
Adapting Coq-Lsp for
Lambdapi

A brief history of Lambdapi Lsp

The code is in the same repository of Lambdapi

The Server is in src/lsp and is written in Ocaml, installs with opam

The clients are in the editors folder.

The focus is currently on Vscode extension written in Typescript (extension for
Emacs and VI exist also).

Can be installed from Vscode marketplace.

A brief history of Lambdapi Lsp

Lambdapi v.2.5.1 released on July, 22nd 2024

Bug fixes

Enhance messages in the terminal and navigation in document

Vscode extension : V0.2.2 released on may 16th 2024

Bug fixes

Use latest Vscode librairies

Reopen the goals panel or bring it back to front when navigation proof

Coq-Lsp

What is it about?

Coq-Lsp is an Lsp server for Coq with interesting features to interactively develop proofs in Coq
(incremental compilation, Document outline, …)

LambdaPi and Coq are very similar …

Why not reuse the Coq-Lsp code so to benefit from the features it implements

Moreover, on the long term, it is more efficient to rely on Coq-Lsp to benefit from the existing support,
maintenance, … the Coq-lsp community offers.

Work plan

Identify the modules of Coq-Lsp, their inter-communication API and the global API

Refactor the code to make it adaptable with Lambdapi :

Separate commun code and specific code

Ideally, move the specific code to the modules in the bottom layer of architecture (the ones
that directly interact with the prover (Coq or Lambdapi)

Write the modules specific to Lambdapi

Write the Glue code : the code that selects the right specific modules

How to identify functional modules and API in
OCaml

Specifically, understanding the Non functional aspects of the code.

Some text-based tools exist to analyse OCaml code and extract information

dune-deps, not-ocamlfind, depgraph, module-graph, odoc-depgraph, …

Odep to understand dependencies

Quit rudimentary

Not all useful information (at least the one that interest me) is extracted.

Information is not well presented : no customization, overloaded, …

Code Analysis and visualization

How to identify functional modules and API in
OCaml

By hand

Read code

Use .mli files

Extract APIs and determine dependencies

Cumbersome for large code

TIP : change the Dune files and let the compiler highlight the dependencies

Detecting dependencies

The package diagram of Coq-Lsp
Compiler

Controller

Lsp Petanque

Fleche

Lang

Coq

Vendor.Coq

Serlib

Compiler
Controller

Lsp Petanque

Fleche

Lang

Coq

Vendor.Coq

Serlib

Refactoring the code
type fleche_document_type = {
 ... (* independent from prover *)
}
module type ProverDocument = sig
 type fleche_document_type
 type prover_document_type
 val specific_function :
end
module FlecheDocumentFunctor =
functor(P:ProverDocument) -> struct
 type t = P.t
 type prover_document_type = P.prover_document_type
 let specific_function = P.specific_function
 let commun_function = (* Commun code here *)
end type lambdapi_specific_type = {

 ...
}

module LambdapiDocument = struct
 type t = commun_t
 type source = Lambdapi.LambdapiDocument.t
 let specific_lambdapi_function = ...
end

module FlecheDocumentForLambdaPi = FlecheDocumentFunctor(LambdapiDocument)
FlecheDocumentForLambdaPi.specific_function ...
FlecheDocumentForLambdaPi.commun_function ...

Lessons learnt

Open projects are great

A gap may exist between what the Readme says and what the code looks like.

Investing in open code can pay at the mid and long terms. But,

Can be non negligible.

Many parameters determine if it worths it :

Quality of code

Documentation

Community engagement in the project and openness

Future of development

Coq-Lsp developers are willing to evolve it to work with other Provers

What can be done on our side :

Leave it to them and focus on LambdapiPi specific code

Contribute to the refactoring : Documentation (models), specific and non specific code.

Fork the project.

Questions?

Thank you
kindly

