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Mathematical constructs of Event-B
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B Mathematical Theory

The mathematical theory of Event-B, First Order Classical Predicate Calculus extended
with Set Theory, is defined in several steps :

• Proposition language
• Predicate language
• Typed-set theory
• Arithmetic.

We will show the methodology with the construction of the propositional language and
give some details on the typed-set theory.
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Proposition Language

Basic constructs
1. ∧,⇒,¬

→Axiomatic theory
2. Constant ⊥ + more

practical expression of
rules.
Strategy →Semi-decision
algorithm

Antecedents Consequent
R1 H ⊢ P

H ⊢ Q
H ⊢ P ∧ Q

R2 H ⊢ P ∧ Q H ⊢ P

R3 H ⊢ P ∧ Q H ⊢ Q

R4 H,P ⊢ Q H ⊢ P ⇒ Q

R5 H ⊢ P ⇒ Q H,P ⊢ Q

R6 H,¬Q ⊢ P
H,¬Q ⊢ ¬P

H ⊢ Q

R7 H,Q ⊢ P
H,Q ⊢ ¬P

H ⊢ ¬Q
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Proposition Language

Basic constructs
1. ∧,⇒,¬

→Axiomatic theory
2. Constant ⊥ + more

practical expression of
rules.
Strategy →Semi-decision
algorithm

Antecedents Consequent
INI H ⊢ ¬R ⇒ ⊥ H ⊢ R

AXM H,P,¬P ⊢ R

AND1 H ⊢ ¬Q ⇒ R
H ⊢ ¬P ⇒ R

H ⊢ ¬(P ∧ Q) ⇒ R

AND2 H ⊢ P ⇒ (Q ⇒ R) H ⊢ (P ∧ Q) ⇒ R

IMP1 H ⊢ P ⇒ (¬Q ⇒ R) H ⊢ ¬(P ⇒ Q) ⇒ R

IMP2 H ⊢ Q ⇒ R
H ⊢ ¬P ⇒ R

H ⊢ (P ⇒ Q) ⇒ R

NEG H ⊢ P ⇒ R H ⊢ ¬¬P ⇒ R

DED H,P ⊢ R H ⊢ P ⇒ R
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Proposition Language

Basic constructs
1. ∧,⇒,¬

→Axiomatic theory
2. Constant ⊥ + more

practical expression of
rules.
Strategy →Semi-decision
algorithm

Antecedents Consequent
INI H ⊢ ¬R ⇒ ⊥ H ⊢ R

AXM H,P,¬P ⊢ R

AND1 H ⊢ ¬Q ⇒ R
H ⊢ ¬P ⇒ R

H ⊢ ¬(P ∧ Q) ⇒ R

AND2 H ⊢ P ⇒ (Q ⇒ R) H ⊢ (P ∧ Q) ⇒ R

IMP1 H ⊢ P ⇒ (¬Q ⇒ R) H ⊢ ¬(P ⇒ Q) ⇒ R

IMP2 H ⊢ Q ⇒ R
H ⊢ ¬P ⇒ R

H ⊢ (P ⇒ Q) ⇒ R

NEG H ⊢ P ⇒ R H ⊢ ¬¬P ⇒ R

DED H,P ⊢ R H ⊢ P ⇒ R

Order of rules : AXM, IMP1, IMP2, AND1, AND2, NEG
Proof procedure : INI ; (RULES* ;DED)*
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Propositional calculus

Derived constructs
∨,⇔ and ⊤, defined as
rewriting of basic
constructs.

Predicate Definition
⊤ ¬⊥
P ∨ Q ¬P ⇒ Q

P ⇔ Q (P ⇒ Q) ∧ (Q ⇒ P)

Derived rules
Proved with
previous rules.

Antecedents Consequent
OR1 H ⊢ ¬P ⇒ (¬Q ⇒ R) H ⊢ ¬(P ∨ Q) ⇒ R

OR2 H ⊢ Q ⇒ R
H ⊢ P ⇒ R

H ⊢ (P ∨ Q) ⇒ R

EQV1 H ⊢ P ⇒ (¬Q ⇒ R)
H ⊢ ¬P ⇒ (Q ⇒ R)

H ⊢ (¬P ⇔ Q) ⇒ R

EQV2 H ⊢ P ⇒ (Q ⇒ R)
H ⊢ ¬P ⇒ (¬Q ⇒ R)

H ⊢ (P ⇔ Q) ⇒ R
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Derived rules

With these rules, we can prove some classical results : commutativity, associativity,
distributivity, law of excluded middle, idempotence, absorption, de Morgan laws,
contraposition, double negation, transitivity, monotony, equivalence, like :

For P and Q predicates :

P ∨ ¬P Law of excluded middle
P ⇔ ¬¬P Double negation
¬(P ∧ Q) ⇔ ¬P ∨ ¬Q
¬(P ∨ Q) ⇔ ¬P ∧ ¬Q

de Morgan laws

P ∨ P ⇔ P
P ∧ P ⇔ P

Idempotence

(P ∨ Q) ∧ P ⇔ P
(P ∧ Q) ∨ P ⇔ P

Absorption
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Equivalence rewriting

For P, Q, R predicates, such as P ⇔ Q :

(P ∧ R) ➾ (Q ∧ R)
(P ∨ R) ➾ (Q ∨ R)
(R ⇒ P) ➾ (R ⇒ Q)
(Q ⇒ R) ➾ (P ⇒ R)
¬P ➾ ¬Q

« The last series of properties shows that when two predicates have been proved
to be equivalent then replacing one by the other in any predicate preserves
equivalence (this can be proved by induction on the syntactic structure of the
predicate notation). In other words, once proved, an equivalence assertion can
be used operationally as if it were a rewriting rule. » 1

1. J.-R. Abrial. The B-Book, assigning programs to meaning. Cambridge University Press, 1996.
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First order predicate calculus

Predicates language
Following the same methodology, we define :

• Variables, expressions, substitutions,
• Basic predicate universal quantifier ∀,
• Derived predicate universal quantifier ∃
• Definition of equality.

14 / 46



ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion

First order predicate calculus
predicate := ⊥

⊤
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀varList.predicate
∃varList.predicate
[varList := expList]predicate
expression = expression

expression := variable
[varList := expList]expression
expression → expression

variable := identifier
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Event-B Set theory

We extend the theory with the syntactic
category set and the membership
predicate : E ∈ s, E expression and s set.

Some rules :
E ∈ Pow(S) ➾ ∀x .x ∈ E ⇒ x ⊂ S
S ⊂ T ➾ S ∈ P(T )
E ∈ S ∩ T ➾ E ∈ S ∧ E ∈ T

This completes the syntax :

predicate := . . .
expression ∈ expression

expression := . . .
set

. . .
set := set × set

P(set)
{varList.predicate|expression}
variable
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Event-B Type theory

Any predicate will be type-checked before being proved. A type denotes the set of
values an expression can take.

Event-B types :
T ::= BOOL | Z built-in boolean and integer types

| S carrier set S provided by user
| P T power set of a type
| T × T cartesian product of types
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Embedding Event-B in lambdapi
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Lambdapi
« Lambdapi is an interactive proof system featuring dependent types like in
Martin-Lőf’s type theory, but allowing to define objects and types using orien-
ted equations, aka rewriting rules, and reason modulo those equations. » 2

λΠ terms
t , t ′ ::= V variable

| TYPE sort for types
| Π (V : t), t ′ dependent product type
| λ (V : t), t ′ abstraction
| t t ′ application
| t → t ′ abbreviation for Π (V : t), t ′ when V /∈ t ′

Rules
r ::= t ↪→ t ′ reasoning modulo rewriting rules

2. https://lambdapi.readthedocs.io/en/latest/about.html
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First order logic 3

« Lambdapi is a logical framework, that is, it does not come with a pre-defined
logic. Instead, one has to start defining its own logic. »

Propositional logic
constant symbol Prop : TYPE;
// Associates a type of a proof to a proposition
injective symbol π : Prop → TYPE;

Types of datatypes
constant symbol Set : TYPE;
// Associates a type to a datatype
injective symbol τ : Set → TYPE;

3. Standard library : https://github.com/Deducteam/lambdapi-stdlib
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First order logic
« Lambdapi is a logical framework, that is, it does not come with a pre-defined
logic. Instead, one has to start defining its own logic. »

Conjunction
constant symbol ∧ : Prop → Prop → Prop;
notation ∧ infix left 7;
constant symbol ∧i p q: π p → π q → π (p ∧ q);
symbol ∧e1 p q : π (p ∧ q) → π p;
symbol ∧e2 p q : π (p ∧ q) → π q;

Implication (Coq style)
constant symbol ⇒ : Prop → Prop → Prop;
notation ⇒ infix right 5;
rule π ($p ⇒ $q) ↪→ π $p → π $q;

Related sequents
for conjunction

Γ ⊢ p Γ ⊢ q

Γ ⊢ p ∧ q
(∧i )

Γ ⊢ p ∧ q

Γ ⊢ p
(∧e1)

Γ ⊢ p ∧ q

Γ ⊢ q
(∧e2)
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Event-B set theory
Event-B types :
S ::= σP S power set

| S σ× S cartesian product
| σBOOL | σZ built-in boolean and integer types
| σS for each user declared set S

In lambdapi :

injective symbol σP: Set → Set; // power set
injective symbol σ×: Set → Set → Set; // cartesian product
notation σ× infix left 24;
constant symbol σBOOL: Set; // pre-defined boolean set
constant symbol σZ: Set;//pre-defined integer set
constant symbol σS: Set; // user declared set S
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Set operators

Classical set operators of Event-B derive from membership operator :

symbol ∈ [T:Set] : τ T → τ (σP T) → Prop;
rule _ ∈ ∅ ↪→ ⊥;
rule $x ∈ $s1 ∩ $s2 ↪→ $x ∈ $s1 ∧ $x ∈ $s2;
rule $e ∈ P $S ↪→ $e ⊆ $S;
rule $s1 ⊆ $s2 ↪→ `∀ x, x ∈ $s1 ⇒ x ∈ $s2;

Generic maximal set BIG

constant symbol BIG [T:Set]: τ (σP T);// set of all elements of type τ T
rule $x ∈ BIG ↪→ ⊤;// BIG is maximal: contains all elements of type τ T
rule P BIG ↪→ BIG;// power set of BIG is a maximal set
rule BIG × BIG ↪→ BIG;//cartesian product of two maximal sets is maximal
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Critical pairs

• P ∧ ⊤ ⇒ P

• P ∨ ⊤ ⇒ ⊤
• In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is

maximal, then x ∈ S ↪→ ⊤. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :
• x ∈ P(BIG )

• x ∈ P(BIG )
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Critical pairs

• P ∧ ⊤ ⇒ P

• P ∨ ⊤ ⇒ ⊤
• In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is

maximal, then x ∈ S ↪→ ⊤. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :
• x ∈ P(BIG ) ↪→x ⊆ BIG

• x ∈ P(BIG )
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Critical pairs

• P ∧ ⊤ ⇒ P

• P ∨ ⊤ ⇒ ⊤
• In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is

maximal, then x ∈ S ↪→ ⊤. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :
• x ∈ P(BIG ) ↪→x ⊆ BIG ↪→∀u.u ∈ x ⇒ u ∈ BIG

• x ∈ P(BIG )
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Critical pairs

• P ∧ ⊤ ⇒ P

• P ∨ ⊤ ⇒ ⊤
• In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is

maximal, then x ∈ S ↪→ ⊤. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :
• x ∈ P(BIG ) ↪→x ⊆ BIG ↪→∀u.u ∈ x ⇒ u ∈ BIG

As u ∈ BIG ↪→⊤, we have ∀u.u ∈ x ⇒ ⊤
• x ∈ P(BIG )
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Critical pairs
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Critical pairs
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Critical pairs

• P ∧ ⊤ ⇒ P

• P ∨ ⊤ ⇒ ⊤
• In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is

maximal, then x ∈ S ↪→ ⊤. The choice of BIG and its rules is a solution to express
some of these rules, but this is also a source of conflicts.

Example :
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• x ∈ P(BIG ) ↪→x ∈ BIG ↪→⊤
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Relational operators

symbol rel (T1 T2: Set) := τ (σP (T1 σ× T2));
injective symbol 7→ [T1:Set] [T2:Set] (x:τ T1) (y:τ T2) : τ (T1 σ× T2);
symbol ↔ [T1:Set] [T2:Set] (A:τ (σP T1)) (B: τ (σP T2)):

τ (σP (σP (T1 σ× T2))) := P (A × B); notation ↔ infix 11;

constant symbol dom [T1:Set] [T2:Set] : rel T1 T2 → τ (σP T1);
notation dom prefix 30;
rule $x ∈ dom($r) ↪→ `∃ y, $x 7→ y ∈ $r;
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Proofs in Rodin
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Rodin : Rigourous Open Development Environment for Complex Systems

The Rodin Platform is an Eclipse-based IDE for Event-B that provides effective support
for refinement and mathematical proof. The platform is open source, contributes to the
Eclipse framework and is further extendable with plugins. 4

The mathematical proofs are shown as proof trees.
Statements are declared in Contexts and the proof trees are built automatically and/or
guided by the user.

We will present these notions using the example of Cantor’s Theorem.

4. https ://www.event-b.org/platform.html
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Context - Cantor’s theorem

In Rodin
In Lambdapi

constant symbol σS: Set;
symbol S : τ (σP σS):= BIG ;

S is the embedding in lambdapi of the set
S defined in the Rodin-context.
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Cantor’s theorem

In Rodin

In Lambdapi
f is a total surjection from S to P((S)),
that is f ∈ P(S × P((S)) and a total
function and a surjection.

constant symbol σS: Set;
symbol S: τ (σP σS):= BIG;
symbol th:π(¬((`∃ ( f: τ(σP (σS σ× (σP σS))) ), f ∈ (S↠(P S))))):=
... end;
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Building Cantor’s proof with Rodin

36 / 46



ICSPA project Mathematical constructs of Event-B Embedding Event-B in lambdapi Proofs in Rodin Conclusion

Building Cantor’s proof with Rodin
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Proof tree
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Translation of the Rules from Event-B to lambdapi

Rodin proof rule Lambdapi tactic

Γ, h : p ⊢ p
(hyp) refine h

h : p, Γ ⊢ q

Γ ⊢ p ⇒ q
(⇒ goal) assume h

Γ, h : xi ∈ Ti ⊢ p

Γ ⊢ ∀x1, . . . , xn · p
(∀goal) assume x1 . . . xn

Γ ⊢ p1 . . . Γ ⊢ pn

Γ ⊢ p1 ∧ · · · ∧ Pn
(∧goal) apply ∧i p1 ( apply ∧i p2 (. . . ))
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Rules from Event-B to lambdapi
Rules defined as theorems

symbol Or2ImpGoal [P Q: Prop] :
π (((¬ P) ⇒ Q) ⇒ (P ∨ Q)) :=

begin
assume P Q h;
apply (λ h1 h2, ∨e P (¬ P)

(P ∨ Q) h1 h2 (classic P))
{assume hp; apply (∨i 1 _ _ hp)}
{assume hnp; apply (∨i 2 _ _ (h hnp))}

end;

Rodin proof rule Lambdapi tactic
Γ ⊢ ¬p ⇒ q

Γ ⊢ p ∨ q
apply Or2ImpGoal
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Conclusion
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Open topics

Problems
• lot’s of automatic rewriting rules in Event-B/Rodin
• Prop and Bool are different in Rodin, = and ⇔ can’t be identify
• some operators, like ∧ or ∨ are n-ary, difficult to express in lambdapi
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Open topics

Problems
• lot’s of automatic rewriting rules in Event-B/Rodin
• Prop and Bool are different in Rodin, = and ⇔ can’t be identify
• some operators, like ∧ or ∨ are n-ary, difficult to express in lambdapi

Investigations
• Use Lambdapi rewriting rules , but too much rewriting rules leads to critical pairs

(eg. BIG, former neg)
• Theorems, preprocessing and tactics (repeat, setoid rewrite,...) with synthesis of

lambdapi proof term in Java.
• Integration of Coq 5 setoid rewrite in Lambdapi ?

5. https://coq.inria.fr/doc/V8.10.2/refman/addendum/generalized-rewriting.html
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Generalized rewriting

Rewriting rules
• equal by equal rewriting : ((a = b) ==> f (a)) ➾ f (b)

• equivalent by equivalent rewriting : ((P ⇔ Q) ==> f (P)) ➾ f (Q)

• P ∧ ⊤ ⇔ P

• P ∧ . . .Q ∧ P ∧ R · · · ⇔ P ∧ . . .Q ∧ R . . . . . .

In Lambdapi
Tactic rewrite 6 allows rewriting only for equality, not for equivalence.

6. https://lambdapi.readthedocs.io/en/latest/tactics.html
https://inria.hal.science/inria-00258384
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Dedukti/Lambdapi is a logical framework based on λΠ-calculus modulo rewriting
system, meant to allow interoperability between formal method systems.

We presented some steps of our translation of the first order logic and set theory of
Event-B and its deduction rules in Lambdapi to translate a statement and a guided
proof from Rodin in Lambdapi.

A first usecase has been a guided proof of Cantor’s theorem in Event-B.

Ongoing work
• Continue translation of deduction rules
• Deals with generalized rewriting
• Deals with internal and external automated provers
• Translate machines and events
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Thanks for your attention
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