1  ::= Term_1 "soit" "commutatif"
Prop_1_1  ::= Term_2 "ne" "soit" "commutatif"
Prop_1_1  ::= Term_3 "soient" "commutatifs"
Prop_1_1  ::= Term_4 "ne" "soient" "commutatifs"
Prop_1_10 ::= "n'est" Term_1 "commutatif"
Prop_1_10 ::= "n'est" Term_2 "commutatif"
Prop_1_10 ::= "ne" "sont" Term_3 "commutatifs"
Prop_1_10 ::= "ne" "sont" Term_4 "commutatifs"
Prop_1_11 ::= "ne" "soient" Term_3 "commutatifs"
Prop_1_11 ::= "ne" "soient" Term_4 "commutatifs"
Prop_1_11 ::= "ne" "soit" Term_1 "commutatif"
Prop_1_11 ::= "ne" "soit" Term_2 "commutatif"
Prop_1_2  ::= Term_1 "n'est" "pas" "commutatif"
Prop_1_2  ::= Term_2 "n'est" "pas" "commutatif"
Prop_1_2  ::= Term_3 "ne" "sont" "pas" "commutatifs"
Prop_1_2  ::= Term_4 "ne" "sont" "pas" "commutatifs"
Prop_1_3  ::= Term_1 "ne" "soit" "pas" "commutatif"
Prop_1_3  ::= Term_2 "ne" "soit" "pas" "commutatif"
Prop_1_3  ::= Term_3 "ne" "soient" "pas" "commutatifs"
Prop_1_3  ::= Term_4 "ne" "soient" "pas" "commutatifs"
Prop_1_4  ::= Term_1 "n'est" "commutatif"
Prop_1_4  ::= Term_2 "n'est" "commutatif"
Prop_1_4  ::= Term_3 "ne" "sont" "commutatifs"
Prop_1_4  ::= Term_4 "ne" "sont" "commutatifs"
Prop_1_5  ::= Term_1 "ne" "soit" "commutatif"
Prop_1_5  ::= Term_2 "ne" "soit" "commutatif"
Prop_1_5  ::= Term_3 "ne" "soient" "commutatifs"
Prop_1_5  ::= Term_4 "ne" "soient" "commutatifs"
Prop_1_6  ::= "est" Term_1 "commutatif"
Prop_1_6  ::= "n'est" Term_2 "commutatif"
Prop_1_6  ::= "ne" "sont" Term_4 "commutatifs"
Prop_1_6  ::= "sont" Term_3 "commutatifs"
Prop_1_7  ::= "ne" "soient" Term_4 "commutatifs"
Prop_1_7  ::= "ne" "soit" Term_2 "commutatif"
Prop_1_7  ::= "soient" Term_3 "commutatifs"
Prop_1_7  ::= "soit" Term_1 "commutatif"
Prop_1_8  ::= "n'est" "pas" Term_1 "commutatif"
Prop_1_8  ::= "n'est" "pas" Term_2 "commutatif"
Prop_1_8  ::= "ne" "sont" "pas" Term_3 "commutatifs"
Prop_1_8  ::= "ne" "sont" "pas" Term_4 "commutatifs"
Prop_1_9  ::= "ne" "soient" "pas" Term_3 "commutatifs"
Prop_1_9  ::= "ne" "soient" "pas" Term_4 "commutatifs"
Prop_1_9  ::= "ne" "soit" "pas" Term_1 "commutatif"
Prop_1_9  ::= "ne" "soit" "pas" Term_2 "commutatif"



From Dedukti to GF



-- Dedukti.bnf

MJmts. Module ::= [Jmt] ;

terminator Jmt "" ;

comment "(;" ";)" ;
comment "#" ; ----

JStatic.  Jmt ::= QIdent ":" Exp "." ;
JDef.     Jmt ::= "def" QIdent MTyp MExp "." ;
JInj.     Jmt ::= "inj" QIdent MTyp MExp "." ;
JThm.     Jmt ::= "thm" QIdent MTyp MExp "." ;
JRules.   Jmt ::= [Rule] "." ;

RRule.  Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule "" ;

separator Pattbind "," ;

MTNone. MTyp ::= ;
MTExp.  MTyp ::= ":" Exp ;

MENone. MExp ::= ;
MEExp.  MExp ::= ":=" Exp ;

EIdent.  Exp9 ::= QIdent ;
EApp.    Exp5 ::= Exp5 Exp6 ;
EAbs.    Exp2 ::= Bind "=>" Exp2 ;
EFun.    Exp1 ::= Hypo "->" Exp1 ;

coercions Exp 9 ;

–- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_' | '!' | '?' | '\'')+ 
('.' (letter | digit | '_' | '!' | '?' | '\'')+)? ;

-- MathCore.gf

abstract MathCore =
  Terms, UserConstants 
  ** {
cat
  Jmt ;
  Exp ;
  Exps ;
  Prop ;
  Kind ;
  Hypo ;
  [Hypo] ;
  Proof ;
  Label ;
  -- plus more categories
fun
  ThmJmt : Label -> [Hypo] -> Prop -> Proof -> Jmt ;
  AxiomJmt : Label -> [Hypo] -> Prop -> Jmt ;
  DefPropJmt : Label -> [Hypo] -> Prop -> Prop -> Jmt ;
  DefKindJmt : Label -> [Hypo] -> Kind -> Kind -> Jmt ;
  DefExpJmt  : Label -> [Hypo] -> Exp -> Kind -> Exp -> Jmt ;
  AxiomPropJmt : Label -> [Hypo] -> Prop -> Jmt ;
  AxiomKindJmt : Label -> [Hypo] -> Kind -> Jmt ;
  AxiomExpJmt  : Label -> [Hypo] -> Exp -> Kind -> Jmt ;

  AppExp : Exp -> Exps -> Exp ;
  AbsExp : [Ident] -> Exp -> Exp ;
  TermExp : Term -> Exp ;
  KindExp : Kind -> Exp ;
  TypedExp : Exp -> Kind -> Exp ;

  AndProp : [Prop] -> Prop ;
  OrProp : [Prop] -> Prop ;
  IfProp : Prop -> Prop -> Prop ;
  IffProp : Prop -> Prop -> Prop ;
  NotProp : Prop -> Prop ;
  -- plus many more functions



-- Dedukti.bnf

JDef. Jmt ::= "def" QIdent MTyp MExp "." ;

-- MathCore.gf

DefPropJmt :
  Label -> [Hypo] -> Prop -> Prop -> Jmt ;

DefKindJmt : 
  Label -> [Hypo] -> Kind -> Kind -> Jmt ;

DefExpJmt  : 
  Label -> [Hypo] -> Exp -> Kind -> Exp -> Jmt ;

ThmJmt : 
  Label -> [Hypo] -> Prop -> Proof -> Jmt ;



Dedukti Exp GF category linearization linguistic category

union A B Exp the union of A and B noun phrase

Nat Kind natural number common noun

divisible 9 3 Prop 9 is divisible by 3 sentence

oddS 0 evenZ Proof 0 is even. Therefore 1 is odd. text

From formal Exp to linguistic categories



abstract BaseConstants = {

-- GF cat         usage                           example
—-------------------------------------------------------------------
  Noun ;       -- Kind                         -- set
  Fam ;        -- Kind -> Kind                 -- list of integers
  Adj ;        -- Exp -> Prop                  -- even
  Verb ;       -- Exp -> Exp                   -- converge
  Reladj ;     -- Exp -> Exp -> Prop           -- divisible by
  Relverb ;    -- Exp -> Exp -> Prop           -- divide
  Relnoun ;    -- Exp -> Exp -> Prop           -- root of
  Name ;       -- Exp                          -- contradiction
  Fun ;        -- [Exp] -> Exp                 -- radius of
  Label ;      -- Exp                          -- theorem 1

  Set ;        -- Kind | Term                  -- integer, Z
  Const ;      -- Exp | Term                   -- the empty set, Ø
  Oper ;       -- Exp -> Exp -> Exp  | Term    -- the sum of, +
  Compar ;     -- Exp -> Exp -> Prop | Formula -- greater than, >
  Comparnoun ; -- Exp -> Exp -> Prop | Formula -- a subset of, \sub



(; BaseConstants.dk ;)

(; constants defined in a lexicon ;)

Nat : Set.
Int : Set.
Rat : Set.
Real : Set.

Eq : Elem Real -> Elem Real -> Prop.
Lt : Elem Real -> Elem Real -> Prop.
Gt : Elem Real -> Elem Real -> Prop.

plus : (x : Elem Real) -> (y : Elem Real) -> Elem Real.
minus : Elem Real -> Elem Real -> Elem Real.
times : Elem Real -> Elem Real -> Elem Real.

even : Elem Int -> Prop.
def odd : Elem Int -> Prop := n => not (even n).

# base_constant_data.dkgf

# for translating between Dedukti and GF abstract syntax

Nat BASE Set natural_Set
Int BASE Set integer_Set
Rat BASE Set rational_Set
Real BASE Set real_Set

Eq BASE Compar Eq_Compar
Lt BASE Compar Lt_Compar
Gt BASE Compar Gt_Compar

plus BASE Oper plus_Oper
minus BASE Oper minus_Oper
times BASE Oper times_Oper

even BASE Adj even_Adj
odd BASE Adj odd_Adj

# for generating GF linearization rules

#LIN Eng natural_Set = mkSet "N" "natural" number_N
#LIN Fre natural_Set = mkSet L.natural_Set "naturel" nombre_N
#LIN Swe natural_Set = mkSet L.natural_Set "naturlig" tal_N 

#LIN Eng even_Adj = mkAdj "even"
#LIN Fre even_Adj = mkAdj "pair"
#LIN Swe even_Adj = mkAdj "jämn"

# for converting identifiers from third-party projects

le ALIAS matita Leq

Symbol tables Dedukti ←→ GF



Lexicon extraction



def sphenic : Nat -> Prop 
  := … 
(; GF: sphenic number ;)

sphenic Adj spenic_Adj

#LIN Eng sphenic_Adj = mkAdj "sphenic"
#LIN Fre sphenic_Adj = mkAdj "sphénique"
#LIN Swe sphenic_Adj = mkAdj "sfenisk"

# from Wikidata

{"Q638185": {
  "pl": "Liczby sfeniczne",
  "de": "sphenische Zahl",
  "en": "sphenic number",
  "es": "número esfénico",
  "fr": "nombre sphénique", 
  "zh": "楔形数", 
  "sv": "sfeniskt tal",
  "ta": "ஸ்ஃபனீிக் எண்",
  }
}

lexical rule extraction

AR, Building Grammar Libraries for Mathematics and 
Avoiding Manual Work.. Presentation at Hausdorff 
Center for Mathematics, 2024, 
https://www.youtube.com/watch?v=EQ-k_JQ7fDM&t=5s  

https://www.youtube.com/watch?v=EQ-k_JQ7fDM&t=5s


def sphenic : (p : Elem Nat) -> Prop := p =>
  exists Nat (k => exists Nat (m => exists Nat (n =>
    and (and (and (prime k) (prime m)) (prime n))
      (and (and (Lt k m) (Lt m n))
        (Eq (times (times k m) n) p))))).



def sphenic : (p : Elem Nat) -> Prop := p =>
  exists Nat (k => exists Nat (m => exists Nat (n =>
    and (and (and (prime k) (prime m)) (prime n))
      (and (and (Lt k m) (Lt m n))
        (Eq (times (times k m) n) p))))).



def sphenic : (p : Elem Nat) -> Prop := p =>
  exists Nat (k => exists Nat (m => exists Nat (n =>
    and (and (and (prime k) (prime m)) (prime n))
      (and (and (Lt k m) (Lt m n))
        (Eq (times (times k m) n) p))))).

A sphenic number is a product pqr where p, q, and r are three 
distinct prime numbers.

https://en.wikipedia.org/wiki/Sphenic_number 

https://en.wikipedia.org/wiki/Sphenic_number


Extraction functions for syntax (using the RGL)
  AdjCN : AP -> CN -> CN ;            -- continuous function

  CompoundN : N -> N -> N ;           -- function space

  IntCompoundCN : Int -> CN -> CN ;   -- 13-cube

  NameCompoundCN : PN -> CN -> CN ;   -- Lie group

  NounIntCN : CN -> Int -> CN ;       -- Grinberg graph 42

  NounPrepCN : CN -> Adv -> CN ;      -- ring of sets

  NounGenCN : CN -> NP -> CN ;        -- bishop's graph

  PositA : A -> AP ;                  -- uniform

  AdAP : AdA -> AP -> AP ;            -- almost uniform

  AAdAP : A -> AP -> AP ;             -- algebraically closed

  PastPartAP : V -> AP ;              -- connected

  PrepNP : Prep -> NP -> Adv ;        -- (integration) by parts

  -- plus some more functions, 21 functions in total 



Terminology extraction from Wikidata with UD and RGL  

                                                 Adding a new language: ~2 minutes of CPU time



Fluent
- NLG, almost compositional functions
- GF RGL

Productive
- GF RGL
- lexicon and grammar extraction

Multilingual
- Dedukti
- GF      . 



Fluent



                                                 has
natural language content that lacks 
the inherent diversity and flexibility in 
expression: they are rigid and not 
natural-language-like. 



                                                 has
natural language content that lacks 
the inherent diversity and flexibility in 
expression: they are rigid and not 
natural-language-like. 



Dedukti
                                            

                                           Informath

informalization

formalization

formal
Agda

Rocq

Lean

English

French

Swedish

MathCore

NLG

semantics

informal

to one to many

total

partial



prop110 : (a : Elem Int) -> (c : Elem Int) -> 
 Proof (and (odd a) (odd c)) -> Proof (forall  
 Int (b => even (plus (times a b) (times b c)))).



abstract Informath = MathCore ** {

fun
-- use symbolic expressions if possible
  FormulaProp : Formula -> Prop ;
  SetTerm : Set -> Term ;
  ConstTerm : Const -> Term ;
  ComparEqsign : Compar -> Eqsign ;

-- aggregation

  AndAdj : [Adj] -> Adj ;
  OrAdj : [Adj] -> Adj ;

  AndExp : [Exp] -> Exp ;
  OrExp : [Exp] -> Exp ;

-- post-quantification

  PostQuantProp : Prop -> Exp -> Prop ;

}

prop110 : (a : Elem Int) -> (c : Elem Int) -> 
 Proof (and (odd a) (odd c)) -> Proof (forall  
 Int (b => even (plus (times a b) (times b c)))).



abstract Informath = MathCore ** {

 AndAdj : [Adj] -> Adj ;

 NoIdentsKindExp : [Ident] -> Kind -> Exp ;
 

 NoKindExp : Kind -> Exp ;

}

prop50 : Proof (forall Nat 
  (n => not (and (even n) (odd n)))).

In situ quantification

  (Q x : A)B(x)  ⇒ B(Q A)

if x occurs exactly once in B:

The variable can optionally be omitted.



data Scores = Scores {
  tree_length :: Int,
  tree_depth :: Int,
  characters :: Int,
  tokens :: Int,
  subsequent_dollars :: Int,
  initial_dollars :: Int,
  extra_parses :: Int
  }

Scoring and ranking alternative phrases

These all are penalties 
- minimize some linear combination of them
- users can give weights to each score (default = 1)



$ ./RunInformath -ranking -variations -test-ambiguity test/prop110.dk
## showing a sample from 87 results, first and last included

Prop110. Let $a , c \in Z$. Then if $a$ and $c$ are odd, then $a b + b c$ is even for 
every integer $b$.

%% (Scores {tree_length = 55, tree_depth = 10, characters = 104, tokens = 40, 
subsequent_dollars = 0, initial_dollars = 0, extra_parses = 1},210)

Prop110. Let $a$ and $c$ be integers. Assume that $a$ and $c$ are odd. Then for all 
integers $b$, $a b + b c$ is even.

%% (Scores {tree_length = 55, tree_depth = 11, characters = 118, tokens = 43, 
subsequent_dollars = 1, initial_dollars = 0, extra_parses = 0},228)

Prop110. Let $a$ and $c$ be instances of integers. Assume that we can prove that $a$ 
is odd and $c$ is odd. Then we can prove that for all integers $b$, the sum of the 
product of $a$ and $b$ and the product of $b$ and $c$ is even.

%% (Scores {tree_length = 71, tree_depth = 14, characters = 230, tokens = 72, 
subsequent_dollars = 0, initial_dollars = 0, extra_parses = 2},389)

http://prop110.dk


Fluent
- NLG transformations
- GF RGL

Productive
- GF RGL
- lexicon and grammar extraction

Multilingual
- Dedukti
- GF      . 



Case studies



Thm01 : Proof (not (rational (sqrt 2))).

Thm20 : (p : Elem Nat) -> Proof (prime p) -> Proof (congruent p 1 4)
  -> Proof (exists Nat (x => exists Nat (y => Eq p (plus (square x) (square y))))).

Thm51wilson : (n : Elem Nat) -> 
  Proof (iff (prime n) (congruent (factorial (minus n 1)) (neg 1)  n)).

Thm78 : (u : Elem Vector) -> (v : Elem Vector) ->
  Proof (if (orthogonal u v) (Eq (dotProduct u v) (nd 0))).

Thm91 : (u : Elem Vector) -> (v : Elem Vector) ->
  Proof (Leq (norm (vectorPlus u v)) (plus (norm u) (norm v))).

Wiedijk's "100 theorems" (a sample)

$ make lang=Eng top100

$ make lang=Fre top100



Towards math olympiad problems (only started)

Full of expressions with three dots - typically for sums
- first step: extract the summation term
- informalization of Sigma expressions produces ambiguous sequences



Naproche-ZF (recently started)

A CNL designed to serve as input in formalization https://github.com/adelon/naproche-zf 

1. extend Informath to parse Naproche-ZF
2. obtain Dedukti code and thereby Agda, Lean, Rocq
3. obtain paraphrases and thereby synthetic training data
4. increase the parsing that targets Naproche-ZF
5. translate to other Informath languages

Issues:
- undeclared variables and their types
- getting proof objects from proof texts

$ make lang=Eng naproche

$ make lang=Fre naproche

https://github.com/adelon/naproche-zf


Generating synthetic data



Fine-tuning an LLM:
- Qwen2.5-7B-instruct

Trained with ~1000 synthetic pairs of 
(dedukti,agda,coq,lean) - (English, 
French, Swedish) with

- arithmetic
- naive set theory
- concepts for 27 of the "100 

theorems"

Tested with 57 natural native-speaker 
expressions of those theorems (by 
Nick Smallbone)

Pei Huang, Autoformalization for 
Agda via Fine-tuning Large Language 
Models, MSc thesis at Chalmers, 
2025



https://chat.mistral.ai/chat/60f44ab2-d86f-4ec2-b382-d94fd471eef0 by Josef Urban, 13 July 2025

Translate the following latex InformathEng translation problems (each is on one line) to deducti.
Do it analogously to the following extraction examples. Put the output all into one piece of text, preceded always by input (as in the 
examples).
BEGIN EXAMPLES
{"InformathEng": "thm58 . let $ A $ be a set . let $ n \\in N $ . then $ | A | = n $ , only if for all natural numbers $ k $ , if $ k \\leq n $ , then $ | 
\\binom{ A }{ k } | = \\binom{ n }{ k } $ .", "dedukti": "thm58 : ( A : Set ) -> ( n : Elem Nat ) -> Proof ( Eq ( cardinality A ) n ) -> ( k : Elem Nat ) 
-> Proof ( Leq k n ) -> Proof ( Eq ( cardinality ( combinationsFromSet A k ) ) ( binomial n k ) ) ."}
{— … 
END EXAMPLES
BEGIN TRANSLATION PROBLEMS
{"InformathEng": "Thm01f . there exists no natural number $ p $ , such that there exists a natural number $ q $ , such that the square of $ p 
$ is equal to the product of $ 2 $ and the square of $ q $ .", "dedukti":
{"InformathEng": "thm52 . let $ A $ be a set . then we can prove that $ A $ is finite , only if we can prove that the cardinality of the power set 
of $ A $ is equal to the exponentiation of $ 2 $ and the cardinality of $ A $ .", "dedukti":
— …
END TRANSLATION PROBLEMS

Sure, here are the translations of the given InformathEng statements to Dedukti:

input: {"InformathEng": "Thm01f . there exists no natural number $ p $ , such that 
there exists a natural number $ q $ , such that the square of $ p $ is equal to the 
product of $ 2 $ and the square of $ q $ .", "dedukti": "Thm01f : Proof ( not ( exists 
Nat ( p => exists Nat ( q => Eq ( square p ) ( times 2 ( square q ) ) ) ) ) ) ."}
— …

https://chat.mistral.ai/chat/60f44ab2-d86f-4ec2-b382-d94fd471eef0


Conclusion



Symbolic informalization can be

- natural and fluent
- by extending CNL towards the  full language of mathematics

- feasible to develop
- by Dedukti, GF, and rule extraction

- shared by different formal and informal languages
- by Dedukti and GF interlinguas

- inverted to autoformalization
- natively, by reversilibility of GF
- as backup, by fine-tuned LLM + feedback informalization



Symbolic informalization is

- based on well-understood compiler-like techniques

- potentially 100% reliable

- fast and energy-efficient

- a natural extension of formal proof techniques

- an integral part of reliable AI systems for mathematics
- and other fields where formalization is possible



Some future work



Improve the informalization of proofs

- combine proof terms with scripts to identify crucial steps ?

- refactor proofs by creating lemmas !

-- the current syntax of proofs - minimal but complete

AbsProof : ListHypo -> Proof -> Proof ;
AppProof : ProofExp -> ListProof -> Proof ;

AppProofExp : ProofExp -> Exps -> ProofExp ;
LabelProofExp : Label -> ProofExp ;



Refine the evaluation criteria for autoformalization

- BLEU score and edit distance are too superficial
- logical equivalence is too liberal
- definitional equality is also too liberal



Create APIs to connect with proof systems

- use Informath as a library or a plugin component
- to enable natural language interaction and documentation
- GF is more powerful than mixfix and similar syntax extensions

Natural language is the ultimate syntactic sugar!



Exploit multilinguality

- to generate Wikipedia articles
- to translate Math Olympiad problems



https://github.com/aarneranta/informath 

thanks : Phrase

thanks
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Danke
tack

https://github.com/aarneranta/informath

