Symbolic Informalization:
Fluent, Productive, Multilingual

MathCompLing, Institut Pascal, Orsay, 15 September 2025

(Extended from AITP, Aussois, 2 September 2025
also based on ENS Saclay April 2025 and others)

Aarne Ranta

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

aarne.ranta@cse.qu.se

mailto:aarne.ranta@cse.gu.se

Background:

How could Al solve mathematical problems?

Math, Inc.

A new company dedicated to autoformalization and the creation of verified
superintelligence.

Introducing Gauss, an agent for autoformalization
Solve math, solve everything.

https://www.math.inc/

https://www.math.inc/

Symbolic Al (theorem provers)
- reliable: no "hallucinations"
- restricted problem solving capacity

Neural Al (large language models)
- unreliable: "hallucinations”
- can find unexpected solutions

Federated systems

problem

LLM

guess

Theorem
Prover

accept

reject

2024: "Al achieves silver-medal standard solving International
Mathematical Olympiad problems"

Train

Informal

Formal

problems Formalize prOb|emS o= Search
1M Formalizer ~100M Solver
network network
* AlphaZero .

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

Al achieves silver-medal standard solving International Mathematical
Olympiad problems

Train

Informal : Formal e
pr0b|ems Formalize problems Search

Solver
network

network

* AlphaZero .

"First, the problems were manually translated into formal mathematical language for
our systems to understand.”

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

Autoformalization

= automatic formalization

= automatic translation from informal to formal

A "hot topic" due to Al such as Google's AlphaProof

Symbolic autoformalization

- Controlled Natural Languages (CNLSs)
- "brittle": only covers fragments of informal mathematics

Neural autoformalization

- LLMs "learn" to autoformalize from large amounts of data
- unreliable: typically 30% "adequate with minor corrections”
- problem: lack of training data (formal-informal pairs)

Side track:

MO 2025

IMO 2024
~
Formal
mathematics
AlphaProof &
AlphaGeometry
_

WV

IMO 2025

Informal
mathematics

Advanced Gemini
with Deep Think

At IMO 2024, AlphaGeometry and AlphaProof required experts to first translate problems from natural language into
domain-specific languages, such as Lean, and vice-versa for the proofs... This year, our advanced Gemini model operated
end-to-end in natural language.
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-th
e-international-mathematical-olympiad/

https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/

Why a side track?

Solutions had to be checked by humans

- just like the human participants' solutions
This is natural in the context of IMO competitions

But it does not scale up to enable automated, reliable Al systems.

Checked informal solutions?

problem
—_—

LLM

guess

Theorem
Prover

accept

reject

Informalizer

informal solution

>

informal explanation

>

In a wider picture

The Problem

| Program for f

= A user feeds x to the program, the program returns y.

= How can the user be sure that, indeed,

y = f(x)?

The user has no way to know.

Kurt Mehlhorn, Certifying Algorithms
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SAPJuly2014.pdf

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SAPJuly2014.pdf

A Certifying Program for a Function f

accept (x, y, w)

Certifying
program for f

A

| Checker C

-
>

reject

= On input x, a certifying program returns
the function value y and a certificate (withess) w

" wproves y = f(x) even to a dummy,

® and there is a simple program C, the checker, that verifies the
validity of the proof.

Kurt Mehlhorn, Certifying Algorithms
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SAPJuly2014.pdf

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SAPJuly2014.pdf

A Certifying Program for a Function f

Certifying X
x | program for f | y | Checker C
w

= On input x, a certifying program returns
the function value y and a certificate (witness) w

= wproves y = f(x) even to a dummy,

cept (x, y, w)

reject

= and there is a simple program C, the checker, that verifies the
validity of the proof.

Function value y:
- informal proof from LLM

Proof w:
- the corresponding formal proof

Checker C:
- formal proof checker

Certifying program:
- jointly produces y and w

Remains to verify:
- that the informal proof y really
matches the formal proof w

Our most important slide

formal

informalization

<t

formalization

informal

total

partial

—_—

Don't guess if you know.

Kimmo Koskenniemi

- there is no essential need for non-symbolic (neural) informalization
- (except its allegedly low cost)

- However, (auto)formalization may require guessing
- symbolic informalization has things to contribute even there

- synthetic data generation
- verification feedback

The challenge

Multi-language Diversity Benefits Autoformalization

Albert Q. Jiang Wenda Li Mateja Jamnik
University of Cambridge University of Edinburgh University of Cambridge
qj213Q@cam.ac.uk wenda.li@ed.ac.uk mateja.jamnik@cl.cam.ac.uk

- "informalisation is much easier than formalisation"

- uses an GPT-4 to produce the dataset MMA to fine-tune LLaMA
- ~70% "more or less acceptable”

- resulting autoformalization:
- 16-18% "acceptable with minimal corrections”

betio-inforrmatizs

NeurlPS 2024,

"symbolic informalisation tools
- result in natural language content that lacks the inherent
diversity and flexibility in expression: they are rigid and not
natural-language-like.

- symbolic informalisation tools are hard to design and implement

- They also differ a lot for different formal languages, hence the
approach is not scalable for multiple formal languages. "

Our goal

Symbolic informalization that

has
results in natural language content that taeks the inherent
diversity and flexibility in expression: they are #gid-anrd+rot
natural-language-like.
feasible
symbolic informalisation tools are kard to design and implement
with proper methods

can be shared
They alse-differaot for different formal languages, hence the
approach is ret scalable for multiple formal languages. And
even for multiple natural languages.

Our goal

Symbolic informalization that

has
results in natural language content that taeks the inherent
diversity and flexibility in expression: they are #gid-anrd+rot
natural-language-like.
feasible
symbolic informalisation tools are kard to design and implement
with proper methods

can be shared
They alse-differaot for different formal languages, hence the
approach is ret scalable for multiple formal languages. And
even for multiple natural languages.

Symbolic informalization

CNL

Trybulec 1973: Mizar

Coscoy, Kahn & Théry 1994: extracting text from Coq proofs
Wenzel 1999: Isabelle-Isar

Hallgren & Ranta 2000: GF-Alfa (Agda)

Paskevich 2007: ForTheL

Cramer, Koepke & al 2009: Naproche

Humayoun & Raffalli 2011: MathNat

Pathak 2023: GF-Lean

Massot 2024: Verbose-Lean4

Kelber, Kohlhase, Schaefer & Schutz: Flexiformal mathematics, 2025

Extending pure CNL: from one to many

informalization

formal informal

¢

formalization

toone | to many

total

partial -

Symbolic vs. neural

formal

informalization (symbolic)

4’

informalization (neural)

formalization (neural)

informal

certain

uncertain

total

partial

Verification feedback

question

Formal
Human

mathematics

answer

Vision:
- the formal system is a black box that performs verification
- humans communicate with it in natural language

But how can they trust it?

even 4
not (even 5)

informalization; symbolic

autoformalization: symbolic

4 is even
5is not even

even 4
not (even 5)

NO PARSE

informalization; symbolic

autoformalization: symbolic

4 is even
5is not even

5 can't be even

even 4
not (even 5)

NO PARSE

even 5

informalization; symbolic

autoformalization: symbolic

autoformalization: LLM

4 is even
5is not even

5 can't be even

even 4
not (even 5)

NO PARSE

even 5

informalization: symbolic

autoformalization: symbolic

autoformalization: LLM

4 is even
5is not even

5 can't be even

5is even

feedback informalization:
symbolic

informalization; symbolic

Formal autoformalization: symbolic Natural
mathematics language

autoformalization: LLM

feedback informalization:
symbolic

Vision:
- the formal system is a black box that performs verification
- humans communicate with it in natural language

Symbolic informalization is a certificate of the system's
understanding.

Project Informath

- informalizing formal mathematics
- multilingual, productive, fluent

Agda

Rocq

Lean

formal

Dedukti

informalization

<
formalization

informal / English
<>
NLG
—e
MathCore < Informath : French
semantics
“ | swedish
toone | to many
total e —
partial —

https://github.com/GrammaticalFramework/informath

https://github.com/GrammaticalFramework/informath

Multilingual

Agda:

postulate propllo :
(a : Int) -> (c : Int) ->
and (odd a) (odd c) -> all Int (\ b ->
even (plus (times a b) (times b c)))

Rocq:

propl10 : forall a : Int, forall c : Int,
(odd a /\ odd c -> forall b : Int,

even (a *b +b * c)) .

Propl10. Let a,c € Z. Assume that both
a and c are odd. Then ab + bc is even for
all integers b.

Lean:

propl10 (a c : Int) (x : odd a A odd c)

V b : Int, even (@ * b + b *)

Agda:

postulate propllo :
(a : Int) -> (c : Int) ->
and (odd a) (odd c) -> all Int (\ b ->
even (plus (times a b) (times b c)))

Rocq:

propl10 : forall a : Int, forall c : Int,
(odd a /\ odd c -> forall b : Int,

even (a *b +b * c)) .

Dedukti:

proplle : (a : Elem Int) ->
(c : Elem Int) ->
Proof (and (odd a)
(odd c)) -»>
Proof (forall Int

(b => even (plus

(times a b) (times b c)))).

Propl10. Let a,c € Z. Assume that both
a and c are odd. Then ab + bc is even for
all integers b.

Lean:

propl10 (a c : Int) (x : odd a A odd c)

V b : Int, even (@ * b + b *)

Dedukti

A "logical framework based on the Al'l-calculus
modulo in which many theories and logics can be

expressed"
- Agda, HOL, Lean, Rocq (Coq), TPTP, ...

Simpler but more powerful (i.e. more liberal) than
any of these individually.

- dependent types and Pi types

- lambda abstracts

- rewrite rules

- (almost) no syntactic sugar

Similar to Martin-Lof's LF from the 1980s and to
TWELF, ALF,... (for those who remember)

https://deducteam.qithub.io/

Agda

Rocq

Lean

formal

Dedukti

https://deducteam.github.io/

Agda:

postulate propllo :
(a : Int) -> (c : Int) ->

and (odd a) (odd c) -> all Int (\ b ->
even (plus (times a b) (times b c)))

Prop110. Let a,c € Z. Assume that both
a and ¢ are odd. Then ab + bc is even for
all integers b.

Rocq:

propl10 : forall a : Int, fon
(odd a /\ odd c -> forall b

even (a *b +b * c)) .

Dedukti:

proplle : (a : Elem Int) ->
(c : Elem Int) ->
Proof (and (odd a)
(odd c)) -»>
Proof (forall Int

(b => even (plus

(times a b) (times b c)))).

Prop110. Soient a,c € Z. Supposons que
a et ¢ sont impairs. Alors ab + bc est pair
pour tous les entiers b.

Lean:

propl10 (a c : Int) (x : odd a A odd c)

V b : Int, even (@ * b + b *)

Prop110. Léat a,c € Z. Anta att bade a
och ¢ ar udda. Da ar ab + bc jamnt for
alla heltal b.

Agda:

postulate propl10 :
(a : Int) -> (c : Int) ->

and (odd a) (odd c) -> all Int (\ b ->
even (plus (times a b) (times b c)))

Prop110. Let a,c € Z. Assume that both
a and ¢ are odd. Then ab + bc is even for
all integers b.

Rocq:

propl10 : forall a : Int, fon
(odd a /\ odd c -> forall b

even (a *b + b * c)) .

Dedukti:

proplle : (a : Elem Int) ->
(c : Elem Int) ->
Proof (and (odd a)
(odd c)) -»>
Proof (forall Int

(b => even (plus

(times a b) (times b c)))).

Lean:

proplle (a c¢ : Int) (x :

V b : Int, even (@ * b + b * ¢)

odd a A odd c)

GF:

Axiomdmt (StrLabel "propl10")
(ConsHypo (LetFormulaHypo (FElem
(ConsTerm (TIdent (StrIdent "a"))
(BaseTerm (TIdent (StrIdent "c"))))
(SetTerm integer_Set))) (ConsHypo
(PropHypo (AdjProp odd_Adj (AndExp
(BaseExp (TermExp (TIdent (StrIdent
"a"))) (TermeExp (TIdent (StrIdent
"c"))))))) BaseHypo)) (PostQuantProp
(AdjProp even_Adj (TermExp
(AppOperTerm plus_Oper (TTimes (TIdent
(StrIdent "a")) (TIdent (StrIdent
"b"))) (TTimes (TIdent (StrIdent "b"))
(TIdent (StrIdent "c"))))))
(AllIdentsKindExp (BaseIdent (StrIdent
"b")) (SetKind integer_Set)))

t a,c € Z. Supposons que
airs. Alors ab + bc est pair
ntiers b.

alla heltal b.

PropII0. Lat a,c € Z. Anta att bade a
och ¢ ar udda. Da ar ab + bc jamnt for

AxiomJmt

e

\

StrLabel ConsHypo PostQuantProp
S /N T
"prop110" LetDeclarationHypo ConsHypo AdjProp AllldentsKindExp
/o /N / N\ AN
DElem PropHypo BaseHypo even_Adj TermExp Baseldent SetKind
7 | |
ConsTerm SetTerm SimpleAndProp AppOperTerm Strldent integer_Set
a | SN
Tldent BaseTerm integer Set BaseProp plus_Oper TTimes TTimes "b"
| /A / S
Strldent Tldent AdjProp AdjProp Tldent Tldent Tldent Tldent
| d EN | |
gt Strldent odd_Adj TermExp odd_Adj TermExp Strldent Strldent Strldent Strldent
el Tldent Tldent " b “p* i3
Strldent Strldent

"ot "ot
a

French

Hindi

Interlingua

Catalan

Thai

Interlude: GF

GF = Grammatical Framework

GF = Logical Framework + Grammar
First release 1998 at Xerox Research Centre Europe, Grenoble

Based on earlier work with ALF (Another LF, predecessor of Agda) 1992

Mission: formalize the grammars of the world and make them available
for computer applications.

https://www.grammaticalframework.orqg/

https://www.grammaticalframework.org/

4

~~h*t’t s://commons.wikimedia.org/wiki/Maps_of the world#/media/File:BlankMap-World-noborders.pn

RGL = Resource Grammars Library, created by the GF community 2001-2025

https://commons.wikimedia.org/wiki/Maps_of_the_world#/media/File:BlankMap-World-noborders.png

Abstract and concrete syntax: judgements

-- abstract syntax = LF -- concrete syntax
cat C lincat C = L

fun £ : T lin £ = t

Abstract and concrete syntax: examples

-- abstract syntax

cat Prop ; Term

fun commutative :

= LF

Term -> Prop

-- concrete syntax

Str

lincat Prop, Term

lin commutative x =
X ++ "is commutative"

Concrete syntax: parameters and operations

-- abstract syntax
cat Prop ; Term

fun commutative

= LF

Term -> Prop

-- concrete syntax for English

lincat
Prop = Str
Term = {s : Str ; n : Number}

lin commutative x = x.s ++
copula ! x.n ++ "commutative"

param
Number = Sg | P1

oper
copula : Number => Str =
table {Sg => "is" ; Pl => "are"

Concrete syntax: parameters and operations

-- concrete syntax for French

-- abstract syntax = LF

lincat
cat Prop ; Term Prop = Mood => Str
Term = {s : Str ; g : Gender ; n : Number}

fun commutative : Term -> Prop
lin commutative x = \\m => x.s ++

copula ' m I n ++

mkA "commutatif" ! x.g ! x.n
param

Number = Sg | P1

Gender = Masc | Fem

Mood = Ind | Subj

oper
mkA : Str -> Gender => Number = Str = ...
copula : Mood => Number => Str = ...

Reversible mappings

Abstract syntax

linearization parsing

Multilingual grammars

Abstract syntax

linearization parsing

French

Hindi

Interlingua

Catalan

Thai

Multilingual

- Dedukti
- GF

Productive

RGL =
Resource
Grammar
Library

morphology and
syntax for ~50
languages

-- inflection of French adjectives, slightly simplified

mkA : Str -> A = \adj ->

case adj of {

_ + "eux"=>
_+ "al" =»>
_+ "en" =>
_+ "el" =»>
X + "er" =>
_ o+ "if" =
_ o+ "s" =
_+ "e" =
_ =>
} s

<adj,
<adj,
<adj,
<adj,
<adj,
<adj,
<adj,
<adj,
<adj,

init adj + "se", adj, init adj + "ses"> ;

adj + "e", init adj + "ux", adj + "es"> ;

adj + "ne", adj + "s", adj + "nes"> ;

adj + "le", adj + "s", adj + "les"> ;

X + "ere", adj + "s", x + "eres"> ;

init adj + "ve", adj + "s", init adj + "ves"> ;
adj + "e", adj, adj + "es"> ;

adj, adj + "s", adj + "s"> ;

adj + "e", adj + "s", adj + "es">

http://www.grammaticalframework.org/lib/doc/synopsis/

http://www.grammaticalframework.org/lib/doc/synopsis/

RGL

syntactic combination
API

shared by all
languages in the
library

usable as functor
interface + instances

http://www.grammaticalframew
ork.org/lib/doc/synopsis/

mkCl

mkC1l

mkCl

mkCl

mkCl

mkCl

mkCl

mkCl

mkC1l

mkCl

mkCl

mkCl

mkCl

mkC1l

mkCl

mkCl

=l

NP ->A—->C

NP ->A —> NP —>ClI

NP —> A2 —> NP —> Cl

NP —> AP —> CI

NP —> NP —> ClI

NP -> N —> Cl

NP ->CN -> Cl

NP -> Adv —> ClI

NP —> VP —> CI

N — Cl

CN — ClI

NP - CI

NP ->RS —> CI

Adv —>S — CI

V —>Cl

VP ->ClI

o \in . N

she is oId

sh

sh

sh

sh

sh

sh

sh

sh

th

th

it

it

it

it

b

e APl: mkUtt (mkCl she_NP old_A)
o Afr: sy is oud

o Ara: dasué Lo

e Bul: 79 e cTapa

e Cat: ella és vella

* Chi: #t12ZH9

o Cze: je stard

e Dan: hun er gammel

e Dut: zjj is oud

e Eng: she is old

e Est: tema on vana

o Eus: hura zaharra da

 Fin: hdn on vanha

* Fre: elle est vieille

o Ger: sie ist alt

o Gre: autn sivat maAd

* Hin: 78 g1 8

» Ice: constant not found: old_A
* Ita: lei é vecchia

o Jpn: HKILE L)

e Lat: vetus est

e Lav: vipa ir veca

o MIt: hi hija gadima

o Mon: TyyHuii XyyumH 6avigar Hb
* Nep: 3 gel /67

* Nno: ho er gammal

http://www.grammaticalframework.org/lib/doc/synopsis/
http://www.grammaticalframework.org/lib/doc/synopsis/

Concrete syntax: functor over the RGL

-- abstract syntax code

cat Prop ; Term
fun commutative : Term -> Prop

-- shared functor code

lincat
Prop = Cl
Term = NP
lin

commutative x =
mkCl x commutative A

-- added code for each language

-- Eng
commutative A =
mkA "commutative"

-- Fre
commutative A =

mkA "commutatif"

-- Fin
commutative A =
mkA "kommutatiivinen"

Context-free expansions of 'commutative : Term -> Prop’

Prop_ 1 © ::= Term_5 "is" "commutative"

Prop_ 1 © ::= Term_6 "are" "commutative"
Prop_ 1 2 ::= "are" Term_6 "commutative"
Prop_ 1 2 ::= "is" Term_5 "commutative"

Prop_1 3 ::= Term_5 "is" "not" "commutative"
Prop_1 3 ::= Term_6 "are" "not" "commutative"
Prop_ 1 5 ::= "are" Term_6 "not" "commutative"
Prop_ 1 5 ::= "is" Term_5 "not" "commutative"
Prop_ 1 6 ::= Term 5 "isn't" "commutative"
Prop_ 1 6 ::= Term_6 "aren't" "commutative"
Prop_ 1 7 ::= Term 5 "isn't" "commutative"
Prop_ 1 7 ::= Term_6 "aren't" "commutative"
Prop_1 8 ::= "aren't" Term_6 "commutative"
Prop_ 1 8 ::= "isn't" Term 5 "commutative"

Context-free expansions of 'commutative

: Term -> Prop'

Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_

HHHHHHHHHHHHHH
oooo\l\lc\c\u-nmwwmm@@

Term_5 "is" "commutative"

Term_6 "are" "commutative"

"are" Term_6 "commutative"

"is" Term_5 "commutative"

Term_5 "is" "not" "commutative"
Term_6 "are" "not" "commutative"
"are" Term_6 "not" "commutative"
"is" Term_5 "not" "commutative"
Term_5 "isn't" "commutative"
Term_6 "aren't" "commutative"
Term_5 "isn't" "commutative"
Term_6 "aren't" "commutative"

"commutative"
"commutative"

"aren't" Term_6
"isn't" Term_5

Term_1 "est"

= Term_4 "ne"

Term_2 "ne"

Term_4 "ne"

Term_3 "ne"
Term_4 "ne"
= Term_1 "ne"
Term_2 "ne"
= Term_3 "ne"
= Term_4 "ne"

= Term_3 "ne"
Term_4 "ne"
Term_1 "ne"
Term_2 "ne"
= Term_3 "ne"
Term_4 "ne"
"est" Term_1

"ne" "sont"
"ne" "sont"

"he" "soit"
"ne" "soit"

Term_2 "n'est"
Term_3 "sont"
"sont" "commutatifs"
Term_1 "soit"
"soit" "commutatif"

= Term_3 "soient" "commutatifs"
"soient" "commutatifs"
"n'est" Term_:
"n'est" Term_.
"ne" "sont" Term_3 "commutatifs"
"ne" "sont" Term_4 "commutatifs"
"ne" "soient"
"ne" "soient"
"ne" "soit" Term_1 "commutatif"
"ne" "soit" Term_2 "commutatif"
= Term_1 "n'est"
Term_2 "n'est"

"n'est" Term_.
"ne" "sont" Term_4 "commutatifs"
"sont" Term_3
"ne" "soient"
"ne" "soit" Term_2 "commutatif"
"soient" Term_3 "commutatifs"

"soit" Term_1
"n'est" "pas"
"n'est" "pas"
"pas" Term_3 "commutatifs"
"pas" Term_4 "commutatifs"
"ne" "soient"
"ne" "soient"
"pas" Term_1 "commutatif"
"pas" Term_2 "commutatif"

"commutatif"
"commutatif"
"commutatifs"

"commutatif"

1 "commutatif"
2 "commutatif"

Term_3 "commutatifs"
Term_4 "commutatifs"

"pas" "commutatif"
"pas" "commutatif"

"sont" "pas" "commutatifs"
"sont" "pas" "commutatifs"
"soit" "pas" "commutatif"
"soit" "pas" "commutatif"
"soient" "pas" "commutatifs"
"soient" "pas" "commutatifs"
Term_1 "n'est"
Term_2 "n'est"
"sont" "commutatifs"
"sont" "commutatifs"
"soit" "commutatif"
"soit" "commutatif"
"soient" "commutatifs"
"soient" "commutatifs"

"commutatif"
"commutatif"

"commutatif"
2 "commutatif"

"commutatifs"
Term_4 "commutatifs"

"commutatif"
Term_1 "commutatif"
Term_2 "commutatif"

"pas" Term_3 "commutatifs"
"pas" Term_4 "commutatifs"

From Dedukti to GF

-- Dedukti.bnf

MImts. Module ::= [Imt] ;

terminator Imt

comment "(;" ";)" ;
comment "#" ; ----
JStatic. JImt ::= QIdent ":" Exp "." ;

JDef. Jmt ::= "def" QIdent MTyp MExp
JInj. Jmt ::= "inj" QIdent MTyp MExp
JThm. Jmt ::= "thm" QIdent MTyp MExp

non
E 3
non
E 3
non
E 3

JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule ""

separator Pattbind "," ;

MTNone. MTyp ::= ;

MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;

MEExp. MExp ::= ":=" Exp ;

EIdent. Exp9 ::= QIdent ;

EApp. Exp5 ::= Exp5 Exp6 ;

EAbs. Exp2 ::= Bind "=>" Exp2 ;

EFun. Expl ::= Hypo "->" Expl ;

coercions Exp 9 ;

-- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_* | "!" | 2" | "\"")+
('." (letter | digit | '_* | *!" | 2" | "\"")+)? ;

-- MathCore.gf

abstract MathCore =
Terms, UserConstants
*% {

cat
mt
Exp ;
Exps ;
Prop ;
Kind ;
Hypo ;
[Hypo] ;
Proof ;
Label ;
-- plus more categories

fun
ThmImt : Label -> [Hypo] -> Prop -> Proof -> Imt ;
Axiomdmt : Label -> [Hypo] -> Prop -> Imt ;
DefPropJmt : Label -> [Hypo] -> Prop -> Prop -> Imt ;
DefKindJmt : Label -> [Hypo] -> Kind -> Kind -> JImt ;
DefExpImt : Label -> [Hypo] -> Exp -> Kind -> Exp -> JImt ;
AxiomPropJmt : Label -> [Hypo] -> Prop -> Imt ;
AxiomKindJImt : Label -> [Hypo] -> Kind -> JImt ;
AxiomExpJmt : Label -> [Hypo] -> Exp -> Kind -> JImt ;

AppExp : Exp -> Exps -> Exp ;
AbsExp : [Ident] -> Exp -> Exp ;
TermeExp : Term -> Exp ;

KindExp : Kind -> Exp ;

TypedExp : Exp -> Kind -> Exp ;

AndProp : [Prop] -> Prop ;
OrProp : [Prop] -> Prop ;

IfProp : Prop -> Prop -> Prop ;
IffProp : Prop -> Prop -> Prop ;
NotProp : Prop -> Prop ;

-- plus many more functions

-- Dedukti.bnf

JDef. Imt ::= "def" QIdent MTyp MExp "." ;

-- MathCore.gf

DefPropJImt :
Label -> [Hypo] -> Prop -> Prop -> Imt ;

DefKindJImt :
Label -> [Hypo] -> Kind -> Kind -> Imt ;

DefExpImt :
Label -> [Hypo] -> Exp -> Kind -> Exp -> Imt ;

ThmImt :
Label -> [Hypo] -> Prop -> Proof -> Imt ;

From formal Exp to linguistic categories

union A B Exp the union of A and B noun phrase
Nat Kind natural number common noun
divisible 9 3 | Prop 9 is divisible by 3 sentence
oddS @ evenZ Proof 0 is even. Therefore 1 is odd. | text

abstract BaseConstants = {

-- GF cat usage example
Noun ; -- Kind -- set
Fam ; -- Kind -> Kind -- list of integers
Adj ; -- Exp -> Prop -- even
Verb ; -- Exp -> EXp -- converge
Reladj ; -- Exp -> Exp -> Prop -- divisible by
Relverb ; -- Exp -> Exp -> Prop -- divide
Relnoun ; -- Exp -> Exp -> Prop -- root of
Name ; -- Exp -- contradiction
Fun ; -- [Exp] -> Exp -- radius of
Label ; -- Exp -- theorem 1
Set ; -- Kind | Term -- integer, Z
Const ; -- Exp | Term -- the empty set, @
Oper ; -- Exp -> Exp -> Exp | Term -- the sum of, +
Compar ; -- EXp -> Exp -> Prop | Formula -- greater than, >

Comparnoun ; -- Exp -> Exp -> Prop | Formula -- a subset of, \sub

Symbol tables Dedukti «—— GF

(; BaseConstants.dk ;)

(; constants defined in a lexicon ;)

Nat : Set.
Int : Set.
Rat : Set.
Real : Set.

Eq : Elem Real -> Elem Real -> Prop.
Lt : Elem Real -> Elem Real -> Prop.
Gt : Elem Real -> Elem Real -> Prop.

plus : (x : Elem Real) -> (y : Elem Real) -> Elem Real.
minus : Elem Real -> Elem Real -> Elem Real.
times : Elem Real -> Elem Real -> Elem Real.

even : Elem Int -> Prop.
def odd : Elem Int -> Prop := n => not (even n).

base_constant_data.dkgf
for translating between Dedukti and GF abstract syntax

Nat BASE Set natural_Set
Int BASE Set integer_Set
Rat BASE Set rational_Set
Real BASE Set real_Set

Eq BASE Compar Eq_Compar
Lt BASE Compar Lt_Compar
Gt BASE Compar Gt_Compar

plus BASE Oper plus_Oper
minus BASE Oper minus_Oper
times BASE Oper times_Oper

even BASE Adj even_Adj
odd BASE Adj odd_Adj

for generating GF linearization rules
#LIN Eng natural_Set = mkSet "N" "natural" number_N

#LIN Fre natural_Set mkSet L.natural_Set "naturel" nombre_N
#LIN Swe natural_Set = mkSet L.natural_Set "naturlig" tal_N

#LIN Eng even_Adj = mkAdj "even"
#LIN Fre even_Adj mkAdj "pair"
#LIN Swe even_Adj mkAdj "jamn"

for converting identifiers from third-party projects

le ALIAS matita Leq

L exicon extraction

def sphenic : Nat -> Prop

(; GF: sphenic number ;)

lexical rule extraction

from Wikidata

{"0638185": {

"pl": "Liczby sfeniczne",
"de": "sphenische Zahl",
"en": "sphenic number",
"es": "numero esfénico",
"fr": "nombre sphénique",
"zh": "HERE",

"sv": "sfeniskt tal",
"ta": "en..l9euflé eTevur”,
}

sphenic Adj spenic_Adj

#LIN Eng sphenic_Adj
#LIN Fre sphenic_Adj
#LIN Swe sphenic_Adj

mkAdj "sphenic"
mkAdj "sphénique"
mkAdj "sfenisk"

AR, Building Grammar Libraries for Mathematics and
Avoiding Manual Work.. Presentation at Hausdorff
Center for Mathematics, 2024,
https://www.youtube.com/watch?v=EQ-k_JQ7fDM&t=5s

https://www.youtube.com/watch?v=EQ-k_JQ7fDM&t=5s

def sphenic : (p : Elem Nat) -> Prop := p =>
exists Nat (k => exists Nat (m => exists Nat (n =>
and (and (and (prime k) (prime m)) (prime n))
(and (and (Lt k m) (Lt m n))
(Eq (times (times k m) n) p))))).

def sphenic : (p : Elem Nat) -> Prop := p =>
exists Nat (k => exists Nat (m => exists Nat (n =>
and (and (and (prime k) (prime m)) (prime n))
(and (and (Lt k m) (Lt m n))
(Eq (times (times k m) n) p))))).

Definition. Let p be a natural number. Then p is sphenic, if there exist natural
numbers k, m and n, such that k, m and n are prime, £k < m < n and kmn = p.

def sphenic : (p : Elem Nat) -> Prop := p =>
exists Nat (k => exists Nat (m => exists Nat (n =>
and (and (and (prime k) (prime m)) (prime n))
(and (and (Lt k m) (Lt m n))
(Eq (times (times k m) n) p))))).

Definition. Let p be a natural number. Then p is sphenic, if there exist natural
numbers k, m and n, such that k, m and n are prime, £k < m < n and kmn = p.

A sphenic number is a product pgr where p, q, and r are three
distinct prime numbers.

https://en.wikipedia.ora/wiki/Sphenic_number

https://en.wikipedia.org/wiki/Sphenic_number

Extraction functions for syntax (using the RGL)

AdjCN : AP -> CN -> CN ; -- continuous function
CompoundN : N -> N -> N ; -- function space
IntCompoundCN : Int -> CN -> CN ; -- 13-cube
NameCompoundCN : PN -> CN -> CN ; -- Lie group

NounIntCN : CN -> Int -> CN ; -- Grinberg graph 42
NounPrepCN : CN -> Adv -> CN ; -- ring of sets
NounGenCN : CN -> NP -> CN ; -- bishop's graph
PositA : A -> AP ; -- uniform

AdAP : AdA -> AP -> AP ; -- almost uniform

AAdAP : A -> AP -> AP ; -- algebraically closed
PastPartAP : V -> AP ; -- connected

PrepNP : Prep -> NP -> Adv ; -- (integration) by parts

-- plus some more functions, 21 functions in total

Terminology extraction from Wikidata with UD and RGL

language | labels covered successful parses

Eng 5188 96% | 3872 74%
Fin 834 15% | 328 39%
Fre 3230 60% | 2199 68%
Ger 2956 54% | 2609 88%
Ita 2019 37% | 1390 68%
Por 2858 53% | 1717 60%
Spa 2322 43% | 1633 70%
Swe 1345 24% | 826 61%

Adding a new language: ~2 minutes of CPU time

Productive

- GF RGL
- lexicon and grammar extraction

Fluent

has
natural language content that taeks
the inherent diversity and flexibility in

expression: they are figig-anrerot

natural-language-like.

has
natural language content that taeks
the inherent diversity and flexibility in

expression: they are figig-anrerot

natural-language-like.

Mohan Ganesalingam

The Language
of Mathematics

LNCS 7805

A Linguistic and Philosophical Investigation

e\j(’,\'y QGQ p

S - %6,
his givag

%’ o " 3

-z

Agda

Rocq

Lean

formal

Dedukti

informalization

<

formalization

English

French

Swedish

to one

to many

total

partial

propl110 : (a : Elem Int) -> (c : Elem Int) ->
Proof (and (odd a) (odd c)) -> Proof (forall
Int (b => even (plus (times a b) (times b c)))).

Prop110. For all instances a and c of integers, if we can prove that a is odd and
¢ is odd, then we can prove that for all integers b, the sum of the product of a
and b and the product of b and c is even.

abstract Informath = MathCore ** {

fun

-- use symbolic expressions if possible
FormulaProp : Formula -> Prop ;
SetTerm : Set -> Term ;

ConstTerm : Const ->—?zFE—?____——__““‘-————————

ComparEqsign : Compar -> Eqsign ;

-- aggregation "/’//”/’,/’,,—»/””//’}//,/
AndAdj : [Adj] -> Adj ;
OorAdj : [Adj] -> Adj ;
AndExp : [Exp] -> Exp ;
OrExp : [Exp] -> Exp ;

-- post-quantification

PostQuantProp : Prop -> Exp -> Prop ;

propl10 : (a : Elem Int) -> (c : Elem Int) ->
Proof (and (odd a) (odd c)) -> Proof (forall
Int (b => even (plus (times a b) (times b c)))).

Propl10. For all instances a and c of integers, if we can prove that a is odd and
c is odd, then we can prove that for all integers b, the sum of the product of a
and b and the product of b and c is even.

S
Propl110. Let a,c € Z. Assume that both_a and ¢ are odd. Then for all integers

b, ab + bc is even.

a,c € Z. Assume that both a and ¢ are odd. Then ab+ bc is even
or all integers b.

abstract Informath = MathCore ** { In situ quantification

(Qx:A)B(x) = B(QA)

if x occurs exactly once in B:
AndAdj : [Adj] -> Adj ;

The variable can optionally be omitted.

\ prop50 : Proof (forall Nat
(n => not (and (even n) (odd n)))).

NoIdentsKindExp : [Ident] -> Kind -> Exp ; Prop50. We can prove that for all natural numbers n, it is not the case that n

is even and n is odd.
Prop50. For all natural numbers n, n is not both even and odd.

NoKindExp S Gl EXp ; \ Prop50. No natural number 7 is both even and odd.

—> Prop50. No natural number is both even and odd.

Scoring and ranking alternative phrases

data Scores = Scores {
tree_length :: Int,
tree_depth :: Int,
characters :: Int,
tokens :: Int,
subsequent_dollars :: Int,
initial dollars :: Int,
extra_parses :: Int

}

These all are penalties
- minimize some linear combination of them
- users can give weights to each score (default = 1)

$./RunInformath -ranking -variations -test-ambiguity test/prop110.dk
showing a sample from 87 results, first and last included

Propl10. Let $a , ¢ \in Z$. Then if a and c are odd, then $a b + b c$ is even for
every integer b.

%% (Scores {tree_length = 55, tree_depth = 10, characters
subsequent_dollars = @, initial _dollars = 0, extra_parses

104, tokens = 40,
1},210)

Propl10. Let a and c be integers. Assume that a and c are odd. Then for all
integers $b%$, $a b + b c$ is even.

%% (Scores {tree_length = 55, tree_depth = 11, characters
subsequent_dollars = 1, initial _dollars = 0, extra_parses

118, tokens = 43,
0},228)

Propl10. Let a and c be instances of integers. Assume that we can prove that a
is odd and c is odd. Then we can prove that for all integers b, the sum of the
product of a and b and the product of b and c is even.

%% (Scores {tree_length = 71, tree_depth = 14, characters
subsequent_dollars = @, initial _dollars = 0, extra_parses

230, tokens = 72,
2},389)

http://prop110.dk

Fluent

- NLG transformations
- GF RGL

Productive

- GF RGL
- lexicon and grammar extraction

Multilingual

- Dedukti
- GF

Case studies

Wiedijk's "100 theorems" (a sample)

ThmOl : Proof (not (rational (sqrt 2))).

Thm20 : (p : Elem Nat) -> Proof (prime p) -> Proof (congruent p 1 4)
-> Proof (exists Nat (x => exists Nat (y => Eq p (plus (square x) (square y))))).

Thm51wilson : (n : Elem Nat) ->
Proof (iff (prime n) (congruent (factorial (minus n 1)) (neg 1) n)).

Thm78 : (u : Elem Vector) -> (v : Elem Vector) ->
Proof (if (orthogonal u v) (Eq (dotProduct u v) (nd 9))).

Thm9l : (u : Elem Vector) -> (v : Elem Vector) ->
Proof (Leq (norm (vectorPlus u v)) (plus (norm u) (norm v))).

$ make lang=Eng topl100

$ make lang=Fre top100

Towards math olympiad problems (only started)

Full of expressions with three dots - typically for sums
- first step: extract the summation term
- informalization of Sigma expressions produces ambiguous sequences

Theorem.

NE

S|
V
(N}

3
I
—

Theorem.
> 2

DN | =
+
i
O =

Naproche-ZF (recently started)

A CNL designed to serve as input in formalization https://github.com/adelon/naproche-zf

1. extend Informath to parse Naproche-ZF

2. obtain Dedukti code and thereby Agda, Lean, Rocq

3. obtain paraphrases and thereby synthetic training data
4. increase the parsing that targets Naproche-ZF

5. translate to other Informath languages
Issues:

- undeclared variables and their types
- getting proof objects from proof texts

$ make lang=Eng naproche

$ make lang=Fre naproche

https://github.com/adelon/naproche-zf

Generating synthetic data

Loss

Step - Loss Curves

= n-:zzz:-;-:zzz Fine-tuning an LLM:
e - Qwen2.5-7B-instruct

10° 4

Trained with ~1000 synthetic pairs of
(dedukti,agda,coq,lean) - (English,
French, Swedish) with

- arithmetic

- naive set theory

- concepts for 27 of the "100

10-1 4

lo—Z <4

NN MAL theorems”
\V v - \L’N A : A ‘\/\/\V s
W= n om0 - oo Tested with 57 natural native-speaker
Talhing Steps expressions of those theorems (by

Nick Smallbone)

Figure 4.5: Training losses of fine-tuned models at different epochs.

Table 4.5: Model performance at different training epochs . .)
Pei Huang, Autoformalization for

Model BLEU-4 ROUGE-1/2/L Syntax Err.% Score Agda via Fine-tuning Large Language
Baseline 32.90 54.17 / 21.99 / 42.76 98.43 93.96 Models, MSc thesis at Chalmers,
M_epoch_1 76.16 89.03 / 74.94 / 83.22 7.93 83.60 2025

M__epoch_3 77.78 89.86 / 76.63 / 84.37 20.48 80.14

Translate the following latex InformathEng translation problems (each is on one line) to deducti.

Do it analogously to the following extraction examples. Put the output all into one piece of text, preceded always by input (as in the
examples).

BEGIN EXAMPLES

{"InformathEng": "thm58 . let $ A$S beaset.let$n\inN$.then$ |A|=n$, only if for all natural numbers $k $,if $k\\leqn $, then $ |
\\binom{ AK k} | =\\binom{n { k}$." "dedukti": "thm58 : (A: Set) -> (n: Elem Nat) -> Proof (Eq (cardinality A) n) -> (k : Elem Nat)
-> Proof (Leq k n) -> Proof (Eq (cardinality (combinationsFromSet Ak)) (binomialnk)) ."}

{— ...

END EXAMPLES

BEGIN TRANSLATION PROBLEMS

{"InformathEng": "Thm01f . there exists no natural number $ p $, such that there exists a natural number $ q $, such that the square of $ p
$ is equal to the product of $ 2 $ and the square of $ g $.", "dedukti":

{"InformathEng": "thm52 . let $ A $ be a set . then we can prove that $ A $ is finite , only if we can prove that the cardinality of the power set
of $ A$ is equal to the exponentiation of $ 2 $ and the cardinality of $ A $.", "dedukti":

EN.[.). TRANSLATION PROBLEMS

Sure, here are the translations of the given InformathEng statements to Dedukti:

input: {"InformathEng": "Thm@lf . there exists no natural number $ p $, such that
there exists a natural number $ g $, such that the square of $ p $ is equal to the

product of $ 2 $ and the square of $ q $.", "dedukti": "Thme@lf : Proof (not (exists
Nat (p => exists Nat (g => Eq (square p) (times 2 (square q)))))) ."}

https://chat.mistral.ai/chat/60f44ab2-d86f-4ec2-b382-d941d471eef0 by Josef Urban, 13 July 2025

https://chat.mistral.ai/chat/60f44ab2-d86f-4ec2-b382-d94fd471eef0

Conclusion

Symbolic informalization can be

natural and fluent
- by extending CNL towards the full language of mathematics

feasible to develop
- by Dedukti, GF, and rule extraction

shared by different formal and informal languages
- by Dedukti and GF interlinguas

inverted to autoformalization
- natively, by reversilibility of GF
- as backup, by fine-tuned LLM + feedback informalization

Symbolic informalization is

based on well-understood compiler-like techniques

potentially 100% reliable

fast and energy-efficient

a natural extension of formal proof techniques

an integral part of reliable Al systems for mathematics
- and other fields where formalization is possible

Some future work

Improve the informalization of proofs

combine proof terms with scripts to identify crucial steps ?

- refactor proofs by creating lemmas !

-- the current syntax of proofs - minimal but complete

AbsProof : ListHypo -> Proof -> Proof ;
AppProof : ProofExp -> ListProof -> Proof ;

AppProofExp : ProofExp -> Exps -> ProofExp ;
LabelProofExp : Label -> ProofExp ;

Refine the evaluation criteria for autoformalization

- BLEU score and edit distance are too superficial
- logical equivalence is too liberal
- definitional equality is also too liberal

Create APIs to connect with proof systems
- use Informath as a library or a plugin component
- to enable natural language interaction and documentation
- GF is more powerful than mixfix and similar syntax extensions

Natural language is the ultimate syntactic sugar!

Exploit multilinguality

- to generate Wikipedia articles
- to translate Math Olympiad problems

thanks
kiitos
thanks : Phrase merci
Danke
tack

Ohpyd0

https://github.com/aarneranta/informath

https://github.com/aarneranta/informath

