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In this talk

▶ Presentation of GDV-LP [Sutcliffe, Blanqui, Burel]

▶ Some reflections about what lambdapi proofs should automated theorem
provers produce

▶ Some words on Skolemization
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GDV-LP

TSTP Proof Format

Generic format to express proof from automated theorem provers

List of declaration of formulæ:

fof(name , role , formula , source ).

role: axiom, plain, conjecture, negated_conjecture, . . .

source: file(file, name )

name

inference(name, [status(status )], list of sources )

Hopefully, represent the DAG of the inferred formulæ
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GDV-LP

fof(c_0_0 , axiom , (?[X1]:p(f(X1))), file(’input.p’, hyp)).

fof(c_0_1 , conjecture , (?[X1]:p(X1)), file(’input.p’, goal )).

fof(c_0_3 , negated_conjecture , (~(?[X1]:p(X1))),

inference(assume_negation ,[ status(cth)],[c_0_1 ])).

fof(c_0_4 , plain , (p(f(esk1_0 ))),

inference(skolemize ,[ status(esa)],[

inference(variable_rename ,[ status(thm)],[c_0_0 ])])).

fof(c_0_5 , negated_conjecture , (![X2]:~p(X2)),

inference(variable_rename ,[ status(thm)],[

inference(fof_nnf ,[ status(thm)],[c_0_3 ])])).

cnf(c_0_6 , plain , (p(f(esk1_0 ))),

inference(split_conjunct ,[ status(thm)],[c_0_4 ])).

cnf(c_0_7 , negated_conjecture , (~p(X1)),

inference(split_conjunct ,[ status(thm)],[c_0_5 ])).

cnf(c_0_12 , plain , ($false),
inference(sr ,[ status(thm)],

[c_0_6 , c_0_7 , theory(equality )]), [’proof ’]).
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GDV-LP

GDV Architecture
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GDV-LP

From GDV to GDV-LP

Original GDV:

▶ uses Otter as a trusted verifier

▶ old automated theorem prover

▶ stable code, thoroughly tested

GDV-LP:

▶ uses lambdapi to check steps

▶ lambdapi proofs are produced by Zenon Modulo
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GDV-LP

Obtaining a global proof

Combine proof of each steps to get a lambdapi proof of the original problem
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Making proof outputs more consistent

Interoperability

We would like to use any ATP instead of Zenon Modulo
provided it produces lambdapi proofs

Problem:

▶ there is no consensus on what lambdapi proofs of ATP should be

▶ Theory for embedding logics?

▶ Axioms?

▶ Conjecture in proof by refutation?
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Making proof outputs more consistent

Theory

Each provers comes with its own embedding of FOF in Dedukti/Lambdapi

Not really a problem because it is mostly the same theory, but with different
symbol names

Use theory U?

▶ lacks built-in equality
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Representing proofs

Problem presentation
Axioms (hypothesis, assumptions, definitions, . . . ) A1, . . . , An

Conjecture (conclusion, goal, . . . ) C

What should Dedukti prove?

symbol proof: Prf A1 → ... → Prf An → Prf C := ...

or

constant symbol a1: Prf A1;

...

constant symbol an: Prf An;

symbol c: Prf C := ...;

λ-lifting
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Representing proofs

Proof presentation

Often, ATP proofs are sequences of inferred formulas

▶ resolution proofs

▶ TSTP files

with extra info to form a DAG
(premises used to infer the formula)

Should the Dedukti proof be a term representing a translation of the whole
DAG?

Or should we add new symbols for each of the inferred formulas, and define them
in term of other ones?

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 11/26



Representing proofs

Example

Axioms
a1 : A a2 : A ⇒ B a3 : B ⇒ B ⇒ C

Conjecture
c : C

Inferred formulas
i1 : B from a2 and a1
i2 : C from a3, i1 and i1

A ⇒ B ⇒ C
A ⇒ B A

B
A ⇒ B A

B
C
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Representing proofs

In lambdapi, whole DAG
constant symbol a1: Prf A;

constant symbol a2: Prf A → Prf B;

constant symbol a3: Prf B → Prf B → Prf C;

symbol c: Prf C :=
a3 (a2 a1) (a2 a1);

Not the DAG but a tree
▶ no sharing

symbol c: Prf C :=
let i1 : Prf B := a2 a1 in

let i2 : Prf C := a3 i1 i1 in

i2;

Scaling up?
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Representing proofs

In lambdapi, symbols for inferred formulas

constant symbol a1: Prf A;

constant symbol a2: Prf A → Prf B;

constant symbol a3: Prf B → Prf B → Prf C;

symbol i1: Prf B := a2 a1;

symbol i2: Prf C := a3 i1 i1;

symbol c: Prf C := i2;
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Representing proofs

Separating declarations and definitions

Signature.lp

constant symbol a1: Prf A;

constant symbol a2: Prf A → Prf B;

constant symbol a3: Prf B → Prf B → Prf C;

symbol i1: Prf B;

symbol i2: Prf C;

symbol c: Prf C;

i1.lp

rule i1 ↪→ a2 a1;

i2.lp

rule i2 ↪→ a3 i1 i1;

proof.lp

rule c ↪→ i2;
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Representing proofs

Why separating?
Pros:
▶ Useful when subproofs are generated independently

• GDV-LP

▶ Cleaner signature

Cons:
▶ Acyclicity is no longer guaranteed!

constant symbol a: Prf A → Prf ⊥;
symbol i1: Prf A;

symbol i2: Prf A;

symbol c: Prf ⊥;
rule i1 ↪→ i2; rule i2 ↪→ i1; rule c ↪→ a i1;
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Representing proofs

Acyclicity

However, acyclicity can be checked:

▶ ask for the normal form of c

▶ if terminates, acyclic

▶ but expands the DAG into a tree
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Proof by refutation

Proofs by refutation

In most ATP, do not deduce C from A1, . . . , An

but deduce ⊥ from A1, . . . , An,¬C

How to reflect this when using new symbols for inferred clauses?
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Proof by refutation

Naive approach
Add the negation of C as an axiom
Deduce Prf ⊥

constant symbol a1: Prf A1;

...

constant symbol an: Prf An;

constant symbol neg_c: Prf C → Prf ⊥;

symbol i1: Prf I1 := ...;

...

symbol ik: Prf In := ...;

symbol ik+1: Prf ⊥ := ...;

But this is not a proof of C
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Proof by refutation

Adding the conjecture in the context

Define a new predicate

symbol Prf_c p := Prf (¬C) → Prf p;

All inferred formulas are now proved in a context where ¬C is assumed
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Proof by refutation

New approach

constant symbol a1: Prf A1;

...

constant symbol an: Prf An;

symbol c: Prf C;

symbol i1: Prf_c I1 := λ neg_c , ...;

...

symbol ik: Prf_c Ik := λ neg_c , ...;

symbol ik+1: Prf_c ⊥ := λ neg_c , ...;

rule c ↪→ nnpp C ik+1;

(Prf_c ⊥) ≡ (Prf (¬C) → Prf ⊥) ≡ (Prf (¬¬C))
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Skolemization

Skolemization in GDV-LP

Problem: Skolemization steps are not provable

∀X, ∃Y, p(X, Y ) ̸⇒ ∀X, p(X, sk(X))

Futhermore: Skolemization hidden in more complex inferences

fof(c_0_4 , plain , (p(f(esk1_0 ))),

inference(skolemize ,[ status(esa)],[

inference(variable_rename ,[ status(thm)],[c_0_0 ])])).
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Skolemization

Solution

fof(out , plain , OUT , inference (... skolemize ...[in ]...)).

▶ Use a trusted tool to Skolemize the formula in into a formula sk_in

▶ Use Zenon Modulo to prove sk_in ⇒ out

▶ Define the Skolem symbol as a Hilbert ϵ-term to be able to prove
in ⇒ sk_in

(∃x, P [x]) ⇒ P [ϵ(λx, P [x])]
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Skolemization

Defining Hilbert ϵ

require open Logic.U.Prop Logic.U.Set Logic.U.Quant;

symbol ϵ [a : Set] : (El a → Prop) → El a;

symbol Hilbert_epsilon (a : Set) (p : El a → Prop) (x : El a) :

Prf (p x) → Prf (p ( ϵ p));
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Skolemization

Proving Skolemization
symbol p : El ι → El ι → Prop;

symbol hyp : Prf (‘∀ x, ‘∃ y, p x y);

symbol sk (x : El ι ) := ϵ (λ y, p x y);

symbol conclusion : Prf (‘∀ x, p x (sk x)) :=
begin

assume x;

refine hyp x (p x (sk x)) _;

assume y unsk;

apply Hilbert_epsilon ι (λ y, p x y) y unsk;

end;
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Skolemization

Issues

▶ The trusted Skolemizer must agree with how Skolem symbols are named,
and of which variables they depend

• need to modify ATPs so that they provide this information in the TSTP
inference

▶ ϵ-terms are not first-order

• in TSTP, need a stronger logic (TXF)
• theoretically, ϵ-terms can be eliminated

but in practice?
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