

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

Event-B to lambdapi

Jean-Paul Bodeveix, Mamoun Filali, Anne Grieu

INP - IRIT Université de Toulouse Équipe ACADIE

Working Group Meeting Septembre 2024 Fontainebleau

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

ICSPA project

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodi

Conclusion

Formal methods - Interoperability

europroofnet.github.io/_pages/WG1/Jun2022/frederic.pdf

Embedding Event-B in lambdapi

Proofs in Rodi

Conclusion

Formal methods based on set theories

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion 00000

Mathematical constructs of Event-B

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

B Mathematical Theory

The mathematical theory of Event-B, First Order Classical Predicate Calculus extended with Set Theory, is defined in several steps :

- Proposition language
- Predicate language
- Typed-set theory
- Arithmetic.

We will show the methodology with the construction of the propositional language and give some details on the typed-set theory.

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Proposition Language

Basic constructs

- 1. \land, \Rightarrow, \neg \rightarrow Axiomatic theory
- Constant ⊥ + more practical expression of rules.

Strategy →Semi-decision algorithm

	Antecedents	Consequent
R1	$H \vdash P$	$H \vdash P \land Q$
	$H \vdash Q$	
R2	$Hdash P\wedge Q$	$H \vdash P$
R3	$Hdash P\wedge Q$	$H \vdash Q$
R4	$H, P \vdash Q$	$H \vdash P \Rightarrow Q$
R5	$H \vdash P \Rightarrow Q$	$H, P \vdash Q$
R6	$H, \neg Q \vdash P$	$H \vdash Q$
	$H, \neg Q \vdash \neg P$	
R7	$H, Q \vdash P$	$H \vdash \neg Q$
	$H, Q \vdash \neg P$	

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Roo

Conclusion

Proposition Language

Basic constructs

- 1. \land, \Rightarrow, \neg \rightarrow Axiomatic theory
- Constant ⊥ + more practical expression of rules.

 $\begin{array}{l} \mathsf{Strategy} \to \!\!\!\mathsf{Semi-decision} \\ \mathsf{algorithm} \end{array}$

	Antecedents	Consequent
INI	$H \vdash \neg R \Rightarrow \bot$	$H \vdash R$
AXM		$H, P, \neg P \vdash R$
AND1	$H \vdash \neg Q \Rightarrow R$	$H \vdash \neg (P \land Q) \Rightarrow R$
	$H \vdash \neg P \Rightarrow R$	
AND2	$H \vdash P \Rightarrow (Q \Rightarrow R)$	$H \vdash (P \land Q) \Rightarrow R$
IMP1	$H \vdash P \Rightarrow (\neg Q \Rightarrow R)$	$H \vdash \neg (P \Rightarrow Q) \Rightarrow R$
IMP2	$H \vdash Q \Rightarrow R$	$H \vdash (P \Rightarrow Q) \Rightarrow R$
	$H \vdash \neg P \Rightarrow R$	
NEG	$H \vdash P \Rightarrow R$	$H \vdash \neg \neg P \Rightarrow R$
DED	$H, P \vdash R$	$H \vdash P \Rightarrow R$

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Proposition Language

		<u> </u>
	Antecedents	Consequent
INI	$H \vdash \neg R \Rightarrow \bot$	$H \vdash R$
AXM		$H, P, \neg P \vdash R$
AND1	$H \vdash \neg Q \Rightarrow R$	$H \vdash \neg (P \land Q) \Rightarrow R$
	$H \vdash \neg P \Rightarrow R$	
AND2	$H \vdash P \Rightarrow (Q \Rightarrow R)$	$H \vdash (P \land Q) \Rightarrow R$
IMP1	$H \vdash P \Rightarrow (\neg Q \Rightarrow R)$	$H \vdash \neg (P \Rightarrow Q) \Rightarrow R$
IMP2	$H \vdash Q \Rightarrow R$	$H \vdash (P \Rightarrow Q) \Rightarrow R$
	$H \vdash \neg P \Rightarrow R$	
NEG	$H \vdash P \Rightarrow R$	$H \vdash \neg \neg P \Rightarrow R$
DED	$H, P \vdash R$	$H \vdash P \Rightarrow R$

В	asi	С	constructs

- 1. \land, \Rightarrow, \neg
 - $\rightarrow \! Axiomatic$ theory
- 2. Constant \perp + more practical expression of rules.

Strategy \rightarrow Semi-decision algorithm

Order of rules : AXM, IMP1, IMP2, AND1, AND2, NEG Proof procedure : INI; (RULES*;DED)*

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

Propositional calculus

Derived constructs

 \lor, \Leftrightarrow and \top , defined as rewriting of basic constructs.

Predicate	Definition
Т	$\neg \bot$
$P \lor Q$	$\neg P \Rightarrow Q$
$P \Leftrightarrow Q$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$

Derived rules Proved with previous rules.

	Antecedents	Consequent
OR1	$H \vdash \neg P \Rightarrow (\neg Q \Rightarrow R)$	$H \vdash \neg (P \lor Q) \Rightarrow R$
OR2	$ \begin{array}{l} H \vdash Q \Rightarrow R \\ H \vdash P \Rightarrow R \end{array} $	$H \vdash (P \lor Q) \Rightarrow R$
	-	
EQV1	$H \vdash P \Rightarrow (\neg Q \Rightarrow R)$	$H \vdash (\neg P \Leftrightarrow Q) \Rightarrow R$
	$H \vdash \neg P \Rightarrow (Q \Rightarrow R)$	
EQV2	$H \vdash P \Rightarrow (Q \Rightarrow R)$	$H \vdash (P \Leftrightarrow Q) \Rightarrow R$
	$ \begin{array}{l} H \vdash P \Rightarrow (\neg Q \Rightarrow R) \\ H \vdash \neg P \Rightarrow (Q \Rightarrow R) \\ H \vdash P \Rightarrow (Q \Rightarrow R) \\ H \vdash \neg P \Rightarrow (\neg Q \Rightarrow R) \\ H \vdash \neg P \Rightarrow (\neg Q \Rightarrow R) \end{array} $	

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

Derived rules

With these rules, we can prove some classical results : commutativity, associativity, distributivity, law of excluded middle, idempotence, absorption, de Morgan laws, contraposition, double negation, transitivity, monotony, equivalence, like :

For P and Q predicates :

$P \lor \neg P$	Law of excluded middle
$P \Leftrightarrow \neg \neg P$	Double negation
$ eg (P \land Q) \Leftrightarrow \neg P \lor \neg Q $	de Morgan laws
$\neg(P\lor Q)\Leftrightarrow \neg P\land \neg Q$	
$P \lor P \Leftrightarrow P$	Idempotence
$P \land P \Leftrightarrow P$	
$(P \lor Q) \land P \Leftrightarrow P$	Absorption
$(P \land Q) \lor P \Leftrightarrow P$	

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodi

Conclusion

Equivalence rewriting

For *P*, *Q*, *R* predicates, such as $P \Leftrightarrow Q$:

$(P \wedge R) \Rightarrow (Q \wedge R)$
$(P \lor R) \Rightarrow (Q \lor R)$
$(R \Rightarrow P) \Rightarrow (R \Rightarrow Q)$
$(\mathbf{Q} \Rightarrow R) \Rightarrow (\mathbf{P} \Rightarrow R)$
$\neg P \Rightarrow \neg Q$

« The last series of properties shows that when two predicates have been proved to be equivalent then replacing one by the other in any predicate preserves equivalence (this can be proved by induction on the syntactic structure of the predicate notation). In other words, once proved, an equivalence assertion can be used operationally as if it were a rewriting rule. \gg ¹

^{1.} J.-R. Abrial. The B-Book, assigning programs to meaning. Cambridge University Press, 1996.

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

First order predicate calculus

Predicates language

Following the same methodology, we define :

- Variables, expressions, substitutions,
- Basic predicate universal quantifier \forall ,
- Derived predicate universal quantifier \exists
- Definition of equality.

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodi

Conclusion

First order predicate calculus

predicate	:=	⊥ ⊤ predicate ∧ predicate predicate ∨ predicate predicate ⇒ predicate predicate ⇔ predicate ∀varList.predicate [varList.predicate [varList := expList]predicate expression = expression
expression	:=	variable [$varList := expList$]expression expression \rightarrow expression
variable	:=	identifier

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

Event-B Set theory

We extend the theory with the syntactic category *set* and the membership predicate : $E \in s$, E expression and s set.

Some rules : $E \in Pow(S) \implies \forall x.x \in E \Rightarrow x \subset S$ $S \subset T \implies S \in \mathbb{P}(T)$ $E \in S \cap T \implies E \in S \land E \in T$

This completes the syntax :

predicate	:=	
,		expression \in expression
expression	:=	
,		set
set	:=	set imes set
		$\mathbb{P}(set)$
		{varList.predicate expression}
		variable

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

Event-B Type theory

Any predicate will be type-checked before being proved. A type denotes the set of values an expression can take.

Event-B types :	
$T ::= BOOL \mid \mathbb{Z}$	built-in boolean and integer types
5	carrier set S provided by user
$\mid \mathbb{P} \mid \mathcal{T}$	power set of a type
$ T \times T$	cartesian product of types

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

Embedding Event-B in lambdapi

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Lambdapi

« Lambdapi is an interactive proof system featuring **dependent types** like in Martin-Lőf's type theory, but allowing to define objects and types using **orien-ted equations**, aka **rewriting rules**, and reason modulo those equations. »²

Rules

 $r ::= t \hookrightarrow t'$ reasoning modulo rewriting rules

2. https://lambdapi.readthedocs.io/en/latest/about.html

```
ICSPA project
```

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

First order logic ³

 \ll Lambdapi is a logical framework, that is, it does not come with a pre-defined logic. Instead, one has to start defining its own logic. \gg

Propositional logic constant symbol Prop : TYPE; // Associates a type of a proof to a proposition injective symbol π : Prop \rightarrow TYPE;

```
Types of datatypes
constant symbol Set : TYPE;
// Associates a type to a datatype
injective symbol \tau : Set \rightarrow TYPE;
```


^{3.} Standard library : https://github.com/Deducteam/lambdapi-stdlib

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

First order logic

« Lambdapi is a logical framework, that is, it does not come with a pre-defined logic. Instead, one has to start defining its own logic. » Conjunction

$$\begin{array}{l} \text{constant symbol } \wedge \ : \ \operatorname{Prop} \to \operatorname{Prop} \to \operatorname{Prop};\\ \text{notation } \wedge \ \operatorname{infix \ left \ 7};\\ \text{constant symbol } \wedge_i \ p \ q: \ \pi \ p \to \pi \ q \to \pi \ (p \land q)\\ \text{symbol } \wedge_{e1} \ p \ q \ : \ \pi \ (p \land q) \to \pi \ p;\\ \text{symbol } \wedge_{e2} \ p \ q \ : \ \pi \ (p \land q) \to \pi \ q; \end{array}$$

Related sequents for conjunction

;

$$rac{\Gammadash p \quad \Gammadash q}{\Gammadash p \wedge q}\left(\wedge_i
ight) \ rac{\Gammadash p \wedge q}{\Gammadash p}\left(\wedge_{e1}
ight) \ rac{\Gammadash p \wedge q}{\Gammadash q}\left(\wedge_{e2}
ight)$$

Implication (Coq style) constant symbol \Rightarrow : Prop \rightarrow Prop \rightarrow Prop; notation \Rightarrow infix right 5; rule π (\$p \Rightarrow \$q) $\hookrightarrow \pi$ \$p $\rightarrow \pi$ \$q;

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

Event-B set theory

Event-B types :	
$S ::= \sigma \mathbb{P} S$	power set
$ S \sigma \times S$	cartesian product
$ \sigma BOOL \sigma Z$	built-in boolean and integer types
σS	for each user declared set S

In lambdapi :

injective symbol $\sigma \mathbb{P}$: Set \rightarrow Set; // power set injective symbol $\sigma \times$: Set \rightarrow Set \rightarrow Set; // cartesian product notation $\sigma \times$ infix left 24; constant symbol σ BOOL: Set; // pre-defined boolean set constant symbol $\sigma \mathbb{Z}$: Set;//pre-defined integer set constant symbol σS : Set; // user declared set S

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Set operators

Classical set operators of Event-B derive from membership operator :

Generic maximal set BIG

constant symbol BIG [T:Set]: τ ($\sigma \mathbb{P}$ T);// set of all elements of type τ T rule $x \in BIG \hookrightarrow T$;// BIG is maximal: contains all elements of type τ T rule \mathbb{P} BIG \hookrightarrow BIG;// power set of BIG is a maximal set rule BIG \times BIG \hookrightarrow BIG;//cartesian product of two maximal sets is maximal ACADIE

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Critical pairs

- $P \land \top \Rightarrow P$
- $P \lor \top \Rightarrow \top$
- In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is maximal, then x ∈ S ⇔ ⊤. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

- $x \in \mathbb{P}(BIG)$
- $x \in \mathbb{P}(BIG)$

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Critical pairs

- $P \land \top \Rightarrow P$
- $P \lor \top \Rightarrow \top$
- In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is maximal, then x ∈ S ⇔ ⊤. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

- $x \in \mathbb{P}(BIG) \hookrightarrow x \subseteq BIG$
- $x \in \mathbb{P}(BIG)$

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Critical pairs

- $P \land \top \Rightarrow P$
- $P \lor \top \Rightarrow \top$
- In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is maximal, then x ∈ S ⇔ ⊤. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

- $x \in \mathbb{P}(BIG) \hookrightarrow x \subseteq BIG \hookrightarrow \forall u.u \in x \Rightarrow u \in BIG$
- $x \in \mathbb{P}(BIG)$

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Critical pairs

- $P \land \top \Rightarrow P$
- $P \lor \top \Rightarrow \top$
- In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is maximal, then x ∈ S ⇔ ⊤. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

• $x \in \mathbb{P}(BIG) \hookrightarrow x \subseteq BIG \hookrightarrow \forall u.u \in x \Rightarrow u \in BIG$

As $u \in BIG \hookrightarrow \top$, we have $\forall u.u \in x \Rightarrow \top$

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

Critical pairs

- $P \land \top \Rightarrow P$
- $P \lor \top \Rightarrow \top$
- In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is maximal, then x ∈ S ⇔ ⊤. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

• $x \in \mathbb{P}(BIG) \hookrightarrow x \subseteq BIG \hookrightarrow \forall u.u \in x \Rightarrow u \in BIG \hookrightarrow \forall u.u \in x \Rightarrow \top$ As $u \in BIG \hookrightarrow \top$, we have $\forall u.u \in x \Rightarrow \top$ • $x \in \mathbb{P}(BIG)$

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Critical pairs

- $P \land \top \Rightarrow P$
- $P \lor \top \Rightarrow \top$
- In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is maximal, then x ∈ S ⇔ ⊤. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

• $x \in \mathbb{P}(BIG) \hookrightarrow x \subseteq BIG \hookrightarrow \forall u.u \in x \Rightarrow u \in BIG \hookrightarrow \forall u.u \in x \Rightarrow \top$

As $u \in BIG \hookrightarrow \top$, we have $\forall u.u \in x \Rightarrow \top$

• $x \in \mathbb{P}(BIG) \hookrightarrow x \in BIG$

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Roc

Conclusion

Critical pairs

- $P \land \top \Rightarrow P$
- $P \lor \top \Rightarrow \top$
- In Rodin, the rule type rewrites do some automatic rewriting : x ∈ S if S is maximal, then x ∈ S ⇔ ⊤. The choice of BIG and its rules is a solution to express some of these rules, but this is also a source of conflicts.

Example :

• $x \in \mathbb{P}(BIG) \hookrightarrow x \subseteq BIG \hookrightarrow \forall u.u \in x \Rightarrow u \in BIG \hookrightarrow \forall u.u \in x \Rightarrow \top$

As $u \in BIG \hookrightarrow \top$, we have $\forall u.u \in x \Rightarrow \top$

• $x \in \mathbb{P}(BIG) \hookrightarrow x \in BIG \hookrightarrow \top$

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

Relational operators

 $\begin{array}{l} \text{symbol rel (T1 T2: Set)} \coloneqq \tau \ (\sigma\mathbb{P} \ (T1 \ \sigma \times \ T2));\\ \text{injective symbol} \mapsto \ [T1:Set] \ [T2:Set] \ (x:\tau \ T1) \ (y:\tau \ T2) : \tau \ (T1 \ \sigma \times \ T2);\\ \text{symbol} \leftrightarrow \ [T1:Set] \ [T2:Set] \ (A:\tau \ (\sigma\mathbb{P} \ T1)) \ (B: \ \tau \ (\sigma\mathbb{P} \ T2)):\\ \tau \ (\sigma\mathbb{P} \ (T1 \ \sigma \times \ T2))) \simeq \mathbb{P} \ (A \times B); \ \text{notation} \leftrightarrow \ \text{infix 11}; \end{array}$

```
constant symbol dom [T1:Set] [T2:Set] : rel T1 T2 \rightarrow \tau (\sigma \mathbb{P} T1);
notation dom prefix 30;
rule x \in dom(r) \hookrightarrow \exists y, x \mapsto y \in r;
```


Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion 00000

Proofs in Rodin

Rodin : Rigourous Open Development Environment for Complex Systems

The Rodin Platform is an Eclipse-based IDE for Event-B that provides effective support for refinement and mathematical proof. The platform is open source, contributes to the Eclipse framework and is further extendable with plugins.⁴

The mathematical proofs are shown as proof trees.

Statements are declared in Contexts and the proof trees are built automatically and/or guided by the user.

We will present these notions using the example of Cantor's Theorem.

^{4.} https://www.event-b.org/platform.html

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion 00000

Context - Cantor's theorem

In Rodin

```
G cantor ×
context cantor
sets S
axioms
theorem @th ¬(∃f·f∈S+P(S))
end
```

In Lambdapi

constant symbol σS : Set; symbol S: τ ($\sigma \mathbb{P} \sigma S$) = BIG;

S is the embedding in lambdapi of the set S defined in the Rodin-context.

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

Cantor's theorem

constant symbol σ S: Set; symbol S: τ ($\sigma \mathbb{P} \sigma$ S) \coloneqq BIG; symbol th: $\pi(\neg((\exists (f: \tau(\sigma \mathbb{P} (\sigma S \sigma \times (\sigma \mathbb{P} \sigma S)))), f \in (S \rightarrow (\mathbb{P} S))))):=$... end;

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

Building Cantor's proof with Rodin

•••	rodin-workspace - TEST_ICSPA/cantor.bps - Rodin Platform	
💼 • 🔚 🐚 💷 🗇 🏷 🔕 🚮 💁 🖋 • 🖢 • 🖗	-	Q i 😰 🖹 💽
<pre> Proof Tree × 6</pre>	e cantor e cantor th/THM e g fre5 → P(5) ct T - (x,vU·x) + uef→xeU x)	Event-B Explorer × ■ ■ ■ ■ ■ ✓ ✓ TEST/CSPA ✓ ● ■ <t< td=""></t<>
	Selected Hypotheses	V Symbols () Rule Details × □ □
	Image: Proof Control × Statistics Rodin Problems Image: Proof Control × Image: Proof Control × Statistics Rodin Problems Image: Proof Control × Image: Proof Pr	
Tactic applied successfully	E E E E E E E E E E E E E E E E E E E	

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin 0000● Conclusion

Building Cantor's proof with Rodin

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

Proof tree

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

Translation of the Rules from Event-B to lambdapi

Rodin proof rule	Lambdapi tactic
$\overline{\Gamma, h: p \vdash p}$ (hyp)	refine <i>h</i>
$rac{h: p, \Gamma dash q}{\Gamma dash p \Rightarrow q} (\Rightarrow ext{goal})$	assume <i>h</i>
$\frac{\Gamma, h: x_i \in T_i \vdash p}{\Gamma \vdash \forall x_1, \dots, x_n \cdot p} (\forall \text{goal})$	assume $x_1 \dots x_n$
$\frac{\Gamma \vdash p_1 \dots \Gamma \vdash p_n}{\Gamma \vdash p_1 \wedge \dots \wedge P_n} (\land goal)$	apply $\wedge_i p_1$ (apply $\wedge_i p_2$ ())

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

Rules from Event-B to lambdapi

Rules defined as theorems

```
symbol Or2ImpGoal [P Q: Prop] :

\pi (((\neg P) \Rightarrow Q) \Rightarrow (P \lor Q)) :=
begin

assume P Q h;

apply (\lambda h1 h2, \lor_e P (\neg P)

(P \lor Q) h1 h2 (classic P))

{assume hp; apply (\lor_{i1} _ hp)}

{assume hnp; apply (\lor_{i2} _ (h hnp))}

end;
```

Lambdapi tactic	
apply Or2ImpGoal	

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion •0000

Conclusion

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

Open topics

Problems

- lot's of automatic rewriting rules in Event-B/Rodin
- Prop and Bool are different in Rodin, = and \Leftrightarrow can't be identify
- some operators, like \wedge or \vee are n-ary, difficult to express in lambdapi

Embedding Event-B in lambdapi

Proofs in Rod

Conclusion

Open topics

Problems

- lot's of automatic rewriting rules in Event-B/Rodin
- Prop and Bool are different in Rodin, = and \Leftrightarrow can't be identify
- some operators, like \wedge or \vee are n-ary, difficult to express in lambdapi

Investigations

- Use Lambdapi rewriting rules , but too much rewriting rules leads to critical pairs (eg. BIG, former neg)
- Theorems, preprocessing and tactics (repeat, setoid rewrite,...) with synthesis of lambdapi proof term in Java.
- Integration of Coq⁵ setoid rewrite in Lambdapi?

^{5.} https://coq.inria.fr/doc/V8.10.2/refman/addendum/generalized-rewriting.html

Embedding Event-B in lambdapi

Proofs in Rodi

Conclusion

Generalized rewriting

Rewriting rules

- equal by equal rewriting : $((a = b) = = > f(a)) \Rightarrow f(b)$
- equivalent by equivalent rewriting : $((P \Leftrightarrow Q) = => f(P)) \Rightarrow f(Q)$
- $P \land \top \Leftrightarrow P$
- $P \land \ldots Q \land P \land R \cdots \Leftrightarrow P \land \ldots Q \land R \ldots$

In Lambdapi

Tactic rewrite ⁶ allows rewriting only for equality, not for equivalence.

6. https://lambdapi.readthedocs.io/en/latest/tactics.html https://inria.hal.science/inria-00258384

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion

Dedukti/Lambdapi is a logical framework based on $\lambda\Pi$ -calculus modulo rewriting system, meant to allow interoperability between formal method systems.

We presented some steps of our translation of the first order logic and set theory of Event-B and its deduction rules in Lambdapi to translate a statement and a guided proof from Rodin in Lambdapi.

A first usecase has been a guided proof of Cantor's theorem in Event-B.

Ongoing work

- Continue translation of deduction rules
- Deals with generalized rewriting
- Deals with internal and external automated provers
- Translate machines and events

Mathematical constructs of Event-B

Embedding Event-B in lambdapi

Proofs in Rodin

Conclusion 0000●

Thanks for your attention

