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Grading programming assignments is difficult and time consuming. With the ever-growing numbers
of students in programming courses, autograding has become the necessity. In this talk, we present our
recent and ongoing work on applying formal methods for automated grading. In Part I, we suggest the
use of program verifiers for automated grading of programming assignments. For this, we use Stainless,
an open-source verifier for Scala programs. Our extensive evaluation shows promising results. We are
developing the infrastructure to apply those techniques in EPFL’s functional programming course. In
Part II, we suggest the use of theorem provers for automated grading of proofs by induction written by
students. For this, we use LISA, a proof assistant based on set theory.
Part I: Proving Correctness of Programming Assignments – Lessons Learned
The overarching goal of practical and rigorous automated grading has led to the development of a number
of tools to aid teaching programming courses. Researchers have introduced state of the art techniques
specifically targeted at grading [4, 18], feedback generation [17, 19], and repair [7, 11, 16, 21]. While
highly automated, neither of these tools provide any formal correctness guarantee.

Recently, we have proposed a new approach to automatically and formally verify correctness of pro-
gramming assignments [13]. Latest advances in the field of formal verification have resulted in tools that
can verify strong correctness properties of important pieces of software infrastructure [3, 8, 10]. How-
ever, formal verification is challenging. Case studies show ratios such as nine lines of specifications per
executable line [2], which is impractical for automated grading. In our approach, we use equivalence
checking and functional induction to automatically prove or disprove correctness of student submissions,
as well as a clustering algorithm to efficiently treat many submissions at once. We illustrate the under-
lying techniques on examples1 throughout the talk. Our approach is fully automated: the only inputs to
our system are student submissions and reference solutions, without additional annotations. Moreover,
our approach is rigorous: each submission classified as correct is evidenced by a proof of equivalence,
and each submission classified as incorrect is evidenced by a counterexample. Finally, our approach
is practical: we implement our techniques on top of the Stainless verifier [20], to support equivalence
checking of Scala programs; our evaluation shows that our system is highly effective in practice.
Part II: Proving Correctness of Proof Assignments – Ongoing Work and Future Directions
Complementary to the efforts for programming assignments, we consider the problem of grading proof
assignments. Proof assistants have been increasingly finding their way in dedicated graduate courses
[9, 14, 15], undergraduate courses [12] and high schools [1, 5]. We aim to go one step further, propos-
ing the use of proof assistants for introductory programming courses. In our functional programming
course, students not only write programs, but also have to prove certain program properties, such as that
a tail-recursive function is equivalent to its non-tail recursive counterpart. Such proofs only need instan-
tiation of free parameters and equational reasoning, which makes them feasible for automated grading.
We consider the LISA proof assistant [6], whose high-level interface and DSL provide an intuitive and
programmer-friendly environment for students. We discuss an example set of proofs from a program-
ming exam, in LISA2 and in Stainless3.

1Available at https://github.com/epfl-lara/stainless/tree/main/frontends/benchmarks/equivalence
2https://github.com/epfl-lara/lisa/tree/main/lisa-examples/src/main/scala/MapProofTest.scala
3https://github.com/epfl-lara/stainless/tree/main/frontends/benchmarks/dotty-specific/valid/

MapTr.scala

https://github.com/epfl-lara/stainless/tree/main/frontends/benchmarks/equivalence
https://github.com/epfl-lara/lisa/tree/main/lisa-examples/src/main/scala/MapProofTest.scala
https://github.com/epfl-lara/stainless/tree/main/frontends/benchmarks/dotty-specific/valid/MapTr.scala
https://github.com/epfl-lara/stainless/tree/main/frontends/benchmarks/dotty-specific/valid/MapTr.scala
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