An Introduction to the Probabilistic Method in Isabelle/HOL

Chelsea Edmonds | cle47@cl.cam.ac.uk

Lawrence C. Paulson | lp15@cl.cam.ac.uk

Department of Computer Science and Technology | University of Cambridge

Women in EuroProofNet Workshop | ITP 2023

PhD Research supported by a joint Cambridge Australia Scholarship and Cambridge Department of Computer Science Qualcomm Studentship

Additionally supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178).

Overview

- The Motivating Problem:
 - What is the Probabilistic Method
 - Existence of Hypergraph Colourings
- Some Brief Isabelle/HOL Background
- The Probabilistic Method Framework
- Applying the Framework
- Extensions & Discussions

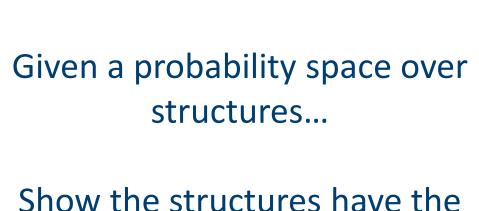
What is the Probabilistic Method?

Key Idea

Given a probability space over structures...

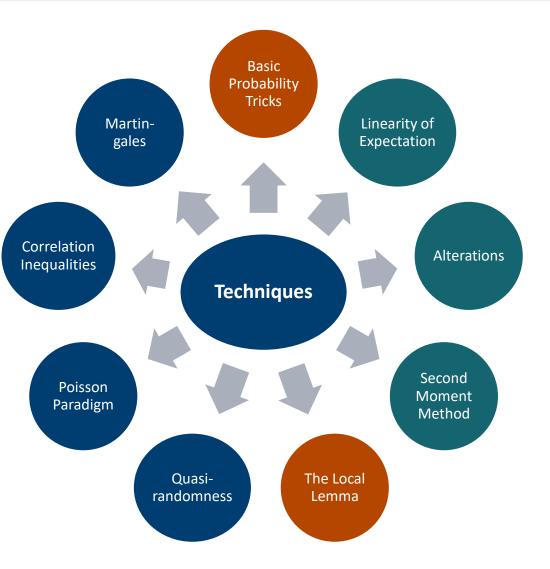
Show the structures have the desired properties with positive probability.

What is the Probabilistic Method?



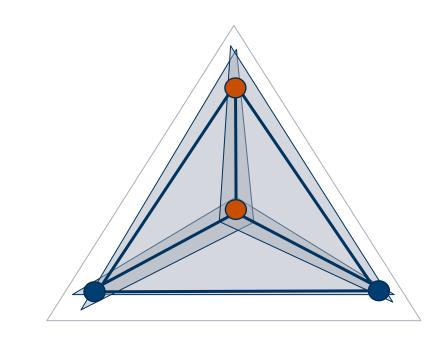
Key Idea

Show the structures have the desired properties with positive probability.

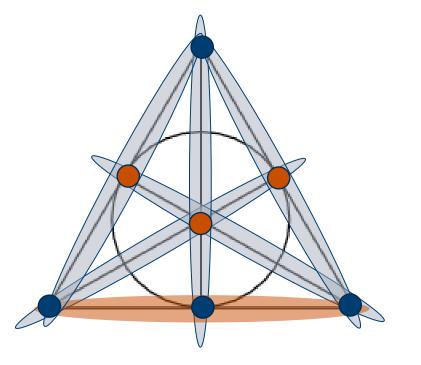


Hypergraph Colourings.

• A hypergraph (V, E), where E is a collection of subsets of V of any size, is "colourable" if there is a vertex colouring such that no edge is monochromatic.



2- colourable 3-uniform w/ 4 edges



Not 2- colourable 3-uniform w/ 7 edges

A Basic Proof

The Probabilistic Method:

Prove existence by showing a structure has a desired property with probability > 0

(or avoids bad properties with probability < 1)

Proposition 1.3.1 [Erdős (1963a)] Every *n*-uniform hypergraph with less than 2^{n-1} edges has property *B*. Therefore $m(n) \ge 2^{n-1}$.

Proof. Let H = (V, E) be an *n*-uniform hypergraph with less than 2^{n-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_e be the event that e is monochromatic. Clearly $\Pr[A_e] = 2^{1-n}$. Therefore

$$\Pr\left[\bigvee_{e \in E} A_e\right] \le \sum_{e \in E} \Pr\left[A_e\right] < 1$$

and there is a two-coloring without monochromatic edges.

The Probabilistic Method - Why Formalise?

The Probabilistic Method is one of the most powerful and widely used tools applied in combinatorics (Alon & Spencer, 2015).

- No prior formalisations on hypergraph colourings -> many applications.
- Interest in formalised maths has grown significantly -> particularly in combinatorics.
- Only three pre-existing formalisations which use the probabilistic method -> focused on theorems not general techniques.
- Predominance of this method in modern combinatorics research -> motivated by many applications -> how can we make this easy for people to formalise future work?

Identified Formalisation Challenges

- Reliance on human intuition
- Complex calculations
- Set up involved
- Definitions and Notation

General Techniques and Methods are needed!

```
A first attempt at formalising a proof written in 1 line on paper!
```

proof fix e assume a: "e ∈ set mset E" then have "{f \in C . edge_is_monochromatic2 f e} = ($\bigcup c \in \{0, ., 2\}$.{f \in C . $\forall v \in$ e . f v = c})' using edge is monochromatic set union[of e 2] C def by simp also have "... = $(\bigcup c \in \{0::nat, 1\} , \{f \in C , \forall v \in e , f v = c\})$ " by fastforce finally have eq: "{f \in C . edge_is_monochromatic2 f e} = {f \in C . $\forall v \in$ e . f v = (0::nat)} \cup {f by auto have prob_c: " \land c. c $\in \{0, .., 2\} \implies$ P.prob {f $\in C$. $\forall v \in e$. f v = c} = 1/(2 powi k)" proof fix c :: colour assume cin: "c \in {0..<2}" have ess: "e $\subseteq \mathcal{V}$ " using a wellformed by auto then have lt: "card e < card \mathcal{V} " by (simp add: card mono local.finite) then have scard: "card {f \in C . $\forall v \in$ e . f v = c} = (2 :: real) powi ((card $\mathcal{V})$ - card e)" unfolding C def using all n vertex colourings fun alt[of 2] card PiE filter range set[of c 2] using cin by fastforce have "P.prob {f \in C . $\forall v \in$ e . f v = c} = card {f \in C . $\forall v \in$ e . f v = c}/ (card C)" using measure_uniform_count_measure[of C "{f \in C . $\forall v \in e$. f v = c} "] finC by fastforce also have "... = $(2 \text{ powi} ((\text{card } \mathcal{V}) - \text{card } e))/(2 \text{ powi} (\text{card } \mathcal{V}))$ " using Ccard scard by simp also have "... = 2 powi (int (card \mathcal{V} - card e) - int (card \mathcal{V}))" by (simp add: power int diff) also have "... = 2 powi (int (card \mathcal{V}) - int (card e) - int (card \mathcal{V}))" using int ops lt by simp also have "... = 2 powi - (card e)" using assms(1) by (simp add: of nat diff) also have "... = inverse (2 powi (k))" using uniform a power int minus[of 2 "(int k)"] by simp finally show "P.prob {f \in C . $\forall v \in$ e . f v = c} = 1/(2 powi k)" by (simp add: inverse eq divide) ged have ss: " \land c .{f \in C. \forall v \in e. f v = c} \in P.events" by (simp add: sts) have " \land f . f \in C $\implies \neg$ (($\forall v \in e$. f v = (0::nat)) \land ($\forall v \in e$. f v = (1::nat)))" proof (rule ccontr) fix f assume fin: "f \in C" assume " $\neg \neg$ (($\forall v \in e. f v = 0$) \land ($\forall v \in e. f v = 1$))" then have con: " $(\forall v \in e. f v = 0) \land (\forall v \in e. f v = 1)$ " by auto then obtain v where "v \in e" using blocks_nempty a by auto then show False using fin con by auto aed then have disj: "{f $\in \mathbb{C}$, $\forall v \in \mathbb{e}$, f v = (0::nat)} \cap {f $\in \mathbb{C}$, $\forall v \in \mathbb{e}$, f v = (1::nat)} = {}" b then have "P.prob {f \in C . edge is monochromatic2 f e} = P.prob ({f \in C . $\forall v \in$ e . f v = (0::nat using eq by simp also have "... = P.prob {f $\in C$, $\forall v \in e$, f v = (0::nat)} + P.prob {f $\in C$, $\forall v \in e$, f v = (1: using P.finite measure Union[of "{f \in C . $\forall v \in$ e . f v = (0::nat)}" "{f \in C . $\forall v \in$ e . f v = also have "... = 2/(2 powi (int k))" using prob c by simp also have "... = 2/(2* (2 powi ((int k) - 1)))" using assms(3) by (metis power int commutes power int minus mult zero neq numeral) **finally show** "P.prob { $f \in C$. edge is monochromatic2 $f \in C$ = 2 powi (1 - int k)"

by (simp add: power_int_diff)

aed

2. Isabelle Background

Isabelle /HOL

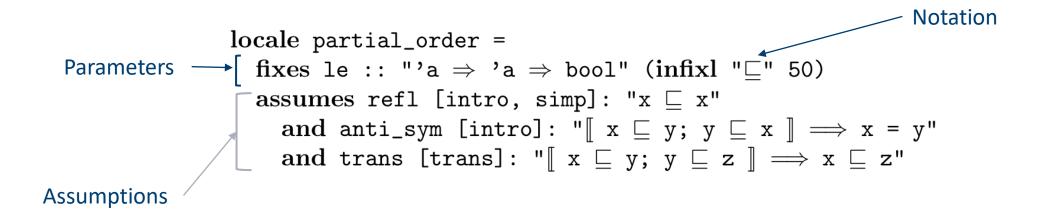
- Simple type theory
- Sledgehammar automated proof search.
- Search tools: Query Search, Find Facts, SErAPIS
- The Isar structured proof language
- Interactive Development Environments
- Extensive existing libraries in Maths & Computer Science in the Archive of Formal Proofs (AFP)
- Additional features: Code generation, modularity, polymorphism, documentation generation ...

Locales Basics

• Locales are Isabelle's module system. From a logical perspective, they are simply persistent contexts.

$$\land x_1 \dots x_n. \llbracket A_1; \dots; A_m \rrbracket \Rightarrow C.$$

• A simple example (taken from the Locales tutorial):



Locales Basics – Inheritance and Interpretations

• We have direct inheritance

```
locale lattice = partial_order +
   assumes ex_inf: "∃inf. is_inf x y inf"
      and ex_sup: "∃sup. is_sup x y sup"
begin
```

• And indirect inheritance

```
{\bf sublocale total\_order} \subseteq {\tt lattice}
```

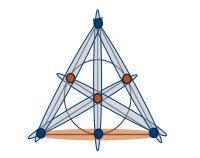
Interpretations (global & local)

```
interpretation int: partial_order "(≤) :: [int, int] ⇒ bool"
    rewrites "int.less x y = (x < y)"
proof -</pre>
```

3. The Probabilistic Method

The Basic Method

- 1. Introduce randomness to the Problem Domain
- 2. Identify the desired properties/properties to avoid
- 3. Show object has desired properties with P > 0
- 4. In a finite space, there must then be an element of the space with the property!



Applying the Method Goal: Prove that every k-uniform hypergraph with fewer than 2^k-1 edges is 2-colourable

- 1. Colour a graph with 2 colours randomly
- 2. Property: colouring results in no edges being monochromatic.
- Show the complement: probability of all edges being monochromatic < 1
- 4. $P(A) = 1 (\neg A)$. Positive probability, and exemplar colouring can be obtained.

Formalisation Framework - Summary

Formal Framework

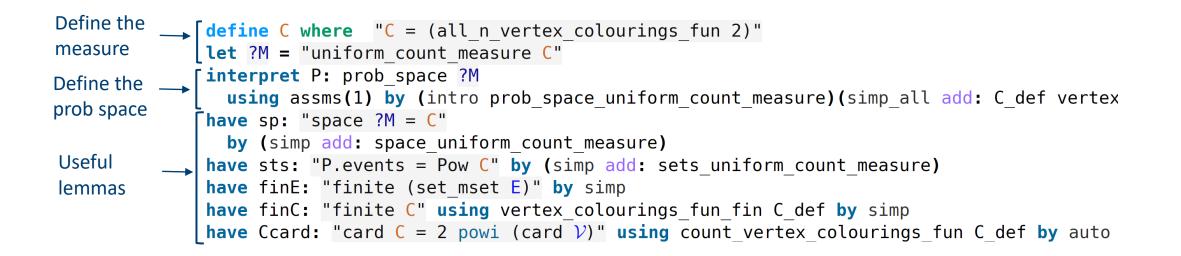
- **1. Define a probability space**
- 2. Define object properties
- 3. Calculate probability bounds
- 4. Obtain exemplar object

Traditional Framework

- Introduce randomness to the Problem Domain
- 2. Identify the desired properties/properties to avoid
- 3. Show object has desired properties with P > 0
- 4. In a finite space, there must then be an element of the space with the property!

The Formalisation Framework – Step 1

To "introduce randomness" we must define a probability space (Ω, \mathcal{F}, P) formally



The Formalisation Framework – Step 1 General!

```
locale vertex_fn_space = fin_hypersystem_vne +
fixes F :: "'a set \Rightarrow 'b set"
fixes p :: "'b \Rightarrow real"
assumes ne: "F \mathcal{V} \neq \{\}"
assumes fin: "finite (F \mathcal{V})"
assumes pgte0: "\land fv . fv \in F \mathcal{V} \Longrightarrow p fv \geq 0"
assumes sump: "(\sum x \in (F \mathcal{V}) . p x) = 1"
begin
```

sublocale vertex_fn_space ⊆ prob_space M
using prob_space_M .

```
definition "\Omega \equiv F \mathcal{V}" (* model space *)

lemma fin_\Omega: "finite \Omega"

unfolding \Omega_def using fin by auto

lemma ne_\Omega: "\Omega \neq \{\}"

unfolding \Omega_def using ne by simp

definition "M = point_measure \Omega p"
```

We use locales on incidence systems to create an abstract vertex space, which can be extended for different properties.

A Vertex Colouring Space

```
locale vertex colour space = fin hypergraph nt +
  fixes n :: nat (*Number of colours *)
  assumes n lt order: "n < order"
  assumes n not zero: "n \neq 0"
sublocale vertex colour space \subseteq vertex prop space \mathcal{V} \in \{0, ., <n\}
  rewrites "\Omega U = C^{n}"
proof -
  have "\{0...<n\} \neq \{\}" using n not zero by simp
  then interpret vertex prop space \mathcal{V} \in \{0, ., <n\}
    by (unfold locales) (simp all)
  show "vertex prop space \mathcal{V} \in \{0, ., <n\}" by (unfold locales)
  show "\Omega U = C^{n}"
    using \Omega def all n vertex colourings alt by auto
ged
```

Context contains general lemmas on vertex colourings for any future applications of the probabilistic method to colourings!

The Formalisation Framework – Step 3

• The Union bound:

```
lemma Union_bound_avoid:
  assumes "finite A"
  assumes "(\sum a \in A. prob a) < 1"
  assumes "A \subseteq events"
  shows "prob (space M - \bigcup A) > 0"
```

• The Complete Independence Bound

```
lemma complete_indep_bound3:
  assumes "finite A"
  assumes "A \neq {}"
  assumes "F ` A \subseteq events"
  assumes "indep_events F A"
  assumes "\land a . a \in A \implies prob (F a) < 1"
  shows "prob (\bigcirc a \in A. space M - F a) > 0"
```

The Formalisation Framework – Step 4

- Obtaining an object from a probability!
- Some basic rules

```
lemma prob_lt_one_obtain:
   assumes "{e ∈ space M . Q e} ∈ events"
   assumes "prob {e ∈ space M . Q e} < 1"
   obtains e where "e ∈ space M" and "¬ Q e"</pre>
```

```
lemma prob_gt_zero_obtain:
   assumes "{e ∈ space M . Q e} ∈ events"
   assumes "prob {e ∈ space M . Q e} > 0"
   obtains e where "e ∈ space M" and "Q e"
```

• Combining steps 3 & 4!

```
lemma Union_bound_obtain_fun:
  assumes "finite A"
  assumes "(∑a ∈ A. prob (f a)) < 1"
  assumes "f ` A ⊆ events"
  obtains e where "e ∈ space M" and "e ∉ ∪( f` A)"
```

4. The Framework ... In Practice

The Proof - Formalised

Proposition 1.3.1 [Erdős (1963a)] Every n-uniform hypergraph with less than 2^{n-1} edges has property B. Therefore $m(n) \ge 2^{n-1}$.

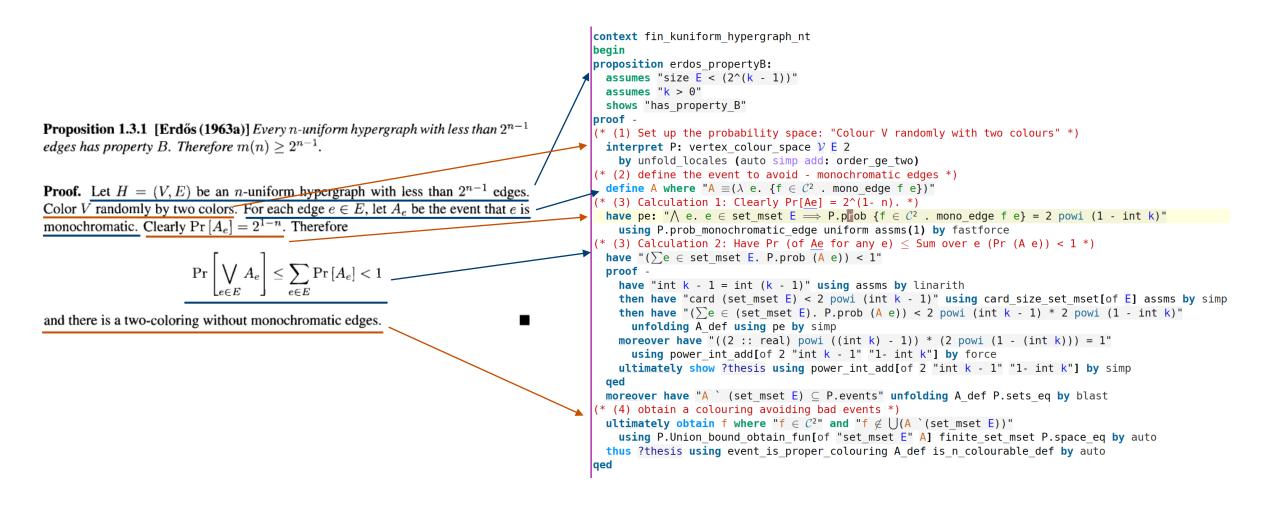
Proof. Let H = (V, E) be an *n*-uniform hypergraph with less than 2^{n-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_e be the event that e is monochromatic. Clearly $\Pr[A_e] = 2^{1-n}$. Therefore

$$\Pr\left[\bigvee_{e \in E} A_e\right] \le \sum_{e \in E} \Pr\left[A_e\right] < 1$$

and there is a two-coloring without monochromatic edges.

```
context fin kuniform hypergraph nt
begin
proposition erdos propertyB:
  assumes "size E < (2^{(k - 1)})"
  assumes "k > 0"
  shows "has property B"
proof -
(* (1) Set up the probability space: "Colour V randomly with two colours" *)
  interpret P: vertex colour space \mathcal{V} \in \mathcal{L}
    by unfold locales (auto simp add: order ge two)
(* (2) define the event to avoid - monochromatic edges *)
  define A where "A \equiv (\lambda \ e. \ \{f \in C^2 \ . \ mono \ edge \ f \ e\})"
(* (3) Calculation 1: Clearly Pr[Ae] = 2^(1- n). *)
  have pe: "\land e. e \in set mset E \implies P.p ob {f \in C^2 . mono edge f e} = 2 powi (1 - int k)"
    using P.prob monochromatic edge uniform assms(1) by fastforce
(* (3) Calculation 2: Have Pr (of Ae for any e) < Sum over e (Pr (A e)) < 1 *)
  have "(\sum e \in set mset E. P.prob (A e)) < 1"
  proof -
    have "int k - 1 = int (k - 1)" using assms by linarith
    then have "card (set mset E) < 2 powi (int k - 1)" using card size set mset[of E] assms by simp
    then have "(\sum e \in (\text{set mset E}), P.prob (A e)) < 2 powi (int k - 1) * 2 powi (1 - int k)"
      unfolding A def using pe by simp
    moreover have "((2 :: real) powi ((int k) - 1)) * (2 powi (1 - (int k))) = 1"
      using power int add[of 2 "int k - 1" "1- int k"] by force
    ultimately show ?thesis using power int add[of 2 "int k - 1" "1- int k"] by simp
  aed
  moreover have "A ( (set mset E) \subset P.events" unfolding A def P.sets eg by blast
(* (4) obtain a colouring avoiding bad events *)
  ultimately obtain f where "f \in C^2" and "f \notin \bigcup(A \land (set mset E))"
    using P.Union bound obtain fun[of "set mset E" A] finite set mset P.space eq by auto
  thus ?thesis using event is proper colouring A def is n colourable def by auto
ged
```

The Proof



A Side Note on Independence & Intuition

Clearly $\Pr[A_e] = 2^{1-n}$

- i.e. Clearly vertex colouring events are independent, so we can just apply P(AB) = P(A)P(B) right?
- BUT This is circular reasoning!
 - To establish independence, we must prove the multiplication rule holds.
 - Use a counting lemma instead on sets of functions

```
lemma prob_edge_colour:
    assumes "e ∈# E" "c ∈ {0..<n}"
    shows "prob {f ∈ C<sup>n</sup> . mono_edge_col f e c} = 1/(n powi (card e))"
proof -
    have "card {0..<n} = n" by simp
    moreover have "C<sup>n</sup> = V →<sub>E</sub> {0..<n}" using all_n_vertex_colourings_alt by blast
    moreover have "{0..<n} ≠ {0..<n}" using n_not_zero by simp
    ultimately show ?thesis using prob_uniform_ex_fun_space[of V _ "{0..<n}" e] n_not_zero
    finite_sets wellformed assms by (simp add: MU_def V_nempty mono_edge_col_def)
ged
```

5. Extensions & Discussion

Extensions of Work

- Formalisation of the Lovasz Local Lemma & Variations as a much more advanced bounding technique
- Extensive additions to libraries on conditional probability and independence
- Further applications to hypergraph colouring existence problems
- Future work: more techniques and applications to different incidence systems!

Formal Maths: Challenges and Insights

Challenges

- Human intuition is not easy to translate
- Search tools are great, but struggle with equivalent concepts/notation. Further documentation/annotation tools could help here.
- Static vs dynamic library management
- Calculations such as summations/products continue to be tricky.

Insights

- Enabled significant more detail on proofs (or established proofs for "intuitive" facts).
- Locales can mirror hierarchies effectively, transfer facts, and are great for modularity
- Modularity and Proof Engineering is important!
- Search tool developments & automation beneficial
- Connecting communities

Concluding Thoughts

- Formalisation of Mathematics has come a long way
- This project easily combined libraries across different fields (probability and combinatorics).
- Use of probability in proofs relies heavily on intuition, which presents many more opportunities for both challenges and deeper proof insights!
- Paper with more advanced work to come!

Contact: cle47@cl.cam.ac.uk