ICSPA project
000

Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000000000 00000000 88800 00000

Event-B to lambdapi

Jean-Paul Bodeveix, Mamoun Filali, Anne Grieu

INP - IRIT
Université de Toulouse
Equipe ACADIE

Working Group Meeting
Septembre 2024 Fontainebleau

A@ADIE

1/46

QOutline

=

ACADIE

2/46

ICSPA project

=

ACADIE

3/46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
oeo 000000000 00000000 Q0000 00000

[e]e]e}

Formal methods - Interoperability

ICSPA
ICSPA Partners

ANR project e SAMOVAR

I' ® INRIA Nancy

! * INRIA

I Paris-Saclay

CoC T 7T T T * IRIT
P et - ‘A A | * LIRMM

Coq

‘ Dedukti/Lambdapi | Automated * CLEARSY
— ' FOL provers

ACADIE
europroofnet.github.io/_pages/WG1/Jun2022/frederic.pdf
446

europroofnet.github.io/_pages/WG1/Jun2022/frederic.pdf

ICSPA project
ooe

Formal methods based on set theories

B Machines ||Event-B Machines :_'_'_'_'_'_t TLA Modules +
+ Proofs + Proofs Proofs

Internal /
provers

B Set Theory |«————| TLA Set Theory H

Typed sets Untyped sets
Bool # Prop ’ Set theories ‘ Bool = Prop
Relations Functions
Dedukti Core / Lambdapi Temporal logic
| B
ACADIE

5/46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 ©00000000 00000000 8g9goo 00000

Mathematical constructs of Event-B

A&?ADE

6/46

Mathematical constructs of Event-B
00000000

B Mathematical Theory

The mathematical theory of Event-B, First Order Classical Predicate Calculus extended
with Set Theory, is defined in several steps :

® Proposition language

Predicate language
® Typed-set theory
® Arithmetic.

We will show the methodology with the construction of the propositional language and
give some details on the typed-set theory.

3]
ACADIE

7/46

Mathematical constructs of Event-B
00@000000

Proposition Language

’ \Antecedents \Consequent ‘

_ Rl | HEP HEPAQ
Basic constructs HEQ
L A= RR|HFPAQ |HFP
—Axiomatic theory R3|HEPAQ HEQ
R& | H,PF Q HFP=Q

RE|HFP=Q |HPFQ
R6[H,-QFP |HFQ

H,~QF P
R7 | H,QF P HE-Q
H,QF —P

3]
ACADIE

8/46

Mathematical constructs of Event-B
00@000000

Proposition Language

] \ Antecedents \ Consequent ‘
Basi truct INI HE-R= 1 HFR
?suj\c;ns ructs AXM HP -PFR
—Axiomatic theory AND1 Z :: ﬁg :: g HEAPAQ) =R
2. Constant L + more AND2 [HFP= (@=R) |HF(PAQ) =R
pr?cncal expression of IMPL | HFP= (-Q=R) | HF =(P= Q)= R
rules. ' N IMP2 | HF Q= R HE(P=Q)=R
Strategy —Semi-decision HE —P = R
algorithm NEG |HF P=>R HF—P=R
DED | H,P+FR H-P=R

3]
ACADIE

9/46

Mathematical constructs of Event-B
00@000000

Proposition Language

’ ‘ Antecedents ‘ Consequent ‘
Basi fruct INl | HF=-R= 1 HER
iSK;\CZ:S ructs AXM HP.-PFR
—Axiomatic theory AND1 Z |E ﬁg z ,5 HEA(PAQ) =R
2. Constant L + more AND2 |HFP= (@=R) |HF(PAQ) =R
pr?ct|ca| expression of IMPL | HF P= (-Q=R) | HF =(P= Q) = R
rules. - IMP2 | HF Q = R H-(P=Q)=R
Strategy —Semi-decision HE -P = R
algorithm NEG |HF P=R HE ~—P=R
DED | H,PFR HFEP=R

AXM, IMP1, IMP2, AND1, AND2, NEG
INI'; (RULES* ;DED)*

3]
ACADIE

10/ 46

ICSPA project Mathematical constructs of Event-B
000

000®00000

Derived constructs

V,< and T, defined as

rewriting of basic
constructs.

00000000

Embedding Event-B in lambdapi

00000
[e]e]e}

Propositional calculus

Proofs in Rodin

Derived rules

Proved with
previous rules.

T -1
PV @ -P=Q
PeQ (P=Q)AN(Q=P)
| | Antecedents | Consequent
ORl | HF-P=(-Q=R) | HF=(PVQ)=R
OR2 [HFQ=R HF(PVQ)=R
HFEP=R
EQV1 | HF P= (-Q = R) HE(-P< Q)=R
HF-P=(Q=R)
EQV2 | HF P = (Q = R) HF(P=Q)=R

Hl——\P=>(—|Q=>R)

Conclusion
00000

AADIE

11/46

Mathematical constructs of Event-B
0000@0000

Derived rules

With these rules, we can prove some classical results : commutativity, associativity,
distributivity, law of excluded middle, idempotence, absorption, de Morgan laws,
contraposition, double negation, transitivity, monotony, equivalence, like :

For P and @ predicates :

Pv-P Law of excluded middle
P& —=P Double negation
“(PAQ)& -PV-Q de Morgan laws
“(PVQ)& -PA-Q
PVP&P Idempotence
PANP <P
(PVQANP&P Absorption
(PANQ)VP&P)
oo
ACADIE

12/46

Proofs in Rodin Conclusion

Embedding Event-B in lambdapi
00000

ICSPA project Mathematical constructs of Event-B
00 00000®000 00000000 gggoo

Equivalence rewriting

For P, Q, R predicates, such as P & @ :
PAR)= (QAR)

(
(PVR)= (QVR)
(R=P)=(R=Q)
(

Q= R)=>(P=R)
-P = -Q

« The last series of properties shows that when two predicates have been proved
to be equivalent then replacing one by the other in any predicate preserves
equivalence (this can be proved by induction on the syntactic structure of the
predicate notation). In other words, once proved, an equivalence assertion can
be used operationally as if it were a rewriting rule. »!

A@?&DIE

13/46

1. J.-R. Abrial. The B-Book, assigning programs to meaning. Cambridge University Press, 1996.

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin
000 000000800 00000000 8g9goo

First order predicate calculus

Predicates language
Following the same methodology, we define :

® Variables, expressions, substitutions,

Basic predicate universal quantifier V,

Derived predicate universal quantifier 3

Definition of equality.

Conclusion
00000

o
ACADIE

14 / 46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi
000 000000@00

Proofs in Rodin Conclusion

First order predicate calculus

predicate = 1
-
predicate A predicate
predicate V predicate
predicate = predicate
predicate < predicate
VvarList.predicate
dvarList.predicate
[varList := expList]predicate
expression = expression

expression .= variable
[varList := expList]expression
expression — expression

variable identifier ACADIE

15/46

Mathematical constructs of Event-B

ICSPA project
000 000000080

Event-B Set theory

Proofs in Rodin Conclusion

We extend the theory with the syntactic predicate =
category set and the membership
predicate : E € s, E expression and s set. expression 1=
Some rules :
EcPow(S) = VYxxeE=xCS ot .
ScT = SeP(T) '
EeSNT = EeSANEeT
This completes the syntax :

expression € expression
set

set X set

P(set)

{varList.predicate|expression}
variable

ACADIE

16 / 46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin
(e]e]e} 00000000e [o]e] (e]e] o 0000¢

Event-B Type theory

Any predicate will be type-checked before being proved. A type denotes the set of
values an expression can take.

Event-B types :

T = BOOL | Z built-in boolean and integer types
| S carrier set S provided by user
|P T power set of a type

| T x T cartesian product of types

ACADIE

17/ 46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
(e]e] 000000000 90000000 88800 00000

Embedding Event-B in lambdapi

Aﬁ?A[NE

18/ 46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 0Oe000000 99900 00000

Lambdapi

« Lambdapi is an interactive proof system featuring dependent types like in
Martin-L6f's type theory, but allowing to define objects and types using orien-
ted equations, aka rewriting rules, and reason modulo those equations. » >

Al terms
t,t'= V variable

| TYPE sort for types
|M(V:t), t dependent product type
| A (V:t), t' abstraction
|t t application
|t —t/ abbreviation for M (V : t), t’ when V ¢ t/

Rules

r o= t—t reasoning modulo rewriting rules

ACADIE

2. https://lambdapi.readthedocs.io/en/latest/about.html
19/ 46

https://lambdapi.readthedocs.io/en/latest/about.html

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi

(e]e]e}

000000000 00@00000

First order logic3

« Lambdapi is a logical framework, that is, it does not come with a pre-defined

logic. Instead, one has to start defining its own logic. »

Propositional logic

constant symbol Prop : TYPE;

// Associates a type of a proof to a proposition
injective symbol m : Prop — TYPE;

Types of datatypes

constant symbol Set : TYPE;

// Associates a type to a datatype
injective symbol 7 : Set — TYPE;

3. Standard library : https://github. com/Deducteam/lambdapi-stdlib

Proofs in Rodin
Q0000
0060

Conclusion
00000

i
AA DIE

20/ 46

https://github.com/Deducteam/lambdapi-stdlib

ICSPA project
o]

Embedding Event-B in lambdapi
000@0000

Mathematical constructs of Event-B
000000000

First order logic

Conclusion
00000

Proofs in Rodin
Q0000

[e]e]e}

« Lambdapi is a logical framework, that is, it does not come with a pre-defined

logic. Instead, one has to start defining its own logic. »
Conjunction

constant symbol A : Prop — Prop — Prop;
notation A infix left 7;

constant symbol A; pq: mp -7 q — 7 (p A qQ;
symbol Ne1 pq : 7™ (p A @Q — 7 p;

symbol Ne2 P q : ™ (p A @) — 7 q;

Implication (Coq style)

constant symbol = : Prop — Prop — Prop;
notation = infix right 5;

rule 1 ($p = $q¢) — 7 $p — 7 $q;

Related sequents
for conjunction

N-p kg A1)
l-pAg
lpAg
Ne=p
N-pAg
N-q

(/\el)

(/\62)

ACADIE

21/46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 00008000 88800 00000

Event-B set theory
Event-B types :

S:= oPS power set
|Sox S cartesian product
| cBOOL | 0Z built-in boolean and integer types
| oS for each user declared set S
In lambdapi :

injective symbol oP: Set — Set; // power set

injective symbol ox: Set — Set — Set; // cartesian product

notation ox infix left 24;

constant symbol oBOOL: Set; // pre-defined boolean set

constant symbol oZ: Set;//pre-defined integer set

constant symbol oS: Set; // user declared set S A@ADIE

22 /46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 0O0000e00 88800 00000

Set operators
Classical set operators of Event-B derive from membership operator :

symbol € [T:Set] : 7 T — 7 (6P T) — Prop;
rule _ € 0 — 1;

rule $x € $s1 N $s2 — $x € $s1 A $x € $s2;
rule $e € P $S — $e C $S;

rule $s1 C $s2 — "V x, x € $s1 = x € $s2;

Generic maximal set BIG

constant symbol BIG [T:Set]l: 7 (oP T);// set of all elements of type 7
rule $x € BIG — T;// BIG is maximal: contains all elements of type 7
rule P BIG — BIG;// power set of BIG is a maximal set

rule BIG X BIG < BIG;//cartesian product of two maximal sets is maxigil
ACADIE

T
T

23/46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 00000080 99900 00000

Critical pairs

e PANT =P
o PVT =T

® |n Rodin, the rule type rewrites do some automatic rewriting : x € S if S is
maximal, then x € S < T. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :
o x € P(BIG)

o x e P(BIG)

ACADIE

24 /46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 00000080 99900 00000

Critical pairs

e PANT =P
o PVT =T

® |n Rodin, the rule type rewrites do some automatic rewriting : x € S if S is
maximal, then x € S < T. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :
o xeP(BIG)|—x C BIG

o x e P(BIG)

ACADIE

25 /46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 00000080 99900 00000

Critical pairs

e PANT =P
o PVT =T

® |n Rodin, the rule type rewrites do some automatic rewriting : x € S if S is
maximal, then x € S < T. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :
* xeP(BIG) —x C BIG =Vu.ue x=uec BIG

o x e P(BIG)

ACADIE

26 /46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 00000080 99900 00000

Critical pairs

* PANT =P
* PVT=T

® |n Rodin, the rule type rewrites do some automatic rewriting : x € S if S is
maximal, then x € S < T. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :

* xeP(BIG) —x C BIG -Vu.ue x=ucBIG
As u € BIG=T, we have Vuu € x=T

o x e P(BIG)

j<of
ACADIE

27 /46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 00000080 99900 00000

Critical pairs

* PANT =P
* PVT=T

® |n Rodin, the rule type rewrites do some automatic rewriting : x € S if S is
maximal, then x € S < T. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :

* xeP(BIG) —xCBIG wVuuex=ueBIGYuuex=T
As u € BIG=T, we have Vuu € x=T

o x e P(BIG)

j<of
ACADIE

28 /46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 00000080 99900 00000

Critical pairs

* PANT =P
* PVT=T

® |n Rodin, the rule type rewrites do some automatic rewriting : x € S if S is
maximal, then x € S < T. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :

* xeP(BIG) —xCBIG wVuuex=ueBIGYuuex=T
As u € BIG=T, we have Vuu € x=T

o x € P(BIG) —x € BIG

j<of
ACADIE

29 /46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 00000080 99900 00000

Critical pairs

* PANT =P
* PVT=T

® |n Rodin, the rule type rewrites do some automatic rewriting : x € S if S is
maximal, then x € S < T. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :

* xeP(BIG) —xCBIG wVuuex=ueBIGYuuex=T
As u € BIG=T, we have Vuu € x=T

o x €P(BIG) —x € BIG —T

j<of
ACADIE

30/ 46

Embedding Event-B in lambdapi
O000000e

Relational operators

symbol rel (T1 T2: Set) = 7 (0P (T1 ox T2));
injective symbol +— [T1:Set] [T2:Set] (x:7 T1) (y:7 T2) : 7 (Tl ox T2);
symbol <+ [T1:Set] [T2:Set] (A:7 (¢P T1)) (B: 7 (¢P T2)):

7 (6P (6P (T1 ox T2))) = P (A X B); notation « infix 11;

constant symbol dom [T1:Set] [T2:Set] : rel T1 T2 — 7 (0P T1);
notation dom prefix 30;
rule $x € dom($r) — "y, $x — y € $r;

3]
ACADIE

31/46

Proofs in Rodin

=

ACADIE

32/46

Proofs in Rodin
(o] lelele]

Rodin : Rigourous Open Development Environment for Complex Systems

The Rodin Platform is an Eclipse-based IDE for Event-B that provides effective support
for refinement and mathematical proof. The platform is open source, contributes to the
Eclipse framework and is further extendable with plugins. 4

The mathematical proofs are shown as proof trees.
Statements are declared in Contexts and the proof trees are built automatically and/or
guided by the user.

We will present these notions using the example of Cantor's Theorem.

3]
ACADIE

4. https ://www.event-b.org/platform.html
33/46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
000 000000000 00000000 88800 00000

Context - Cantor's theorem

In Rodin .
In Lambdapi

@ cantor X

CORERXL Santon constant symbol oS: Set;

sets S symbol [§: 7 (0P 0S)= [BEGl;

axioms

theorem @th —(3f-fES+P(S))
end IS| is the embedding in lambdapi of the set

S defined in the Rodin-context.

A!!AENE

34 /46

Embedding Event-B in lambdapi Proofs in Rodin Conclusion

ICSPA project Mathematical constructs of Event-B
(e]e] 888.0 00000

000000000 00000000

Cantor's theorem

In Rodin

@ cantor X
context cantor In Lambdapl
sets S f is a total surjection from S to P((9)),
axions that is ‘ feP(S xP((5)) ‘ and a total
en:he“e"‘ @th ~(3f-fes+P(S)) function and a surjection.

constant symbol oS: Set;
symbol S: 7 (¢P ¢S)= BIG;
symbol th:7(=((3 (‘f: 7(oP (6S ox (P 08)))

end; _
A@ADIE

35/46

), £ € (8P 8))))):=

ICSPA project
000 000000000

Mathematical constructs of Event-B

Proofs in Rodin

0000e
[e]e]e}

Embedding Event-B in lambdapi
00000000

Building Cantor’s proof with Rodin

[XN J
H=ig==H (8o Qur
I Proof Tree X | G =
remove ~ in goal
D)V goal (frees f)
v Jct goal
ah (3T-T={x | YU-x » Uef=xeU})
@ goal
3 goal (inst {x | VU-x » Usf=sxeU})
@ goat
(/) simplification rewrites
@ goal
v ()3 hyp (AT-T={x | WU-x » Uef=sxel})
7) simplification rewrites

[©

Tactic applied successfully

rodin-workspace - TEST_ICSPA/cantor.bps - Rodin Platform

[Chd] Q iy 89
= B | @ cantor Q* = B L Event-BExplorer X = &1 [¢ § = O
th/THM 1L lo
v S TEST_ICSPA
lemyol . v @ cant
Remove membership b
ct fes > P(S) > 4 Carrier Sets
ot TEXWU-x b Uef=-xel | x} > © Constants
- > < Axioms
~ @ Proof Obligations
Selected Hypotheses ¥), Symbols @ Rule Details X =0
[Goal x =8
n
% Proof Control X [T Statistics [2! Rodin Problems ~ § = 8

B @0 mae Q||

B2

@

Conclusion
00000

A!ADIE

36 /46

ICSPA project
000

Mathematical constructs of Event-B

Proofs in Rodin

0000e
[e]e]e}

Embedding Event-B in lambdapi
00000000

Building Cantor’s proof with Rodin

000000000
[N}
Huid==H DIE L3
D'ProofTreeX‘GE > § =08

@

3 goal (inst {x | VU-x » Uef=sxel})
@ goat

) simplification rewrites

@ goal

3 hyp (3T-T={x | VU-x » Uef=sxel})
simplification rewrites

v @@ renove € in fes —» P(S)
eh with T={x-¥U-x » Uef=>-xel

0

Select a new proof node

rodin-workspace - TEST_ICSPA/cantor.bps - Rodin Platform

[i Q
@ cantor @ *cantor X = B F Event-BExplorer X = &) [&
th/THM] 1o

S v S TEST_ICSPA
lemsno] v @ cantor

fes — P(S) > % Carrier Sets
> © Constants
> 4% Axioms

~ @ Proof Obligations

T={x-VU-x » Uef=>-xel | x}

lected Hypoth s
ST V) Symbols @ Rule Details X
[¥ Goal X = 7 [|Rule: remove € in fes — P(S)

Antecedentl
Rewrite:
fes — P(S)
% Proof Control X [Statistics [2! Rodin Problems ~ § = 3 - fes +» P(S)

L dom(f)=S

I - @ 2 oo Qv | setect:
fes -+ P(S)
@ dom(f)=s

4

Conclusion
00000

8|9

=]

A@ADIE

37/46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
(e]e] 000000000 00000000 98800 00000

Proof tree
I Proof Tree X

w ¥ goal (frees T)
w7 ct goal
w o () remove € in fes — P(5)
wo () remove € in fe5 += P(5)
w () remove € in fe5 -+ P(S)
w o () type rewrites
w () rewrites set equality in hyp (ran(f)=P({5))
w () type rewrites
w () remove © in P(S)cran(f)
w o (f type rewrites
w () simplification rewrites
w (W hyp (inst {x | VU:-x » Usf=-xel})

{37 goal
v) remove € in {x | YU-x » UsT=-xsU}eran(f)
v)3 hyp (3xx » {x | Vlex » Usf=s-xsU}sf) 3

o de (xefx | WUex » Uef=s-xell}) ~ADIE

{37 goal 38 /46

Translation of the Rules from Event-B to lambdapi

Proofs in Rodin

Rodin proof rule

Lambdapi tactic

m (hYP)

h:p,TFq

kA |
TFpsq 8

h:xieTikFp
FEVxy,. .. %0 p

(Vgoal)

FFpr... TEp,
TEpr A= APy

(Agoal)

refine h

assume h

assume xi ... Xp

apply Ai p1 (apply Ai p2 (...

Conclusion

ACADIE

39 /46

ICSPA project Mathematical constructs of Event-B
000

Embedding Event-B in lambdapi Proofs in Rodin

000000000 00000000 00000
ooe

Rules from Event-B to lambdapi
Rules defined as theorems

symbol Or2ImpGoal [P Q: Prop]
7 (((=P) = Q = PVQ) =
begin
assume P Q h;
apply (A hl h2, V. P (= P)
(P V Q) hl h2 (classic P))
{assume hp; apply (Vi1 _ _ hp)}
{assume hnp; apply (V2 _ _ (h hnp))}
end;

| Rodin proof rule | Lambdapi tactic |

lE-p=gqg

oV g apply Or2lmpGoal

Conclusion
00000

j<of
ACADIE

40/ 46

Conclusion

=

ACADIE

41/46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
(e]e] 000000000 00000000 88800 0e000

Open topics

Problems
® |ot's of automatic rewriting rules in Event-B/Rodin
® Prop and Bool are different in Rodin, = and < can't be identify

® some operators, like A or V are n-ary, difficult to express in lambdapi

o
ACADIE

42 /46

Conclusion
0®000

Open topics

Problems
¢ |ot's of automatic rewriting rules in Event-B/Rodin
® Prop and Bool are different in Rodin, = and < can't be identify

® some operators, like A or \V are n-ary, difficult to express in lambdapi

Investigations
® Use Lambdapi rewriting rules , but too much rewriting rules leads to critical pairs
(eg. BIG, former neg)
® Theorems, preprocessing and tactics (repeat, setoid rewrite,...) with synthesis of
lambdapi proof term in Java.

® Integration of Coq® setoid rewrite in Lambdapi? =
ACADIE

5. https://coq.inria.fr/doc/V8.10.2/refman/addendum/generalized-rewriting.html
43/46

https://coq.inria.fr/doc/V8.10.2/refman/addendum/generalized-rewriting.html

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin
o]

000000000 00000000 00000

[e]e]e}

Generalized rewriting

Rewriting rules
® equal by equal rewriting : ((a = b) ==> f(a)) = f(b)
e equivalent by equivalent rewriting : ((P < Q) ==> f(P)) = f(Q)
* PNT&P
* PAN...QAPAR---&PA...QAR... ...

In Lambdapi
Tactic rewrite® allows rewriting only for equality, not for equivalence.

6. https://lambdapi.readthedocs.io/en/latest/tactics.html
https://inria.hal.science/inria-00258384

Conclusion
00800

ACADIE

44 /46

https://lambdapi.readthedocs.io/en/latest/tactics.html
https://inria.hal.science/inria-00258384

Conclusion
00000

Dedukti/Lambdapi is a logical framework based on All-calculus modulo rewriting
system, meant to allow interoperability between formal method systems.

We presented some steps of our translation of the first order logic and set theory of
Event-B and its deduction rules in Lambdapi to translate a statement and a guided
proof from Rodin in Lambdapi.

A first usecase has been a guided proof of Cantor's theorem in Event-B.
Ongoing work

e Continue translation of deduction rules

® Deals with generalized rewriting
® Deals with internal and external automated provers
® Translate machines and events
%)
ACADIE

45/ 46

ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion
(e]e] 000000000 00000000 88800 [ele]e]e])

Thanks for your attention

Aﬁ?A[NE

46/ 46

