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Overview

* The Motivating Problem:

e What is the Probabilistic Method

* Existence of Hypergraph Colourings

* Some Brief Isabelle/HOL Background
* The Probabilistic Method Framework
* Applying the Framework

e Extensions & Discussions
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Hypergraph Colourings.

* A hypergraph (V, E), where E is a collection of subsets of V of any size, is “colourable” if
there is a vertex colouring such that no edge is monochromatic.

2- colourable 3-uniform w/ 4 edges Not 2- colourable 3-uniform w/ 7 edges



A Basic Proof

The Probabilistic Method:
Prove existence by showing a structure has a desired property with probability > 0

(or avoids bad properties with probability < 1)

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 27!
edges has property B. Therefore m(n) > 2" 1,

Proof. Let H = (V, E) be an n-uniform hypergraph with less than 2"~ ! edges.
Color V' randomly by two colors. For each edge e € E, let A. be the event that ¢ is
monochromatic. Clearly Pr[A.] = 2'~™. Therefore

\V} ﬂe] <) PriA] <1

ec B ec i

Pr

and there is a two-coloring without monochromatic edges. ]



The Probabilistic Method - Why Formalise?

The Probabilistic Method is one of the most powerful and widely used tools applied in

combinatorics (Alon & Spencer, 2015).

* No prior formalisations on hypergraph colourings -> many applications.

Interest in formalised maths has grown significantly -> particularly in combinatorics.

Only three pre-existing formalisations which use the probabilistic method -> focused on

theorems not general techniques.

Predominance of this method in modern combinatorics research -> motivated by many

applications -> how can we make this easy for people to formalise future work?



ldentified Formalisation Challenges

A first attempt at formalising a proof written in 1 line on paper!

proof -
° : b fix e assume a: "e ¢ set msetf]E"
o e Iance On UI I |an IntUItlon then have "{f € C . edge is monochromatic2 f e} = (|J ce {0..<2} {feC.Vvee.fv=cH"

using edge is monochromatic _set union[of e 2] C_def by simp

also have "... = (|J ce {0::nat, 1} .{feC.VYvee.fv=c}"
by fastforce

finally have eq: "{f € C . edge is monochromatic2 f e} = {f e C . Vvee . fvs=(0::nat)} U {f
by auto

have prob c: “A c. c € {0..<2} = P.prob {f € C . VYvee.fv=c}=1/(2 powi k)"

proof -
fix ¢ :: colour assume cin: "c € {0..<2}"

Y C M have ess: "e C V" using a wellformed by auto
OI I Ip eX Ca Cu a Ions then have 1t: "card e < card V"

by (simp add: card _mono local.finite)

then have scard: “card {f € C . Vvee.fv=c}=(2:: real) powi ((card V) - card e)"
unfolding C def using all n vertex colourings fun alt[of 2] card PiE filter range set[of ¢ 2
using cin by fastforce

have "P.prob {f e C . Vvee . fv=c})=card {feC.Vvee.fv=c} (card )"
using measure_uniform_count measuref[of C "{f € C . Vv ee . fv=c} "] finC
by fastforce

° also have "... (2 powi ((card V) - card e))/(2 powi (card V))" using Ccard scard by simp
[ ) Set u p InVO Ived also have ". 2 powi (int (card V - card e) - int (card V))" by (simp add: power_int diff)
also have "... = 2 powi (int (card V) - int (card e) - int (card V))" using int_ops 1t by simp
also have " = 2 powi -(card e)" using assms(1l) by (simp add: of nat diff)

also have "... inverse (2 powi (k))" using uniform a power_int minus[of 2 "(int k)"] by simp
finally show "P.prob {f e C . Vvee . fv=c}=1/(2 powi k)"
by (simp add: inverse eq divide)

L}

ged
have ss: "A ¢ .{f € C. Vvee. f v = ¢} € P.events"
by (simp add: sts)
have "A f . feC = -~ ((VWVvee.fv=(0::nat)) A(Vvee.fvs=(l::nat)))"

* Definitions and Notation proo (rute ceonr)

assume "~ - ((Vvee. f v =0) A (VYvee. fv=1))"
then have con: "(Yvee. f v = 0) A (Vvee. f v = 1)" by auto
then obtain v where "v € e" using blocks nempty a by auto
then show False using fin con by auto
o qed
General kChnl ues and then have disj: "{f e C . Yvee.fv=(0:nat)) n{feC.Vvee.fv=(liznat)} = {3"b
then have "P.prob {f € C . edge _is _monochromatic2 f e} = P.prob ({f ¢ C . Vv ee . fv= (0::nal

using eq by simp

also have "... = P.prob {f e C . Vvee.fv= (0::pat)} + P.prob {fe C.Vvee.fv= (1
MethOds are neEded’ using P.finite measure Union[of "{f € C . Vv e e . fv = (0::nat)}" "{feC.Vvee.fvs
o also have "... = 2/(2 powi (int k))" using prob_c by simp
also have "... = 2/(2* (2 powi ((int k) - 1)))" using assms(3)

by (metis power_int commutes power_int minus mult zero neq numeral)
finally show "P.prob {f € C . edge is monochromatic2 f e} = 2 powi (1 - int k)"
by (simp add: power_int diff)
aed



2. Isabelle Background




Isabelle
/HOL

Simple type theory

Sledgehammar — automated proof search.
Search tools: Query Search, Find Facts, SErAPIS
The Isar structured proof language

Interactive Development Environments

Extensive existing libraries in Maths & Computer
Science in the Archive of Formal Proofs (AFP)

Additional features: Code generation,
modularity, polymorphism, documentation
generation ...




Locales Basics

* Locales are Isabelle’s module system. From a logical perspective, they are
simply persistent contexts.

* A simple example (taken from the Locales tutorial):

Notation
locale partial_order = /

Parameters —»[ fixes le :: "’a = ’a = bool" (infixl "C" 50)
assumes refl [intro, simp]: "x C x"
and anti_sym [intro]: "[x C y; yC x| = x = y"
and trans [trans]: "[x Cy; yC z] = x C 2"

Assumptions



Locales Basics — Inheritance and Interpretations

 We have direct inheritance

locale lattice = partial_order +
assumes ex_inf: "dJinf. is_inf x y inf"
and ex_sup: "dJdsup. is_sup x y sup"
begin

e And indirect inheritance

sublocale total order C lattice

* Interpretations (global & local)

interpretation int: partial_order "(<£) :: [int, int] = bool"
rewrites "int.less x y = (x < y)"
proof -



3. The Probabilistic Method




The
Basic
Method

Introduce randomness to the
Problem Domain

|dentify the desired
properties/properties to avoid

Show object has desired
properties with P >0

In a finite space, there must
then be an element of the
space with the property!




Goal: Prove that every k-uniform hypergraph
with fewer than 27k-1 edges is 2-colourable

1. Colour a graph with 2 colours
randomly

g V
I o 2. Property: colouring results in no
Ap p yl ng edges being monochromatic.

3. Show the complement:

t h e probability of all edges being
monochromatic< 1

M th d 4. P(A)=1-(-A). Positive
e O probability, and exemplar

colouring can be obtained.




Formalisation Framework - Summary

Formal Framework
1. Define a probability space
2. Define object properties
3. Calculate probability bounds

4. Obtain exemplar object

Traditional Framework

Introduce randomness to the
Problem Domain

|dentify the desired
properties/properties to avoid

Show object has desired
properties with P >0

In a finite space, there must
then be an element of the
space with the property!




The Formalisation Framework — Step 1

To “introduce randomness” we must define a probability space

Define the
measure

Definethe
prob space

Useful
lemmas

(Q,F, P) formally

define C where "C = (all _n_vertex colourings fun 2)"
| let ?M = "uniform count measure C"
"interpret P: prob space ?M

using assms(1l) by (intro prob space uniform count measure)(simp all add: C def vertex

" have

by
have
have
have

have

sp: "space M = (C"

(simp add: space uniform count measure)

sts: "P.events = Pow C" by (simp add: sets uniform count measure)

finE: "finite (set mset E)" by simp

finC: "finite C" using vertex colourings fun fin C def by simp

Ccard: "card C = 2 powi (card V)" using count vertex colourings fun C def by auto



The Formalisation Framework — Step 1 General!

locale vertex fn space = fin hypersystem vne +

fixes F :: "'a set = 'b set"
fixes p :: "'b = real” sublocale vertex fn space C prob space M
assumes ne: "F V # {}" » using prob space M .

assumes fin: "finite (F V)"
assumes pgte@: "A fv . fv €e FV = p fv > 0"
assumes sump: "(O.x € (FV) . p x) = 1"

begin
definition "2 = F V" (* model space *) ) :
0 We use locales on incidence
lemma fin Q: "finite Q"
unfolding Q def using fin by auto SYStemS to create an abstract
lemma ne Q: "Q % {}" vertex space, which can be
unfolding €} def using ne by simp extended for different

definition "M = point measure Q p" properties_




A Vertex Colouring Space

locale vertex colour space = fin hypergraph nt +
fixes n :: nat (*Number of colours *)
assumes n_lt order: "n < order"
assumes n not zero: "n # 0"

sublocale vertex colour space C vertex prop space V E "{0..<n}"
rewrites "QU = C""
proof -
have "{0..<n} # {}" using n not zero by simp
then interpret vertex prop space V E "{0..<n}"
by (unfold locales) (simp all)
show "vertex prop space V E {0..<n}" by (unfold locales)
show "QU = C""
using €2 def all n vertex colourings alt by auto
ged

Context contains general lemmas on vertex colourings for any future applications of the
probabilistic method to colourings!



The Formalisation Framework — Step 3

* The Union bound:

lemma Union bound avoid:
assumes "finite A"
assumes "(>.a € A. prob a) < 1"
assumes "A C events”
shows "prob (space M - [JA) > 0"

* The Complete Independence Bound

lemma complete indep bound3:
assumes "finite A"
assumes "A # {}"
assumes "F ° A C events"
assumes "indep events F A"
assumes "A a . a € A = prob (F a) < 1"
shows "prob ([lJa € A. space M - F a) > 0"



The Formalisation Framework — Step 4

* Obtaining an object from a probability!
* Some basic rules

lemma prob 1t one obtain:
assumes "{e € space M . Q e} € events"
assumes "prob {e € space M . Q e} < 1"
obtains e where "e € space M" and "—- Q e"

lemma prob gt zero obtain:
assumes "{e € space M . Q e} € events"
assumes "prob {e € space M . Q e} > 0"
obtains e where "e € space M" and "Q e"

* Combining steps 3 & 4!

lemma Union bound obtain fun:
assumes "finite A"
assumes "(>.a € A. prob (f a)) < 1"
assumes "f ° A C events"
obtains e where "e € space M" and "e ¢ |J( f° A)"




4. The Framework ... In Practice




The Proof - Formalised

context fin kuniform hypergraph nt
begin
proposition erdos propertyB:
assumes "size E < (2°(k - 1))"
assumes "k > 0"
shows "has property B"
proof -
(* (1) Set up the probability space: "Colour V randomly with two colours" *)
interpret P: vertex colour space V E 2
by unfold locales (auto simp add: order ge two)
(* (2) define the event to avoid - monochromatic edges *)

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 27!
edges has property B. Therefore m(n) > 2" 1.

Proof. Let H = (V, E) be an n-uniform hypergraph with less than 2"~! edges. (*dfgns Q Wﬁe:? "Alz(chl e. 1{f F‘E [iz ; mozno(ledgt%) f *6)})"
. alculation 1: Clearly Pr[Ae] = 2°(1- n).
E;f;;};;?:gzn]é]ziri‘;%i(ffr?‘fgﬂEi?hﬁi%:firi E, let A, be the event that e is have pe: "A e. e € set mset E — P.pfiob {f € C2 . mono edge f e} = 2 powi (1 - int k)"

using P.prob monochromatic edge uniform assms(1l) by fastforce
(* (3) Calculation 2: Have Pr (of Ae for any e) < Sum over e (Pr (A e)) <1 *)
have "(> e € set mset E. P.prob (A e)) < 1"

Pr|\/ Al <> PriA]<1 proof - _ _ o
eCE ceE have "int k - 1 = int (k - 1)" using assms by linarith
then have "card (set mset E) < 2 powi (int k - 1)" using card size set mset[of E] assms by simp
. . . . then h " t t E). P. b (A 2 i (int k - 1) * 2 i (1 - int k)"
and there is a two-coloring without monochromatic edges. ] en have *()je € (set mset E) R P e ) povd { s

unfolding A def using pe by simp
moreover have "((2 :: real) powi ((int k) - 1)) * (2 powi (1 - (int k))) = 1"
using power_int add[of 2 "int k - 1" "1- int k"] by force
ultimately show ?thesis using power int add[of 2 "int k - 1" "1- int k"] by simp
ged
moreover have "A ° (set _mset E) C P.events" unfolding A def P.sets _eq by blast
(* (4) obtain a colouring avoiding bad events *)
ultimately obtain f where "f € C2" and "f &€ |J(A ~(set mset E))"
using P.Union bound obtain fun[of "set mset E" A] finite set mset P.space eq by auto

thus ?thesis using event is proper colouring A def is n colourable def by auto
ged




The Proof

context fin kuniform hypergraph nt
begin
proposition erdos propertyB:
assumes "size E < (2°(k - 1))"
assumes "k > 0"
shows "has property B"
proof -
(* (1) Set up the probability space: "Colour V randomly with two colours" *)
interpret P: vertex colour space V E 2
by unfold locales (auto simp add: order ge two)
(* (2) define the event to avoid - monochromatic edges *)
Proof. Let H = (V, E) be an n-unifo raph with less than 2"~! edges. define A where "A =(} e. {f € C* . mono_edge f e})"
Color V randomly by two colors. For each edge e € E, let A, be the event that e is _—[(* (3) caleulation 1: Clearly Prlfe] = 2°(1- n). *)

= — have pe: "A e. e € set mset E — P.pfiob {f € C2 . mono edge f e} = 2 powi (1 - int k)"
monochromatic. Clearly Pr [A.] = 2'~". Therefore using P.prob_monochromatic edge uniform assms(1l) by fastforce
(* (3) Calculation 2: Have Pr (of Ae for any e) < Sum over e (Pr (A e)) <1 *)

have "(> e € set mset E. P.prob (A e)) < 1"
Pr V A < Z Pr[Ad.] <1 proof -

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 27!
edges has property B. Therefore m(n) > 2" 1.

eCE ceE have "int k - 1 = int (k - 1)" using assms by linarith
then have "card (set mset E) < 2 powi (int k - 1)" using card size set mset[of E] assms by simp
. . . . then have " e € (set mset E). P.prob (A e)) < 2 powi (int k - 1) * 2 powi (1 - int k)"
and there is a two-coloring without monochromatic edges. ] (2 (set ) . Ll . ! ) . ! )

unfolding A def using pe by simp
moreover have "((2 :: real) powi ((int k) - 1)) * (2 powi (1 - (int k))) = 1"
using power_int add[of 2 "int k - 1" "1- int k"] by force
ultimately show ?thesis using power int add[of 2 "int k - 1" "1- int k"] by simp
ged
moreover have "A ° (set _mset E) C P.events" unfolding A def P.sets _eq by blast
(* (4) obtain a colouring avoiding bad events *)
ultimately obtain f where "f € C2" and "f &€ |J(A ~(set mset E))"
using P.Union bound obtain fun[of "set mset E" A] finite set mset P.space eq by auto

thus ?thesis using event is proper colouring A def is n colourable def by auto
ged




A Side Note on Independence & Intuition

Clearly Pr[4,] = 21™

* i.e. Clearly vertex colouring events are independent, so we can just apply P(AB) = P(A)P(B) right?

 BUT - This is circular reasoning!

* To establish independence, we must prove the multiplication rule holds.

e Use a counting lemma instead on sets of functions

lemma prob edge colour:
assumes "e c# E" "c € {0..<n}"
shows "prob {f € C" . mono edge col f e c} = 1/(n powi (card e))"
proof -
have "card {0..<n} = n" by simp
moreover have "C" =V —e {0..<n}" using all n vertex colourings alt by blast
moreover have "{0..<n} # {}" using n not zero by simp
ultimately show ?thesis using prob uniform ex_ fun space[of V  "{0..<n}" el n_not zero
finite sets wellformed assms by (simp add: MU def V nempty mono edge col def)

ged



5. Extensions & Discussion




Extensions of Work

* Formalisation of the Lovasz Local Lemma & Variations as a much more

advanced bounding technique
* Extensive additions to libraries on conditional probability and independence
* Further applications to hypergraph colouring existence problems

* Future work: more techniques and applications to different incidence

systems!



Formal Maths: Challenges and Insights

Challenges Insights
* Human intuition is not easy to * Enabled significant more detail on
translate proofs (or established proofs for

* Search tools are great, but struggle intuitive” facts).
with equivalent concepts/notation. ¢ Locales can mirror hierarchies

Further documentation/annotation effectively, transfer facts, and are
tools could help here. great for modularity

e Static vs dynamic library * Modularity and Proof Engineering
management is important!

 Calculations such as e Search tool developments &
summations/products continue to automation beneficial
be tricky.

* Connecting communities



Concluding Thoughts

* Formalisation of Mathematics has come a long way

* This project easily combined libraries across different fields (probability and

combinatorics).

* Use of probability in proofs relies heavily on intuition, which presents many more

opportunities for both challenges and deeper proof insights!

e Paper with more advanced work to come!

Contact: cle4d7@cl.cam.ac.uk
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