
Reduction Strategies
in the Lambda Calculus

A Systematic Approach to Their Specification and Efficient
Implementation with Abstract Machines

Małgorzata Biernacka

Institute of Computer Science, University of Wrocław
WEPN 2023

https://ii.uni.wroc.pl/~mabi
https://ii.uni.wroc.pl/

Reduction strategies

▶ one-step strategy is a function F : Λ → Λ s.t.

t →1
β F (t)

▶ examples: leftmost-outermost, call by name, call by value

Reduction strategies

▶ of interest both in theory and in practice of lambda calculus
▶ multitude of strategies, defined and studied in different disguises
▶ relevant for efficient computation in lambda calculus
▶ often used as folklore, auxiliary tool

Reduction strategies – systematic approach

▶ formats to define strategies
▶ methodology to interderive various semantics

(based on functional programming)
▶ formalization and classification

Weak strategies

(λxy .xy)((λz .z)(λw .w))
CbN−→ λy .(λz .z)(λw .w)y

(λxy .xy)((λz .z)(λw .w))
CbV−→ (λxy .xy) (λw .w)

CbV−→ (λy .(λw .w)y)

Weak strategies

(λxy .xy)((λz .z)(λw .w))
CbN−→ λy .(λz .z)(λw .w)y

(λxy .xy)((λz .z)(λw .w))
CbV−→ (λxy .xy) (λw .w)

CbV−→ (λy .(λw .w)y)

Weak strategies

(λxy .xy)((λz .z)(λw .w))
CbN−→ λy .(λz .z)(λw .w)y

(λxy .xy)((λz .z)(λw .w))
CbV−→ (λxy .xy) (λw .w)

CbV−→ (λy .(λw .w)y)

Strong strategies

▶ fully normalize terms
▶ need to descend under λ and account for free variables in terms
▶ conservative extensions of weak strategies (e.g., strong CbN,

strong CbV, strong CbNeed)
▶ efficient implementations required e.g. for typechecking in

dependent types

Strong strategies

Normal order = “iterate CbN”

(λxy .xy)((λz .z)(λw .w))
NO−→ λy .(λz .z)(λw .w)y

NO−→ λy .(λw .w)y

NO−→ λy .y

Strong strategies

Normal order = “iterate CbN”

(λxy .xy)((λz .z)(λw .w))
NO−→ λy .(λz .z)(λw .w)y

NO−→ λy .(λw .w)y

NO−→ λy .y

Strong strategies

(λxy .x(yy))((λz .z)(λw .w))
SCbV−→ (λxy .x(yy)) (λw .w)

SCbV−→ λy .(λw .w)(yy)

SCbV−→ λy .yy

Strong CbV = iterate Open CbV

Strong CbV is nondeterministic – we can choose right-to-left
normalization (rrSCbV)

Strong strategies

(λxy .x(yy))((λz .z)(λw .w))
SCbV−→ (λxy .x(yy)) (λw .w)

SCbV−→ λy .(λw .w)(yy)

SCbV−→ λy .yy

Strong CbV = iterate Open CbV

Strong CbV is nondeterministic – we can choose right-to-left
normalization (rrSCbV)

Strong strategies

(λxy .x(yy))((λz .z)(λw .w))
SCbV−→ (λxy .x(yy)) (λw .w)

SCbV−→ λy .(λw .w)(yy)

SCbV−→ λy .yy

Strong CbV = iterate Open CbV

Strong CbV is nondeterministic – we can choose right-to-left
normalization (rrSCbV)

Strong strategies

(λxy .x(yy))((λz .z)(λw .w))
SCbV−→ (λxy .x(yy)) (λw .w)

SCbV−→ λy .(λw .w)(yy)

SCbV−→ λy .yy

Strong CbV = iterate Open CbV

Strong CbV is nondeterministic – we can choose right-to-left
normalization (rrSCbV)

Strong strategies

(λxy .x(yy))((λz .z)(λw .w))
SCbV−→ (λxy .x(yy)) (λw .w)

SCbV−→ λy .(λw .w)(yy)

SCbV−→ λy .yy

Strong CbV = iterate Open CbV

Strong CbV is nondeterministic – we can choose right-to-left
normalization (rrSCbV)

Formats of operational semantics

▶ structural operational semantics
▶ big-step semantics
▶ reduction semantics
▶ abstract machine
▶ definitional interpreter

Big-step semantics

λx .t ⇓ λx .t

t1 ⇓ λx .t t2 ⇓ t ′2 t[x := t ′2] ⇓ t ′

t1 t2 ⇓ t ′

x ⇓ x

t1 ⇓ t ′1 ̸≡ λx .t t2 ⇓ t ′2

t1 t2 ⇓ t ′1 t
′
2

Open call by value

Reduction semantics

w ::= λx .t | x w⃗ E ::= 2 | w E | E t

(λx .t)w ⇀βw
t[x := w]

t ⇀βw
t ′

E [t]
lcbw→ E [t ′]

Left-to-right open call by value

Abstract machines

▶ micro-step semantics (explicit decomposition and substitution)
▶ abstract model of language implementation
▶ work on source terms (not on compiled terms)
▶ constant cost of each transition
▶ abstract cost model of computation

Krivine machine for CbN evaluation

t ::= n | t t | λt C ::= [t,E]

E ::= • | C :: E
S ::= • | C :: S

t 7→ ⟨t, •, •⟩
⟨t1 t2,E , S⟩ → ⟨t1,E , [t2,E] :: S⟩

⟨λt,E ,C :: S⟩ → ⟨t,C :: E , S⟩
⟨0, [t,E] :: E ′, S⟩ → ⟨t,E , S⟩
⟨n + 1,C :: E , S⟩ → ⟨n,E , S⟩

Techniques for AM derivation

▶ refocusing – from reduction semantics to abstract machine
▶ functional correspondence – from higher-order normalizer to

abstract machine
▶ introduced for weak strategies, extendable to strong ones

Generalized reduction semantics

Normal order in λ-calculus

t ::= x | λx . t | t t a ::= x | a n n ::= a | λx . n

E ::= F | λx .E | a E

F ::= 2F | F t

E [(λx .t) s]
no→ E [t[x := s]]

Generalized reduction semantics – formalization

syntactic categories: kinds,
initial kind, terms
values, potential redices,
elementary contexts –
parameterized by kinds
atomic plug – defining
meaning of contexts
contraction function
proofs of basic properties

Parameters (ckind term : Set)
(init_ckind : ckind)
(redex value : ckind -> Set).

Parameters
(elem_ctx : ckind -> ckind -> Set)
(elem_plug : ∀ {k0 k1}, term ->
elem_ctx k0 k1 -> term).

Parameter contract :
∀ {k}, redex k -> option term.

Axioms
(v_triv: ∀ . . ., ec:[t] = v -> ∃ v', t = v')
(v_red: ∀ {k} (v : value k) (r : redex k),
v <> r).

Input to generalized refocusing

▶ generalized reduction semantics
▶ linear strict order <k ,t on instances of productions from Pk that

are compatible with t (i.e., elementary k-contexts matching t)
▶ atomic decomposition functions
▶ conditions on input enforce unique decomposition

Input to generalized refocusing — normal order

▶ elementary contexts

E ::= λx .2E | a 2E | 2F t

F ::= 2F t

▶ search order a 2E <E ,_ 2F t

Abstract machine for normal order

⟨λx .t,C ,F ⟩e � ⟨C ,F , λx .t⟩c
⟨λx .t,C ,E ⟩e � ⟨t, λx .2 :: C ,E ⟩e
⟨t1 t2,C , k⟩e � ⟨t1, (k ,2 t2) :: C ,F ⟩e

⟨x ,C , k⟩e � ⟨C , k , x⟩c
⟨λx .2 :: C ,E , v⟩c � ⟨C ,E , λx .v⟩c
⟨ne 2 :: C ,E , v⟩c � ⟨C ,E , ne v⟩c

⟨(k ,2 s) :: C ,F , λx .t⟩c � ⟨t[x := s],C , k⟩e
⟨(k ,2 s) :: C , k ′, x⟩c � ⟨s, (k , x 2) :: C ,E ⟩e

Correctness – intensionally

An abstract rewriting system ⟨S,⇒⟩ traces another system ⟨T ,→⟩
if there exists a surjection JK : S → T s.t.

1. if s1 ⇒ s2 then Js1K = Js2K or Js1K → Js2K
2. if t1 → t2 then for each s0 s.t. Js0K = t1 there exists

s0 ⇒ . . . ⇒ sn+1, where Js0K = . . . = JsnK and Jsn+1K = t2
3. there are no silent loops

Theorem
Let M – machine generated by generalized refocusing from a RS with
terms T and reduction relation →. Then M traces ⟨T ,→⟩.

Functional correspondence

Higher-order evaluator

Closure conversion

CPS translation

Defunctionalization

Abstract machine

A call-by-name evaluator

type value = Value of (thunk -> value)
and thunk = unit -> value

let rec eval (e : env) (t : term) : value =
match t with
| Var n -> List.nth e n ()
| App(t0 , t1) -> value_unfold (eval e t0)

(fun () -> eval e t1)
| Lam t -> Value (fun v -> eval (v :: e) t)

let main (t : term) : value = eval [] t

After closure conversion

type thunk = Thunk of term * env
and env = thunk list

type value = Closure of term * env

let rec eval (e : env) (t : term) : value =
match t with
| Var n -> let Thunk(t', e') = List.nth e n in

eval e' t'
| App(t0 , t1) -> let Closure(t', e') = eval e t0 in

eval (Thunk(t1 , e)::e') t'
| Lam t -> Closure(t, e)

let main (t : term) : value = eval [] t

CPS translation

type thunk = Thunk of term * env
and env = thunk list

type value = Closure of term * env

let rec eval (e : env) (t : term) (k : value -> 'a) : 'a =
match t with
| Var n -> let Thunk(t', e') = List.nth e n in

eval e' t' k
| App(t0 , t1) -> eval e t0 (function Closure(t', e') ->

eval (Thunk(t1 , e)::e') t' k)
| Lam t -> k (Closure(t, e))

let main (t : term) : value = eval [] t (fun x -> x)

Defunctionalization of continuations

type thunk = Thunk of term * env
and env = thunk list

type value = Closure of term * env

type stack = thunk list

let rec eval (e : env) (t : term) (s : stack) : value =
match t, s with
| Var n, _ -> let Thunk(t', e') = List.nth e n in

eval e' t' s
| Lam t, v :: s -> eval (v :: e) t s
| App(t0 , t1), _ -> eval e t0 (Thunk(t1, e) :: s)
| Lam t, [] -> Closure(t, e)

let main (t : term) : value = eval [] t []

Reformatted as abstract machine

type thunk = Thunk of term * env
and env = thunk list
type conf = term * env * env

let transition (c:conf) : conf =
match c with
| (App(t0 , t1), e, s) -> (t0 , e, Thunk(t1, e) :: s)
| (Lam t, e, v :: s) -> (t, v :: e, s)
| (Var 0, Thunk(t, e) :: _, s) -> (t, e, s)
| (Var n, _ :: e, s) -> (Var(n-1), e, s))

let load (t : term) : conf = (t, [], [])

Normalization by evaluation

▶ programming technique to produce full normal forms
reduction-free, based on denotational semantics

▶ interpret terms in a model
▶ then reify semantic values into syntactic normal forms

Normalization by evaluation for CbV

type term = Var of index | Lam of term | App of term * term

type level = int
type sem = Abs of (sem -> sem) | Neutral of (level -> term)

let to_sem (f : sem -> sem) : sem = Abs f

let from_sem (d : sem) : sem -> sem =
fun d' ->

match d with
| Abs f ->

f d'
| Neutral l ->

Neutral (fun m -> let n = reify d’ m in App (l m, n))

Normalization by evaluation for CbV

let rec eval (t : term) (e : sem list) : sem =
match t with
| Var n -> List.nth e n
| Lam t' -> to_sem (fun d -> eval t' (d :: e))
| App (t1, t2) -> let d2 = eval t2 e

in from_sem (eval t1 e) d2

let rec reify (d : sem) (m : level) : term =
match d with
| Abs f ->

Lam (reify (f (Neutral (fun m’ -> Var (m’-m-1))))(m+1))
| Neutral l ->

l m

let nbe (t : term) : term = reify (eval t []) 0

Normalization by evaluation for CbV

▶ functional correspondence applied to CbV NbE produces AM
performing full normalization in Strong CbV strategy

▶ from the machine we can read off the reduction contexts
▶ obtained AM is inefficient: does not reuse constructed structures

and suffers from size explosion

Size explosion problem

ω := λx . x x

en := λx . cn ω x

Under Strong CbV

en normalizes in linear number of steps

to normal form of exponential size

ω1 x → x x
ω2 x →∗ (x x) (x x)

...

NbE for CbV – memoization

type 'a cache = 'a option ref

let cached_call (c : 'a cache) (f : unit -> 'a) : 'a =
match !c with
| Some y -> y
| None -> let y = f () in

c := Some y;
y

NbE for CbV – memoization

type sem = Abs of (sem -> sem)
| Neutral of (unit -> term)
| Cache of term cache * sem

let rec from_sem : sem -> (sem -> sem) = function
| Abs f -> f
| Neutral l -> apply_neutral l
| Cache (c, Neutral l) -> apply_neutral

(fun () -> cached_call c l)
| Cache (c, v) -> from_sem v

and apply_neutral (l : unit -> term) (v : sem) : sem =
Neutral (fun () -> let n = reify v in App (l (), n))

NbE for CbV – eval and reify

let rec eval (t : term) (e : env) : sem =
match t with
| Var x -> env_lookup x e
| Lam (x, t') -> to_sem

(fun v -> eval t' @@ Dict.add x (mount_cache v) e)
| App (t1, t2) -> let v2 = eval t2 e

in from_sem (eval t1 e) v2

let rec reify : sem -> term = function
| Abs f -> let xm = "x_" ^ string_of_int (gensym ()) in

Lam (xm, reify (f @@ abstract_variable xm))
| Neutral l -> l ()
| Cache (c, v) -> cached_call c (fun () -> reify v)

RKNV – abstract machine for SCbV

Terms t ::= x | t1 t2 | λx . t

Values v ::= V (x) | v1 v2 | [x , t,E] | v ℓ

Frames F ::= [t,E] 2 | 2 v | v 2 | 2 t | λx .2 | @[ℓ]

Heaps H : location → term option

Conf. K ::= ⟨t,E , S ,m,H⟩E | ⟨S , v ,m,H⟩C
| ⟨S , t,m,H⟩S | ⟨t?, ℓ, S , v ,m,H⟩M

RKNV – abstract machine for SCbV

⟨[n], ℓ, S2, v ,m,H⟩M → ⟨S2, n,m,H⟩S
⟨•, ℓ, S2, v ,m,H⟩M → ⟨@[ℓ] :: S2, v ,m,H⟩C

⟨@[ℓ] :: S2, n,m,H⟩S → ⟨S2, n,m,H[ℓ := [n]]⟩S

RKNV – sound and complete

▶ RKNV traces right-to-left strong call by value
▶ normal forms are equal up to α-equivalence

RKNV – complexity

▶ amortized cost analysis based on configuration potential
▶ potential ΦK of configuration K = how many steps the machine

can make till the next β-step
▶ all but one transitions decrease potential

RKNV – complexity

Configuration potential

ΦK(K) := Φt(t) + ΦS(S) + ΦH(K) if K = ⟨t,E , S ,m,H⟩E

Erasure transition (precedes β-step)

⟨2 v ::S1, [x , t,E]
ℓ,m,H⟩C

preβ→ ⟨2 v :: S1, [x , t,E],m,H⟩C

▶ If K
̸=(preβ)→ K ′ then ΦK(K) > ΦK(K

′)

▶ If K
(preβ)→ K ′ then ΦK(K) + Φt(input) > ΦK(K

′)

RKNV – complexity

reasonability Let: |ρ| – number of transitions starting from term t0,
n – the number of β-reductions in rrSCbV normalization
of term t0.
Then |ρ| ≤ (n + 1) · Φt(t0).

overall complexity
O((1 + n) · |t0| · E (|t0|))

E (n) – cost of operations on environment of size n

RKNV – complexity

▶ Strong CbV can be simulated in polynomial time
▶ Strong CbV calculus is a reasonable time cost model – using

approach alternative to [Accattoli et al. ’21]

Strong CbNeed – how to approach it

▶ extend weak CbNd
▶ two approaches for weak CbNd: storeless or store-based

Strong CbNeed – storeless

▶ complex declarative definition of reduction semantics
[Balabonski et al. ’17]

▶ expressible with generalized reduction semantics with contexts
parameterized with sets of variables [Biernacka et al. ’19]

▶ AM for SCbNd derived from generalized reduction semantics by
refocusing

Strong Call by Need – example

λz . (λx . x t) (z z) z is frozen

→ λz . let x = z z in x t

≡ λz . let x = z z in [x] t

→ λz . let x := z z in x t

≡ λz . let x := z z in [x] t x is frozen

≡ λz . let x := z z in x [t] → . . .

Strong Call by Need – example

λz . (λx . x t) (z z) z is frozen

→ λz . let x = z z in x t

≡ λz . let x = z z in [x] t

→ λz . let x := z z in x t

≡ λz . let x := z z in [x] t x is frozen

≡ λz . let x := z z in x [t] → . . .

Strong Call by Need – example

λz . (λx . x t) (z z) z is frozen

→ λz . let x = z z in x t

≡ λz . let x = z z in [x] t

→ λz . let x := z z in x t

≡ λz . let x := z z in [x] t x is frozen

≡ λz . let x := z z in x [t] → . . .

Strong Call by Need – example

λz . (λx . x t) (z z) z is frozen

→ λz . let x = z z in x t

≡ λz . let x = z z in [x] t

→ λz . let x := z z in x t

≡ λz . let x := z z in [x] t x is frozen

≡ λz . let x := z z in x [t] → . . .

Strong Call by Need – example

λz . (λx . x t) (z z) z is frozen

→ λz . let x = z z in x t

≡ λz . let x = z z in [x] t

→ λz . let x := z z in x t

≡ λz . let x := z z in [x] t x is frozen

≡ λz . let x := z z in x [t] → . . .

Strong CbNeed – alternative approach

▶ starting point: NbE normalizer for normal order
▶ introduce memoized thunks to avoid recomputation of

arguments and of normal forms
▶ apply functional correspondence to derive AM

Strong CbNeed – RKNL abstract machine

⟨[λx . t, e], s, σ⟩▽ → ⟨[λx . t, e]ℓ, s, σ ∗ [ℓ 7→ ⊥]⟩△
⟨[λx . t, e]ℓ, s, σ⟩△ →

⟨[t, e[x := ℓ2]], λx̌ .2 :: @[ℓ] :: s, σ ∗ [ℓ2 7→ x̌✓]⟩▽
where σ(ℓ) = ⊥

⟨[λx . t, e]ℓ,2 [t2, e2] :: s, σ⟩△ → ⟨[t, e[x := ℓ2]], s, σ ∗ [ℓ2 7→ [t2, e2]]⟩▽

Strong CbNeed – results

▶ derived store-based AM
▶ RKNL simulates the normal-order strategy:

▶ each machine configuration accounts for a sequence of NO reduction
steps (modulo α-equivalence)

▶ each NO reduction step is simulated by a sequence of machine steps

▶ amenable to complexity analysis using potential function:
number of transitions bilinear in the number of β-steps in NO
and in size of initial term

A zoo of strategies

▶ collection of reduction strategies
▶ characterized by term decompositions
▶ based on ubiquitous reduction contexts
▶ formalized in Coq

Context

Inductive frame : Type :=
| Lam : string → frame
| Rapp : term → frame
| Lapp : term → frame.

Definition context : Type := list frame.

Example – CBN contexts

Definition CBN_frame (f:frame) : Prop :=
match f with
| Rapp _ => True
| _ => False
end.

Fixpoint Uniform (F:frame → Prop) (C:context) : Prop :=
match C with
| [] => True
| f :: C => F f ∧ Uniform F C
end.

Definition CBN : context → Prop := Uniform CBN_frame.

Strategy

Definition decomposition : Type := context * term.
Definition strategy : Type := decomposition → Prop.

Definition recompose : decomposition → term := uncurry plug.

Definition normal_form (s:strategy) (t:term) : Prop :=
¬ ∃ d, t = recompose d ∧ d ∈ s.

Definition det_strategy (s:strategy) : Prop :=
∀ t, ∃≤1 d, t = recompose d ∧ d ∈ s.

Example – CBN strategy

Definition β_contrex : term → Prop :=
app_of abstraction .

Definition cbn : strategy :=
CBN × β_contrex.

Normal forms

Fixpoint rigid (t:term) : Prop :=
match t with
| var _ => True
| app s _ => rigid s
| _ => False
end.

Definition whnf : term → Prop := abstraction ∪ rigid.

Example rigid_is_whnf : rigid ⊆ whnf.

Lemma cbn_nf : normal_form cbn == whnf.

Zoo

Phased strategies

Definition sequence_strategy (r s: strategy) : strategy :=
λ d, r d ∨ (normal_form r (recompose d) ∧ s d).

Notation "↙" := left_strategy.
Notation "'β'" := only_β_contraction.

Definition cbn_phased := ↙ cbn;; β.

Definition no_phased := (β;; ↙ no;; ↘ no) ∪ ↓ no.

Phased strategies

Definition cbw_phased := (↙ cbw ∪ ↘ cbw);; β.

Definition scbw_phased := (cbw;; (↙ scbw ∪ ↘ scbw)) ∪ ↓scbw.

Lemma scbw_conservative_extension_cbw : scbw == cbw;; scbw.

Phased strategies

Lemma sequence_strategy_assoc : ∀ q r s,
q;; (r;; s) == (q;; r);; s.

Lemma left_weak_strategy_β _contraction_commutative : ∀ w,
w ⊆ weak → ↙ w;; β == β;; ↙ w.

Lemma phased_left_strategy : ∀ s s',
↙ s;; ↙ s' == ↙ (s;; s').

Benefits

▶ framework to study, compare and discover new strategies
▶ more structured and generic proofs of strategy properties,

normal forms, etc.
▶ algebraic reasoning about strategies

Thank you!

	Generalized refocusing
	Functional correspondence
	Derivation of AM for strong strategies
	Efficiency of AMs
	Formalization of strategies

