

Event-B to lambdapi

Jean-Paul Bodeveix, Mamoun Filali, Anne Grieu

INP - IRIT Université de Toulouse Équipe ACADIE

Working Group Meeting Septembre 2024 Fontainebleau

[ICSPA project](#page-2-0)

Formal methods - Interoperability

Formal methods based on set theories

[Mathematical constructs of Event-B](#page-5-0)

B Mathematical Theory

The mathematical theory of Event-B, First Order Classical Predicate Calculus extended with Set Theory, is defined in several steps :

- Proposition language
- Predicate language
- Typed-set theory
- Arithmetic.

We will show the methodology with the construction of the propositional language and give some details on the typed-set theory.

Proposition Language

Basic constructs

- 1. \wedge , \Rightarrow , \neg \rightarrow Axiomatic theory
-

Proposition Language

Basic constructs

- 1. \wedge , \Rightarrow , \neg \rightarrow Axiomatic theory
- 2. Constant ⊥ + more practical expression of rules.

Strategy →Semi-decision algorithm

ACADIF

Proposition Language

1. \wedge , \Rightarrow , \neg

 \rightarrow Axiomatic theory

2. Constant ⊥ + more practical expression of rules.

> Strategy →Semi-decision algorithm

Order of rules **AXM, IMP1, IMP2, AND1, AND2, NEG** Proof procedure : INI ; (RULES* ; DED)*

Propositional calculus

Derived constructs

∨, ⇔ and ⊤, defined as rewriting of basic constructs.

Derived rules Proved with previous rules.

Derived rules

With these rules, we can prove some classical results : commutativity, associativity, distributivity, law of excluded middle, idempotence, absorption, de Morgan laws, contraposition, double negation, transitivity, monotony, equivalence, like :

For P and Q predicates :

Equivalence rewriting

For P, Q, R predicates, such as $P \Leftrightarrow Q$:

« The last series of properties shows that when two predicates have been proved to be equivalent then replacing one by the other in any predicate preserves equivalence (this can be proved by induction on the syntactic structure of the predicate notation). In other words, once proved, an equivalence assertion can be used operationally as if it were a rewriting rule. \gg ¹

^{1.} J.-R. Abrial. The B-Book, assigning programs to meaning. Cambridge University Press, 1996.

First order predicate calculus

Predicates language

Following the same methodology, we define :

- Variables, expressions, substitutions,
- Basic predicate universal quantifier ∀,
- Derived predicate universal quantifier ∃
- Definition of equality.

First order predicate calculus

Event-B Set theory

We extend the theory with the syntactic category set and the membership predicate : $E \in s$, E expression and s set.

Some rules : $E \in Pow(S) \Rightarrow \forall x. x \in E \Rightarrow x \subset S$ $S \subset T$ \Rightarrow $S \in \mathbb{P}(T)$ $E \in S \cap T \implies E \in S \land E \in T$

This completes the syntax :

Event-B Type theory

Any predicate will be type-checked before being proved. A type denotes the set of values an expression can take.

[Embedding Event-B in lambdapi](#page-17-0)

Lambdapi

« Lambdapi is an interactive proof system featuring dependent types like in Martin-Lőf's type theory, but allowing to define objects and types using oriented equations, aka rewriting rules, and reason modulo those equations. \gg ²

λΠ terms $t, t' ::= V$ variable TYPE sort for types $| \Pi(V : t), t'$ dependent product type $\vert \lambda (V:t), t' \vert$ abstraction t t' application $| t \rightarrow t'$ abbreviation for Π $(V : t)$, t' when $V \notin t'$

Rules

 r ::= $t \hookrightarrow t'$ reasoning modulo rewriting rules

2. <https://lambdapi.readthedocs.io/en/latest/about.html>

First order logic³

« Lambdapi is a logical framework, that is, it does not come with a pre-defined logic. Instead, one has to start defining its own logic. »

Propositional logic constant symbol Prop : TYPE; // Associates a type of a proof to a proposition injective symbol π : Prop \rightarrow TYPE;

Types of datatypes constant symbol Set : TYPE; // Associates a type to a datatype injective symbol τ : Set \rightarrow TYPE;

^{3.} Standard library : <https://github.com/Deducteam/lambdapi-stdlib>

First order logic

« Lambdapi is a logical framework, that is, it does not come with a pre-defined logic. Instead, one has to start defining its own logic. » **Conjunction**

constant symbol \land : Prop \rightarrow Prop \rightarrow Prop; notation ∧ infix left 7; constant symbol \wedge_i p q: π p \rightarrow π q \rightarrow π (p \wedge q); symbol \wedge_{e_1} p q : π (p \wedge q) $\rightarrow \pi$ p; symbol \wedge_{e} p q : π (p \wedge q) $\rightarrow \pi$ q;

Implication (Coq style)

constant symbol \Rightarrow : Prop \rightarrow Prop \rightarrow Prop; notation \Rightarrow infix right 5; rule π (\$p \Rightarrow \$q) \leftrightarrow π \$p \rightarrow π \$q;

Related sequents for conjunction

$$
\frac{\Gamma \vdash p \quad \Gamma \vdash q}{\Gamma \vdash p \land q} (\land_i)
$$
\n
$$
\frac{\Gamma \vdash p \land q}{\Gamma \vdash p} (\land_{e1})
$$
\n
$$
\frac{\Gamma \vdash p \land q}{\Gamma \vdash q} (\land_{e2})
$$

Event-B set theory

In lambdapi :

injective symbol $\sigma \mathbb{P}$: Set \rightarrow Set; // power set injective symbol $\sigma \times$: Set \rightarrow Set \rightarrow Set; // cartesian product notation $\sigma \times$ infix left 24: constant symbol σ BOOL: Set; // pre-defined boolean set constant symbol $\sigma \mathbb{Z}$: Set;//pre-defined integer set constant symbol σS : Set; // user declared set S

Set operators

Classical set operators of Event-B derive from membership operator :

```
symbol \in [T:Set] : \tau T \rightarrow \tau (\sigmaP T) \rightarrow Prop;
rule \in \emptyset \hookrightarrow \bot:
rule x \in $s1 \cap $s2 \hookrightarrow $x \in $s1 \land $x \in $s2;
rule e \in \mathbb{P} $S \hookrightarrow $e \subset $S;
rule s1 \subseteq ss2 \hookrightarrow \forall x, x \in ss1 \Rightarrow x \in ss2;
```
Generic maximal set BIG

constant symbol BIG [T:Set]: τ ($\sigma \mathbb{P}$ T);// set of all elements of type τ T rule $x \in BG \hookrightarrow T$;// BIG is maximal: contains all elements of type τ T rule $\mathbb P$ BIG \hookrightarrow BIG;// power set of BIG is a maximal set rule BIG \times BIG \leftrightarrow BIG;//cartesian product of two maximal sets is maximal \land

Critical pairs

- $P \wedge T \Rightarrow P$
- $P \vee T \Rightarrow T$
- In Rodin, the rule type rewrites do some automatic rewriting : $x \in S$ if S is maximal, then $x \in S \hookrightarrow \top$. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

- $x \in \mathbb{P}(B \mid G)$
- $x \in \mathbb{P}(B \mid G)$

Critical pairs

- $P \wedge T \Rightarrow P$
- $P \vee T \Rightarrow T$
- In Rodin, the rule type rewrites do some automatic rewriting : $x \in S$ if S is maximal, then $x \in S \hookrightarrow \top$. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

- $x \in \mathbb{P}(B \mid G) \rightarrow x \subseteq B \mid G$
- $x \in \mathbb{P}(B \mid G)$

Critical pairs

- $P \wedge T \Rightarrow P$
- $P \vee T \Rightarrow T$
- In Rodin, the rule type rewrites do some automatic rewriting : $x \in S$ if S is maximal, then $x \in S \hookrightarrow \top$. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

- $x \in \mathbb{P}(B \mid G) \rightarrow x \subseteq B \mid G \rightarrow \forall u. u \in x \Rightarrow u \in B \mid G$
- $x \in \mathbb{P}(B \mid G)$

Critical pairs

- $P \wedge T \Rightarrow P$
- $P \vee T \Rightarrow T$
- In Rodin, the rule type rewrites do some automatic rewriting : $x \in S$ if S is maximal, then $x \in S \hookrightarrow \top$. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

• $x \in \mathbb{P}(B \mid G) \rightarrow x \subseteq B \mid G \rightarrow \forall u. u \in x \Rightarrow u \in B \mid G$

As $u \in B \rvert G \hookrightarrow \top$, we have $\forall u. u \in x \Rightarrow \top$

Critical pairs

- $P \wedge T \Rightarrow P$
- $P \vee T \Rightarrow T$
- In Rodin, the rule type rewrites do some automatic rewriting : $x \in S$ if S is maximal, then $x \in S \hookrightarrow \top$. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

• $x \in \mathbb{P}(B \mid G) \rightarrow x \subseteq B \mid G \rightarrow \forall u. u \in x \Rightarrow u \in B \mid G \rightarrow \forall u. u \in x \Rightarrow \top$ As $u \in B \rvert G \hookrightarrow \top$, we have $\forall u. u \in x \Rightarrow \top$ $x \in \mathbb{P}(B \mid G)$

Critical pairs

- $P \wedge T \Rightarrow P$
- $P \vee T \Rightarrow T$
- In Rodin, the rule type rewrites do some automatic rewriting : $x \in S$ if S is maximal, then $x \in S \hookrightarrow \top$. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

• $x \in \mathbb{P}(B \mid G) \rightarrow x \subseteq B \mid G \rightarrow \forall u. u \in x \Rightarrow u \in B \mid G \rightarrow \forall u. u \in x \Rightarrow \top$

As $u \in B \rvert G \hookrightarrow \top$, we have $\forall u. u \in x \Rightarrow \top$

• $x \in \mathbb{P}(B \mid G) \rightarrow x \in B \mid G$

Critical pairs

- • $P \wedge T \Rightarrow P$
- $P \vee T \Rightarrow T$
- In Rodin, the rule type rewrites do some automatic rewriting : $x \in S$ if S is maximal, then $x \in S \hookrightarrow \top$. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

• $x \in \mathbb{P}(B \mid G) \rightarrow x \subseteq B \mid G \rightarrow \forall u. u \in x \Rightarrow u \in B \mid G \rightarrow \forall u. u \in x \Rightarrow \top$

As $u \in B \rvert G \hookrightarrow \top$, we have $\forall u \ldots u \in x \Rightarrow \top$

$$
\bullet \; \bigg| \; x \in \mathbb{P}(B \mid G) \bigg| \rightarrow x \in \text{B} \mid G \quad \hookrightarrow \top
$$

Relational operators

symbol rel (T1 T2: Set) = τ (σ $\mathbb P$ (T1 $\sigma \times$ T2)); injective symbol \mapsto [T1:Set] [T2:Set] (x:τ T1) (y:τ T2) : τ (T1 $\sigma \times$ T2); symbol \leftrightarrow [T1:Set] [T2:Set] (A: τ (σ $\mathbb P$ T1)) (B: τ (σ $\mathbb P$ T2)): τ (σ $\mathbb P$ (σ $\mathbb P$ (T1 σ x T2))) = $\mathbb P$ (A x B); notation \leftrightarrow infix 11;

```
constant symbol dom [T1:Set] [T2:Set] : rel T1 T2 \rightarrow \tau (\sigma \mathbb{P} T1);
notation dom prefix 30;
rule x \in dom(xr) \hookrightarrow \exists y, x \mapsto y \in xr;
```


[Proofs in Rodin](#page-31-0)

Rodin : Rigourous Open Development Environment for Complex Systems

The Rodin Platform is an Eclipse-based IDE for Event-B that provides effective support for refinement and mathematical proof. The platform is open source, contributes to the Eclipse framework and is further extendable with plugins. ⁴

The mathematical proofs are shown as **proof trees**.

Statements are declared in Contexts and the proof trees are built automatically and/or guided by the user.

We will present these notions using the example of Cantor's Theorem.

^{4.} https ://www.event-b.org/platform.html

Context - Cantor's theorem

In Rodin

```
\bullet cantor \timescontext cantor
   sets S
   axioms
       theorem @th \neg (\exists f \cdot f \in S \rightarrow P(S))end
```
In Lambdapi

constant symbol σS : Set; symbol $S: \tau$ ($\sigma \mathbb{P}$ $\sigma S) =$ BIG;

S is the embedding in lambdapi of the set S defined in the Rodin-context.

Cantor's theorem

constant symbol σS : Set; symbol S: τ ($\sigma \mathbb{P}$ σS) = BIG; symbol th: $\pi(\neg((\neg \exists (\neg f: \tau(\sigma \mathbb{P}(\sigma S \sigma \times (\sigma \mathbb{P}(\sigma S))))), f \in (S \rightarrow (\mathbb{P}(S))))):=$... end;

Building Cantor's proof with Rodin

Building Cantor's proof with Rodin

Proof tree

Translation of the Rules from Event-B to lambdapi

Rules from Event-B to lambdapi

Rules defined as theorems

```
symbol Or2ImpGoal [P Q: Prop] :
       \pi (((\neg P) \Rightarrow 0) \Rightarrow (P \vee 0)) =begin
  assume P Q h;
  apply (\lambda h1 h2, \vee_e P (\neg P)
                           (P \vee Q) h1 h2 (classic P))
     {assume hp; apply (\vee_{i1} _ _ hp)}
     {assume hnp; apply (\vee_{i^2} \_ - (h \ hnp))}
end;
```


[Conclusion](#page-40-0)

Open topics

Problems

- lot's of automatic rewriting rules in Event-B/Rodin
- Prop and Bool are different in Rodin, $=$ and \Leftrightarrow can't be identify
- some operators, like ∧ or ∨ are n-ary, difficult to express in lambdapi

Open topics

Problems

- lot's of automatic rewriting rules in Event-B/Rodin
- Prop and Bool are different in Rodin, $=$ and \Leftrightarrow can't be identify
- some operators, like \land or \lor are n-ary, difficult to express in lambdapi

Investigations

- Use Lambdapi rewriting rules , but too much rewriting rules leads to critical pairs (eg. BIG, former neg)
- Theorems, preprocessing and tactics (repeat, setoid rewrite,...) with synthesis of lambdapi proof term in Java.
- Integration of Coq⁵ setoid rewrite in Lambdapi?

^{5.} <https://coq.inria.fr/doc/V8.10.2/refman/addendum/generalized-rewriting.html>

Generalized rewriting

[Rewriting rules](#page-0-0)

- equal by equal rewriting : $((a = b) == > f(a)) \Rightarrow f(b)$
- equivalent by equivalent rewriting : $((P \Leftrightarrow Q) == > f(P)) \Rightarrow f(Q)$
- $P \wedge T \Leftrightarrow P$
- $P \wedge Q \wedge P \wedge R \cdots \Leftrightarrow P \wedge Q \wedge R$

In Lambdapi

Tactic rewrite ⁶ allows rewriting only for equality, not for equivalence.

6. <https://lambdapi.readthedocs.io/en/latest/tactics.html> <https://inria.hal.science/inria-00258384>

Dedukti/Lambdapi is a logical framework based on λ Π-calculus modulo rewriting system, meant to allow interoperability between formal method systems.

We presented some steps of our translation of the first order logic and set theory of Event-B and its deduction rules in Lambdapi to translate a statement and a guided proof from Rodin in Lambdapi.

A first usecase has been a guided proof of Cantor's theorem in Event-B.

Ongoing work

- Continue translation of deduction rules
- Deals with generalized rewriting
- Deals with internal and external automated provers
- Translate machines and events

Thanks for your attention

