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1 Introduction

Logics for reasoning with uncertainty and probability have long been known and used in pro-
gramming: e.g. fuzzy logic [20], probabilistic logic [11] and variants of thereof in logic pro-
gramming domain [3, 9, 10, 12]. Recently, rising awareness of the problems related to machine
learning verification opened a novel application area for those ideas. Differentiable Logics
(DLs) is a family of methods that applies key insights from fuzzy logic and probability theory
to enhance this domain with property-driven learning [5].

As a motivating example, consider the problem of verification of neural networks. A neural
network is a function f : Rn → Rm parametrised by a set of weights w. A training dataset X
is a set of pairs (x,y) consisting of an input x ∈ Rn and the desired output y ∈ Rm. It is
assumed that the outputs y are generated from x by some function H : Rn → Rm and that x is
drawn from some probability distribution over Rn. The goal of training is to use the dataset X
to find weights w such that f approximates H well over input regions with high probability
density. The standard approach is to use a loss function L, that given a pair (x,y) calculates
how much f(x) differs from the desired output y. Gradients of L with respect to the network’s
weights can then be used to update the weights during training.

However in addition to the dataset X , in certain problem domains we may have additional
information about H in the form of a mathematical property ϕ that we know H must satisfy.
A common example of such a property is that H should be robust, i.e. small perturbations to
the input only result in small perturbations to the output. For example, in image classification
tasks changing a single pixel should not significantly alter what the image is classified as [2, 14].

Definition 1.1 (ϵ-δ-robustness). Given constants ϵ, δ ∈ R, a function f is ϵ-δ-robust around a
point x̂ ∈ Rn if:

∀x ∈ Rn : ||x− x̂|| ≤ ϵ =⇒ ||f(x)− f(x̂)|| ≤ δ (1)

The problem of verifying the robustness of neural networks has received significant attention
from the verification community [13, 19], and it is known to be difficult both theoretically [6]
and in practice [1]. However, even leaving aside the challenges of undecidability of non-linear
real arithmetic [7], and scalability [19], the biggest obstacle to verification is that the majority
of neural networks do not succeed in learning ϕ from the training dataset X [5, 18].

The concept of a differentiable logic (DL) was introduced to address this challenge by
verification-motivated training. This idea is sometimes referred to as continuous verifica-
tion [8, 2], referring to the loop between training and verification. The key idea in differentiable
logic is to use ϕ to generate an alternative logical loss function Lϕ, that calculates a penalty
depending on how much f deviates from satisfying ϕ. When combined with the standard data-
driven loss function L, the network is trained to both fit the data and satisfy ϕ. A DL therefore
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has two components: a suitable language for expressing the properties and an interpretation
function that can translate expressions in the language into a suitable loss function.

Although the idea sounds simple, developing good principles of DL design has been sur-
prisingly challenging. The machine-learning community has proposed several DLs such as DL2
for supervised learning [4], and a signal temporal logic based-DL for reinforcement learning
(STL) [17]. However, both approaches had shortcomings from the perspective of formal logic:
the former fell short of introducing quantifiers as part of the language, and the latter only
covered propositional fragment.

Solutions were offered from the perspective of formal logic. In [15, 16] it was shown that one
can use various propositional fuzzy logics to create loss functions. However, these fuzzy DLs did
not stretch to cover the features of the DLs that came from machine learning community, which
need not just quantification over infinite domains, but also a formalism to express properties
concerning vectors and functions over vectors.

The first problem is thus: There does not exist a DL that formally covers a sufficient
fragment of first-order logic to express key properties in machine learning verification.

The second problem has to do with formalisation of different DLs. In many of the existing
DL approaches syntax, semantics and pragmatics are not well-separated, which inhibits their
formal analysis. We have already given an example of DL2 treating quantifiers empirically
outside of the language. But the problem runs deeper. To illustrate, let us take a fragment of
syntax on which all DLs are supposed to agree. It will give us a toy propositional language

a := p | a ∧ a

They assume that each propositional variable p is interpreted in a domain D ⊆ R. The
domains vary vastly across the DLs (from fuzzy set [0, 1] to (∞,∞) in STL) and the choice
of a domain can have important ramifications for both the syntax and the semantics. For
example DL2’s domain [0,∞] severely restricts the translation of negation compared to other
DLs. In STL [17] the authors redefine the syntax for conjunction itself thus obtaining a different
language

a := p|
∧
M

(a1, . . . , aM )

where
∧

M denotes a (non-associative!) conjunction for M elements.
As consequence of the above two problems, the third problem is lack of unified, general

syntax and semantics able to express multiple different DLs and modular on the choice of DL,
that would make it possible to choose one best suited for concrete task or design new DLs in an
easy way.

In this paper, we propose a solution to all of these problems. The solution comes in a form
of a meta-DL, which we call a logic of differentiable logics (LDL). On the syntactic side, it is a
typed first-order language with negation and universal and existential quantification that can
express properties of functions and vectors.

On the semantic side, interpretation is defined to be parametric on the choice of the in-
terpretation domain D or a particular choice of logical connectives. This parametric nature of
interpretation simplifies both the theoretical study and implementations that compare different
DLs. Moreover, the language has an implicit formal treatment of neural networks via a special
kind of context – a solution that we found necessary in achieving a sufficient level of generality
in the semantics. For the first time the semantics formally introduces the notion of a probability
distribution that corresponds to the data from which the data is assumed to be drawn. We
demonstrate the power of this approach by using LDL to prove soundness of various DLs and
systematically compare their geometric properties in Section.

2
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