Reduction Strategies in the Lambda Calculus

A Systematic Approach to Their Specification and Efficient Implementation with Abstract Machines

Małgorzata Biernacka

Institute of Computer Science, University of Wrocław

WEPN 2023

Reduction strategies

- one-step strategy is a function $F: \Lambda \rightarrow \Lambda$ s.t.

$$
t \rightarrow{ }_{\beta}^{1} F(t)
$$

- examples: leftmost-outermost, call by name, call by value

Reduction strategies

- of interest both in theory and in practice of lambda calculus
- multitude of strategies, defined and studied in different disguises
- relevant for efficient computation in lambda calculus
- often used as folklore, auxiliary tool

Reduction strategies - systematic approach

- formats to define strategies
- methodology to interderive various semantics
(based on functional programming)
- formalization and classification

Weak strategies

$\xrightarrow{(\lambda x y \cdot x y)((\lambda z \cdot z)(\lambda w \cdot w))} \xrightarrow{\mathrm{CbN}} \lambda y \cdot(\lambda z \cdot z)(\lambda w \cdot w) y$

Weak strategies

$\xrightarrow{(\lambda x y \cdot x y)((\lambda z . z)(\lambda w \cdot w))} \xrightarrow{\mathrm{CbN}} \lambda y \cdot(\lambda z \cdot z)(\lambda w \cdot w) y$
$(\lambda x y \cdot x y) \underline{((\lambda z . z)(\lambda w \cdot w))} \xrightarrow{\mathrm{CbV}} \underline{(\lambda x y \cdot x y)(\lambda w \cdot w)}$

Weak strategies

$\xrightarrow{(\lambda x y \cdot x y)((\lambda z \cdot z)(\lambda w \cdot w))} \xrightarrow{\mathrm{CbN}} \lambda y \cdot(\lambda z \cdot z)(\lambda w \cdot w) y$
$(\lambda x y \cdot x y) \underline{((\lambda z \cdot z)(\lambda w \cdot w))} \xrightarrow{\mathrm{CbV}} \underline{(\lambda x y \cdot x y)(\lambda w \cdot w)} \xrightarrow{\mathrm{CbV}}(\lambda y \cdot(\lambda w \cdot w) y)$

Strong strategies

- fully normalize terms
- need to descend under λ and account for free variables in terms
- conservative extensions of weak strategies (e.g., strong CbN, strong CbV, strong CbNeed)
- efficient implementations required e.g. for typechecking in dependent types

Strong strategies

Normal order $=$ "iterate CbN "

$$
\underline{(\lambda x y \cdot x y)((\lambda z . z)(\lambda w \cdot w))} \xrightarrow{\mathrm{NO}} \lambda y \cdot \underline{(\lambda z \cdot z)(\lambda w \cdot w)} y
$$

Strong strategies

Normal order $=$ "iterate CbN "

$$
\begin{aligned}
\underline{(\lambda x y \cdot x y)((\lambda z . z)(\lambda w \cdot w))} & \xrightarrow{\mathrm{NO}} \lambda y \cdot\left(\begin{array}{l}
(\lambda z \cdot z)(\lambda w \cdot w) y \\
\\
\\
\\
\\
\\
\xrightarrow{\mathrm{NO}} \lambda y \cdot \underline{(\lambda w \cdot w) y} \\
\end{array}\right) \cdot y
\end{aligned}
$$

Strong strategies

$$
(\lambda x y \cdot x(y y)) \underline{((\lambda z \cdot z)(\lambda w \cdot w))} \xrightarrow{\text { SCbV }} \underline{(\lambda x y \cdot x(y y))(\lambda w \cdot w)}
$$

Strong strategies

$$
(\lambda x y \cdot x(y y))((\lambda z \cdot z)(\lambda w \cdot w))) \xrightarrow{\text { SCbV }} \xrightarrow{ } \xrightarrow{\text { SCV }} \lambda y \cdot(\lambda x y \cdot x(y y))(\lambda w)(y y))
$$

Strong strategies

$$
\begin{aligned}
(\lambda x y \cdot x(y y))((\lambda z \cdot z)(\lambda w \cdot w)) & \xrightarrow{\text { SCbV }}(\lambda x y \cdot x(y y))(\lambda w \cdot w) \\
& \xrightarrow{\text { ScbV }} \lambda y \cdot(\lambda w \cdot w)(y y) \\
& \xrightarrow{\text { SCbV }} \lambda y \cdot y y
\end{aligned}
$$

Strong strategies

$$
\begin{aligned}
(\lambda x y \cdot x(y y))((\lambda z \cdot z)(\lambda w \cdot w)) & \xrightarrow{\text { SCbV }}(\lambda x y \cdot x(y y))(\lambda w \cdot w) \\
& \xrightarrow{\text { SCbV }} \lambda y \cdot(\lambda w \cdot w)(y y) \\
& \xrightarrow{\text { SCbV }} \lambda y \cdot y y
\end{aligned}
$$

Strong CbV $=$ iterate Open CbV

Strong strategies

$$
\begin{aligned}
(\lambda x y \cdot x(y y))((\lambda z \cdot z)(\lambda w \cdot w)) & \xrightarrow{\text { SchV }} \xrightarrow{\text { Scb }} \frac{(\lambda x y \cdot x(y y))(\lambda w \cdot w)}{\lambda y \cdot(\lambda w \cdot w)(y y)} \\
& \xrightarrow{\text { Scbv }} \lambda y \cdot y y
\end{aligned}
$$

Strong CbV $=$ iterate Open CbV
Strong CbV is nondeterministic - we can choose right-to-left normalization (rrSCbV)

Formats of operational semantics

- structural operational semantics
- big-step semantics
- reduction semantics
- abstract machine
- definitional interpreter

Big-step semantics

$$
\begin{gathered}
\overline{\lambda x . t \Downarrow \lambda x . t} \quad \frac{t_{1} \Downarrow \lambda x . t \quad t_{2} \Downarrow t_{2}^{\prime} \quad t\left[x:=t_{2}^{\prime}\right] \Downarrow t^{\prime}}{t_{1} t_{2} \Downarrow t^{\prime}} \\
\overline{x \Downarrow x} \quad \frac{t_{1} \Downarrow t_{1}^{\prime} \not \equiv \lambda x . t \quad t_{2} \Downarrow t_{2}^{\prime}}{t_{1} t_{2} \Downarrow t_{1}^{\prime} t_{2}^{\prime}} \\
\text { Open call by value }
\end{gathered}
$$

Reduction semantics

$$
\begin{aligned}
& w::=\lambda x . t|\times \vec{w} \quad E::=\square| w E \mid E t \\
& \frac{t \rightarrow \beta_{w} t^{\prime}}{(\lambda x . t) w \rightarrow_{\beta_{w}} t[x:=w]} \quad \underset{E[t] \xrightarrow{c b w} E\left[t^{\prime}\right]}{c}
\end{aligned}
$$

Left-to-right open call by value

Abstract machines

- micro-step semantics (explicit decomposition and substitution)
- abstract model of language implementation
- work on source terms (not on compiled terms)
- constant cost of each transition
- abstract cost model of computation

Krivine machine for CbN evaluation

$$
\begin{aligned}
& t::=n|t t| \lambda t \quad C::=[t, E] \\
& E::=\bullet \mid C: E \\
& S:: \bullet \mid C:: S \\
& t \mapsto\langle t, \bullet \bullet\rangle \\
&\left\langle t_{1} t_{2}, E, S\right\rangle \rightarrow\left\langle t_{1}, E,\left[t_{2}, E\right]:: S\right\rangle \\
&\langle\lambda t, E, C:: S\rangle \rightarrow\langle t, C:: E, S\rangle \\
&\left\langle 0,[t, E]:: E^{\prime}, S\right\rangle \rightarrow\langle t, E, S\rangle \\
&\langle n+1, C:: E, S\rangle \rightarrow\langle n, E, S\rangle
\end{aligned}
$$

Techniques for AM derivation

- refocusing - from reduction semantics to abstract machine
- functional correspondence - from higher-order normalizer to abstract machine
- introduced for weak strategies, extendable to strong ones

Generalized reduction semantics

Normal order in λ-calculus

$$
t::=x|\lambda x . t| t t \quad a::=x|a n \quad n::=a| \lambda x . n
$$

$$
\begin{aligned}
& \underline{E}::=F|\lambda x . E| a E \\
& F::=\square_{F} \mid F t
\end{aligned}
$$

$$
E[(\lambda x . t) s] \xrightarrow{n o} E[t[x:=s]]
$$

Generalized reduction semantics - formalization

syntactic categories: kinds, initial kind, terms
values, potential redices, elementary contexts parameterized by kinds atomic plug - defining meaning of contexts
contraction function proofs of basic properties

Input to generalized refocusing

- generalized reduction semantics
- linear strict order $<_{k, t}$ on instances of productions from P^{k} that are compatible with t (i.e., elementary k-contexts matching t)
- atomic decomposition functions
- conditions on input enforce unique decomposition

Input to generalized refocusing - normal order

- elementary contexts

$$
\begin{gathered}
E::=\lambda x . \square_{E}\left|a \square_{E}\right| \square_{F} t \\
F::=\square_{F} t
\end{gathered}
$$

- search order $a \square_{E}<E, \square_{F} t$

Abstract machine for normal order

$$
\begin{aligned}
\langle\lambda x \cdot t, C, F\rangle_{\mathrm{e}} & \triangleright\langle C, F, \lambda x \cdot t\rangle_{\mathrm{c}} \\
\langle\lambda x \cdot t, C, E\rangle_{\mathrm{e}} & \triangleright\langle t, \lambda x \cdot \square:: C, E\rangle_{\mathrm{e}} \\
\left\langle t_{1} t_{2}, C, k\right\rangle_{\mathrm{e}} & \triangleright\left\langle t_{1},\left(k, \square t_{2}\right):: C, F\right\rangle_{\mathrm{e}} \\
\langle x, C, k\rangle_{\mathrm{e}} & \triangleright\langle C, k, x\rangle_{\mathrm{c}} \\
\langle\lambda x . \square:: C, E, v\rangle_{\mathrm{c}} & \triangleright\langle C, E, \lambda x \cdot v\rangle_{\mathrm{c}} \\
\left\langle n_{e} \square:: C, E, v\right\rangle_{\mathrm{c}} & \triangleright\left\langle C, E, n_{e} v\right\rangle_{\mathrm{c}} \\
\langle(k, \square s):: C, F, \lambda x \cdot t\rangle_{\mathrm{c}} & \triangleright\langle t[x:=s], C, k\rangle_{\mathrm{e}} \\
\left\langle(k, \square s):: C, k^{\prime}, x\right\rangle_{\mathrm{c}} & \triangleright\langle s,(k, x \square):: C, E\rangle_{\mathrm{e}}
\end{aligned}
$$

Correctness - intensionally

An abstract rewriting system $\langle\mathcal{S}, \Rightarrow\rangle$ traces another system $\langle\mathcal{T}, \rightarrow\rangle$ if there exists a surjection $\llbracket \rrbracket: \mathcal{S} \rightarrow \mathcal{T}$ s.t.

1. if $s_{1} \Rightarrow s_{2}$ then $\llbracket s_{1} \rrbracket=\llbracket s_{2} \rrbracket$ or $\llbracket s_{1} \rrbracket \rightarrow \llbracket s_{2} \rrbracket$
2. if $t_{1} \rightarrow t_{2}$ then for each s_{0} s.t. $\llbracket s_{0} \rrbracket=t_{1}$ there exists

$$
s_{0} \Rightarrow \ldots \Rightarrow s_{n+1}, \text { where } \llbracket s_{0} \rrbracket=\ldots=\llbracket s_{n} \rrbracket \text { and } \llbracket s_{n+1} \rrbracket=t_{2}
$$

3. there are no silent loops

Theorem

Let M - machine generated by generalized refocusing from a $R S$ with terms \mathcal{T} and reduction relation \rightarrow. Then M traces $\langle\mathcal{T}, \rightarrow\rangle$.

Functional correspondence

Higher-order evaluator

A call-by-name evaluator

```
type value = Value of (thunk -> value)
    and thunk = unit -> value
let rec eval (e : env) (t : term) : value =
    match t with
    | Var n -> List.nth e n ()
    | App(t0, t1) -> value_unfold (eval e t0)
        (fun () -> eval e t1)
    | Lam t -> Value (fun v -> eval (v :: e) t)
let main (t : term) : value = eval [] t
```


After closure conversion

```
type thunk = Thunk of term * env
and env = thunk list
type value = Closure of term * env
let rec eval (e : env) (t : term) : value =
    match t with
    | Varn -> let Thunk(t', e') = List.nth e n in
                                eval e' t'
    | App(t0, t1) -> let Closure(t', e') = eval e t0 in
    eval (Thunk(t1, e):: e') t'
    | Lam t -> Closure(t, e)
let main (t : term) : value = eval [] t
```


CPS translation

```
type thunk = Thunk of term * env
and env = thunk list
type value = Closure of term * env
let rec eval (e : env) (t : term) (k : value -> 'a) : 'a =
    match t with
    | Var n -> let Thunk(t', e') = List.nth e n in
                                eval e' t' k
    | App(t0, t1) -> eval e t0 (function Closure(t', e') ->
    eval (Thunk(t1, e)::e') t' k)
    | Lam t -> k (Closure(t, e))
let main (t : term) : value = eval [] t (fun x -> x)
```


Defunctionalization of continuations

```
type thunk = Thunk of term * env
and env = thunk list
type value = Closure of term * env
type stack = thunk list
let rec eval (e : env) (t : term) (s : stack) : value =
    match t, s with
    | Var n, _ -> let Thunk(t', e') = List.nth e n in
                                eval e' t's
    | Lam t, v :: s -> eval (v :: e) t s
    | App(t0, t1), _ -> eval e t0 (Thunk(t1, e) :: s)
    | Lam t, [] -> Closure(t, e)
let main (t : term) : value = eval [] t []
```


Reformatted as abstract machine

```
type thunk = Thunk of term * env
and env = thunk list
type conf = term * env * env
let transition (c:conf) : conf =
    match c with
    | (App(t0, t1), e, s) -> (t0, e, Thunk(t1, e) :: s)
    | (Lam t, e, v :: s) -> (t, v :: e, s)
    | (Var 0, Thunk(t, e) :: _, s) -> (t, e, s)
    | (Var n, _:: e, s) -> (Var (n-1), e, s))
let load (t : term) : conf = (t, [], [])
```


Normalization by evaluation

- programming technique to produce full normal forms reduction-free, based on denotational semantics
- interpret terms in a model
- then reify semantic values into syntactic normal forms

Normalization by evaluation for CbV

```
type term = Var of index | Lam of term | App of term * term
type level = int
type sem = Abs of (sem -> sem) | Neutral of (level -> term)
let to_sem (f : sem -> sem) : sem = Abs f
let from_sem (d : sem) : sem -> sem =
    fun d' ->
        match d with
        | Abs f ->
            f d'
        | Neutral l ->
            Neutral (fun m -> let n = reify d' m in App (l m, n))
```


Normalization by evaluation for CbV

```
let rec eval (t : term) (e : sem list) : sem =
    match t with
    | Var n -> List.nth e n
    | Lam t' -> to_sem (fun d -> eval t' (d :: e))
    | App (t1, t2) -> let d2 = eval t2 e
                                in from_sem (eval t1 e) d2
let rec reify (d : sem) (m : level) : term =
    match d with
    | Abs f ->
        Lam (reify (f (Neutral (fun m' -> Var (m' -m-1)))) (m+1))
    | Neutral l ->
        l m
let nbe (t : term) : term = reify (eval t []) 0
```


Normalization by evaluation for CbV

- functional correspondence applied to CbV NbE produces AM performing full normalization in Strong CbV strategy
- from the machine we can read off the reduction contexts
- obtained AM is inefficient: does not reuse constructed structures and suffers from size explosion

Size explosion problem

$$
\begin{gathered}
\omega:=\lambda x \cdot x x \\
e_{n}:=\lambda x \cdot c_{n} \omega x
\end{gathered}
$$

Under Strong CbV

e_{n} normalizes in linear number of steps to normal form of exponential size

$$
\begin{aligned}
& \omega^{1} x \rightarrow x x \\
& \omega^{2} x \rightarrow^{*}(x x)(x x)
\end{aligned}
$$

NbE for CbV - memoization

```
type 'a cache = 'a option ref
let cached_call ( \(c\) : 'a cache) (f : unit -> 'a) : 'a =
    match !c with
    | Some y -> y
    | None -> let \(y=f()\) in
                                    c := Some y;
y
```


NbE for CbV - memoization

```
type sem \(=A b s\) of (sem -> sem)
    | Neutral of (unit -> term)
    | Cache of term cache * sem
let rec from_sem : sem -> (sem -> sem) = function
    | Abs f \(->\) f
    | Neutral l -> apply_neutral l
    | Cache (c, Neutral l) -> apply_neutral
    | Cache (c, v) -> from_sem v
and apply_neutral (l : unit -> term) (v : sem) : sem =
    Neutral (fun () -> let \(n=r e i f y ~ v i n ~ A p p(l(), n))\)
```


NbE for CbV - eval and reify

```
let rec eval (t : term) (e : env) : sem =
    match t with
    | Var x -> env_lookup x e
    | Lam (x, t') -> to_sem
        (fun v -> eval t' @@ Dict.add x (mount_cache v) e)
    | App (t1, t2) -> let v2 = eval t2 e
                        in from_sem (eval t1 e) v2
let rec reify : sem -> term = function
    | Abs f -> let xm = "x_" ~ string_of_int (gensym ()) in
        Lam (xm, reify (f @@ abstract_variable xm))
    | Neutral l -> l ()
    | Cache (c, v) -> cached_call c (fun () -> reify v)
```

RKNV - abstract machine for SCbV

Terms $\quad t::=x\left|t_{1} t_{2}\right| \lambda x . t$
Values $v::=V(x)\left|v_{1} v_{2}\right|[x, t, E] \mid v^{\ell}$
Frames $F::=[t, E] \square|\square v| v \square|\square t| \lambda x . \square \mid @[\ell]$
Heaps H : location \rightarrow term option
Conf. $K \quad::=\langle t, E, S, m, H\rangle_{\mathcal{E}} \mid\langle S, v, m, H\rangle_{\mathcal{C}}$

$$
\left|\langle S, t, m, H\rangle_{\mathcal{S}}\right|\left\langle t^{?}, \ell, S, v, m, H\right\rangle_{\mathcal{M}}
$$

RKNV - abstract machine for SCbV

$$
\begin{aligned}
\left\langle[n], \ell, S_{2}, v, m, H\right\rangle_{\mathcal{M}} & \rightarrow\left\langle S_{2}, n, m, H\right\rangle_{\mathcal{S}} \\
\left.\bullet \bullet, \ell, S_{2}, v, m, H\right\rangle_{\mathcal{M}} & \rightarrow\left\langle\Theta(\ell]:: S_{2}, v, m, H\right\rangle_{\mathcal{C}} \\
\left\langle\Theta\left[l:: S_{2}, n, m, H\right\rangle_{\mathcal{S}}\right. & \rightarrow\left\langle S_{2}, n, m, H[\ell:=[n]\rangle_{\mathcal{S}}\right.
\end{aligned}
$$

RKNV - sound and complete

- RKNV traces right-to-left strong call by value
- normal forms are equal up to α-equivalence

RKNV - complexity

- amortized cost analysis based on configuration potential
- potential Φ_{K} of configuration $K=$ how many steps the machine can make till the next β-step
- all but one transitions decrease potential

RKNV - complexity

Configuration potential

$$
\Phi_{\mathrm{K}}(K):=\Phi_{\mathrm{t}}(t)+\Phi_{\mathrm{S}}(S)+\Phi_{\mathrm{H}}(K) \quad \text { if } K=\langle t, E, S, m, H\rangle_{\mathcal{E}}
$$

Erasure transition (precedes β-step)

$$
\left\langle\square v:: S_{1},[x, t, E]^{\ell}, m, H\right\rangle_{\mathcal{C}} \xrightarrow{\text { re }}\left\langle\square v:: S_{1},[x, t, E], m, H\right\rangle_{\mathcal{C}}
$$

- If $K \xrightarrow{\neq \text { (re } \beta)} K^{\prime}$ then $\Phi_{K}(K)>\Phi_{K}\left(K^{\prime}\right)$
- If $K \xrightarrow{\text { ire } \beta)} K^{\prime}$ then $\Phi_{K}(K)+\Phi_{\mathrm{t}}($ input $)>\Phi_{\mathrm{K}}\left(K^{\prime}\right)$

RKNV - complexity

reasonability Let: $|\rho|$ - number of transitions starting from term t_{0}, n - the number of β-reductions in rrSCbV normalization of term t_{0}.
Then $|\rho| \leq(n+1) \cdot \Phi_{t}\left(t_{0}\right)$.
overall complexity

$$
O\left((1+n) \cdot\left|t_{0}\right| \cdot E\left(\left|t_{0}\right|\right)\right)
$$

$E(n)$ - cost of operations on environment of size n

RKNV - complexity

- Strong CbV can be simulated in polynomial time
- Strong CbV calculus is a reasonable time cost model - using approach alternative to [Accattoli et al. '21]

Strong CbNeed - how to approach it

- extend weak CbNd
- two approaches for weak CbNd: storeless or store-based

Strong CbNeed - storeless

- complex declarative definition of reduction semantics [Balabonski et al. '17]
- expressible with generalized reduction semantics with contexts parameterized with sets of variables [Biernacka et al. '19]
- AM for SCbNd derived from generalized reduction semantics by refocusing

Strong Call by Need - example

$$
\begin{aligned}
& \lambda z \cdot(\lambda x \cdot x t)(z z) \quad z \text { is frozen } \\
& \rightarrow \lambda z . \text { let } x=z z \text { in } x t
\end{aligned}
$$

Strong Call by Need - example

$$
\begin{aligned}
& \lambda z .(\lambda x . x t)(z z) \quad z \text { is frozen } \\
& \rightarrow \lambda z . \text { let } x=z z \text { in } x t \\
& \equiv \lambda z . \text { let } x=z z \text { in }[x] t
\end{aligned}
$$

Strong Call by Need - example

$$
\begin{aligned}
& \lambda z .(\lambda x . x t)(z z) \quad z \text { is frozen } \\
& \rightarrow \lambda z . \text { let } x=z z \text { in } x t \\
& \equiv \lambda z . \text { let } x=z z \text { in }[x] t \\
& \rightarrow \lambda z . \text { let } x:=z z \text { in } x t
\end{aligned}
$$

Strong Call by Need - example

$$
\begin{aligned}
& \lambda z \cdot(\lambda x . x t)(z z) \quad z \text { is frozen } \\
& \rightarrow \lambda z \text {. let } x=z z \text { in } x t \\
& \equiv \lambda z \text {. let } x=z z \text { in }[x] t \\
& \rightarrow \lambda z \text {. let } x:=z z \text { in } x t \\
& \equiv \lambda z \text {. let } x:=z z \text { in }[x] t \quad x \text { is frozen }
\end{aligned}
$$

Strong Call by Need - example

$$
\begin{aligned}
& \lambda z .(\lambda x . x t)(z z) \quad z \text { is frozen } \\
& \rightarrow \lambda z . \text { let } x=z z \text { in } x t \\
& \equiv \lambda z . \text { let } x=z z \text { in }[x] t \\
& \rightarrow \lambda z . \text { let } x:=z z \text { in } x t \\
& \equiv \lambda z . \text { let } x:=z z \text { in }[x] t \quad x \text { is frozen } \\
& \equiv \lambda z . \text { let } x:=z z \text { in } x[t] \rightarrow \ldots
\end{aligned}
$$

Strong CbNeed - alternative approach

- starting point: NbE normalizer for normal order
- introduce memoized thunks to avoid recomputation of arguments and of normal forms
- apply functional correspondence to derive AM

Strong CbNeed - RKNL abstract machine

$\langle[\lambda x . t, e], s, \sigma\rangle_{\nabla} \rightarrow\left\langle[\lambda x . t, e]^{\ell}, s, \sigma *[\ell \mapsto \perp]\right\rangle_{\Delta}$
$\left\langle[\lambda x . t, e]^{\ell}, s, \sigma\right\rangle_{\Delta} \rightarrow$
$\left\langle\left[t, e\left[x:=\ell_{2}\right]\right], \lambda \check{x} . \square:: @[\ell]:: s, \sigma *\left[\ell_{2} \mapsto \check{x}_{r}\right]\right\rangle_{\nabla}$
where $\sigma(\ell)=\perp$
$\left\langle[\lambda x . t, e]^{\ell}, \square\left[t_{2}, e_{2}\right]:: s, \sigma\right\rangle_{\Delta} \rightarrow\left\langle\left[t, e\left[x:=\ell_{2}\right]\right], s, \sigma *\left[\ell_{2} \mapsto\left[t_{2}, e_{2}\right]\right]\right\rangle_{\nabla}$

Strong CbNeed - results

- derived store-based AM
- RKNL simulates the normal-order strategy:
- each machine configuration accounts for a sequence of NO reduction steps (modulo α-equivalence)
- each NO reduction step is simulated by a sequence of machine steps
- amenable to complexity analysis using potential function: number of transitions bilinear in the number of β-steps in NO and in size of initial term

A zoo of strategies

- collection of reduction strategies
- characterized by term decompositions
- based on ubiquitous reduction contexts
- formalized in Coq

Context

```
Inductive frame : Type :=
| Lam : string }->\mathrm{ frame
| Rapp : term }->\mathrm{ frame
| Lapp : term }->\mathrm{ frame.
Definition context : Type := list frame.
```


Example - CBN contexts

```
Definition CBN_frame (f:frame) : Prop :=
match f with
| Rapp _ => True
| _ => False
end.
Fixpoint Uniform (F:frame -> Prop) (C:context) : Prop :=
match C with
| [] => True
| f :: C => F f ^ Uniform F C
end.
Definition CBN : context }->\mathrm{ Prop := Uniform CBN_frame.
```


Strategy

```
Definition decomposition : Type := context * term.
Definition strategy : Type := decomposition }->\mathrm{ Prop.
Definition recompose : decomposition }->\mathrm{ term := uncurry plug.
Definition normal_form (s:strategy) (t:term) : Prop :=
    \neg\exists\textrm{d},\textrm{t}= recompose d ^ d \in s.
Definition det_strategy (s:strategy) : Prop :=
    t, \exists\leq1 d, t = recompose d }\wedge d \in s
```


Example - CBN strategy

```
Definition \beta_contrex : term }->\mathrm{ Prop :=
    app_of abstraction
Definition cbn : strategy :=
    CBN }\times\mp@subsup{\beta}{_}{\primecontrex.
```


Normal forms

```
Fixpoint rigid (t:term) : Prop :=
match t with
| var _ => True
| app s _ => rigid s
| _ => False
end.
Definition whnf : term }->\mathrm{ Prop := abstraction U rigid.
Example rigid_is_whnf : rigid \subseteq whnf.
Lemma cbn_nf : normal_form cbn == whnf.
```


Zoo

Phased strategies

```
Definition sequence_strategy (r s: strategy) : strategy :=
d d, r d V (normal_form r (recompose d) ^ s d).
Notation "\swarrow" := left_strategy.
```



```
Definition cbn_phased := \swarrow cbn;; \beta.
Definition no_phased := ( }\beta;;\swarrow\mathrm{ no;; \ no) U }\downarrow\mathrm{ no.
```


Phased strategies

```
Definition cbw_phased := ( \swarrow cbw U \searrowcbw);; \beta.
Definition scbw_phased := (cbw;; ( \swarrow scbw U \searrowscbw)) U \downarrowscbw.
Lemma scbw_conservative_extension_cbw : scbw == cbw; ; scbw.
```


Phased strategies

Lemma sequence_strategy_assoc: $\forall \mathrm{q}$ r s , $\mathrm{q} ;$; (r; ; s) == (q; r) ; s .
 $\mathrm{w} \subseteq \mathrm{weak} \rightarrow \swarrow \mathrm{w} ; ; \beta==\beta ; \quad \swarrow \mathrm{w}$.

Lemma phased_left_strategy : $\forall \mathrm{s} \mathrm{s}^{\prime}$, $\swarrow \mathrm{s} ; \quad \swarrow \mathrm{s}^{\prime}==\swarrow\left(\mathrm{s} ; \quad\right.$; $\left.\mathrm{s}^{\prime}\right)$.

Benefits

- framework to study, compare and discover new strategies
- more structured and generic proofs of strategy properties, normal forms, etc.
- algebraic reasoning about strategies

Thank you!

