
Representation of automated proofs in lambdapi,
using the case of GDV-LP

Deducteam Meeting

Guillaume Burel

Friday September 27th, 2024

Samovar, ENSIIE

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 1/26

In this talk

▶ Presentation of GDV-LP [Sutcliffe, Blanqui, Burel]

▶ Some reflections about what lambdapi proofs should automated theorem
provers produce

▶ Some words on Skolemization

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 2/26

GDV-LP

TSTP Proof Format

Generic format to express proof from automated theorem provers

List of declaration of formulæ:

fof(name , role , formula , source).

role: axiom, plain, conjecture, negated_conjecture, . . .

source: file(file, name)

name

inference(name, [status(status)], list of sources)

Hopefully, represent the DAG of the inferred formulæ

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 3/26

GDV-LP

fof(c_0_0 , axiom , (?[X1]:p(f(X1))), file(’input.p’, hyp)).

fof(c_0_1 , conjecture , (?[X1]:p(X1)), file(’input.p’, goal)).

fof(c_0_3 , negated_conjecture , (~(?[X1]:p(X1))),

inference(assume_negation ,[status(cth)],[c_0_1])).

fof(c_0_4 , plain , (p(f(esk1_0))),

inference(skolemize ,[status(esa)],[

inference(variable_rename ,[status(thm)],[c_0_0])])).

fof(c_0_5 , negated_conjecture , (![X2]:~p(X2)),

inference(variable_rename ,[status(thm)],[

inference(fof_nnf ,[status(thm)],[c_0_3])])).

cnf(c_0_6 , plain , (p(f(esk1_0))),

inference(split_conjunct ,[status(thm)],[c_0_4])).

cnf(c_0_7 , negated_conjecture , (~p(X1)),

inference(split_conjunct ,[status(thm)],[c_0_5])).

cnf(c_0_12 , plain , ($false),
inference(sr ,[status(thm)],

[c_0_6 , c_0_7 , theory(equality)]), [’proof ’]).

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 4/26

GDV-LP

GDV Architecture

ax2ax4 con1

inf1

inf2

someone_got
_an_a there_is_

someone_else

ax1

john_got_
an_f

proof

Problem

Leaves

Inferred

Root

Copied Copied Copied Copied

{con1} ⊨ ~inf1 cth

inf5

inf4

{ASk(ax3)} ⊨ inf4
{inf4} ⊨ ax3

esa

inf3
thm

{ax2,inf3,inf5} ⊨ proof

Leaf verification

Structural verification

thm
{f_is_not_a} ⊨ ax4

In
fe

re
nc

e
ve

rifi
ca

tio
n

ax3

{ax1,ax2,ax3,ax4} sat

f_is_
not_a

all_created
_equal

Trusted theorem prover

Trusted model finder

Trusted theorem prover

Trusted theorem prover

Trusted theorem prover

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 5/26

GDV-LP

From GDV to GDV-LP

Original GDV:

▶ uses Otter as a trusted verifier

▶ old automated theorem prover

▶ stable code, thoroughly tested

GDV-LP:

▶ uses lambdapi to check steps

▶ lambdapi proofs are produced by Zenon Modulo

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 6/26

GDV-LP

Obtaining a global proof

Combine proof of each steps to get a lambdapi proof of the original problem

Problem
.p

TSTP Proof
.s

Proof step
.p

Lambdapi proof
.lp

Problem signature
.lp

Global Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

GDV-LPATP
e.g. E

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 7/26

Making proof outputs more consistent

Interoperability

We would like to use any ATP instead of Zenon Modulo
provided it produces lambdapi proofs

Problem:

▶ there is no consensus on what lambdapi proofs of ATP should be

▶ Theory for embedding logics?

▶ Axioms?

▶ Conjecture in proof by refutation?

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 8/26

Making proof outputs more consistent

Theory

Each provers comes with its own embedding of FOF in Dedukti/Lambdapi

Not really a problem because it is mostly the same theory, but with different
symbol names

Use theory U?

▶ lacks built-in equality

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 9/26

Representing proofs

Problem presentation
Axioms (hypothesis, assumptions, definitions, . . .) A1, . . . , An

Conjecture (conclusion, goal, . . .) C

What should Dedukti prove?

symbol proof: Prf A1 → ... → Prf An → Prf C := ...

or

constant symbol a1: Prf A1;

...

constant symbol an: Prf An;

symbol c: Prf C := ...;

λ-lifting

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 10/26

Representing proofs

Proof presentation

Often, ATP proofs are sequences of inferred formulas

▶ resolution proofs

▶ TSTP files

with extra info to form a DAG
(premises used to infer the formula)

Should the Dedukti proof be a term representing a translation of the whole
DAG?

Or should we add new symbols for each of the inferred formulas, and define them
in term of other ones?

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 11/26

Representing proofs

Example

Axioms
a1 : A a2 : A ⇒ B a3 : B ⇒ B ⇒ C

Conjecture
c : C

Inferred formulas
i1 : B from a2 and a1
i2 : C from a3, i1 and i1

A ⇒ B ⇒ C
A ⇒ B A

B
A ⇒ B A

B
C

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 12/26

Representing proofs

In lambdapi, whole DAG
constant symbol a1: Prf A;

constant symbol a2: Prf A → Prf B;

constant symbol a3: Prf B → Prf B → Prf C;

symbol c: Prf C :=
a3 (a2 a1) (a2 a1);

Not the DAG but a tree
▶ no sharing

symbol c: Prf C :=
let i1 : Prf B := a2 a1 in

let i2 : Prf C := a3 i1 i1 in

i2;

Scaling up?
Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 13/26

Representing proofs

In lambdapi, symbols for inferred formulas

constant symbol a1: Prf A;

constant symbol a2: Prf A → Prf B;

constant symbol a3: Prf B → Prf B → Prf C;

symbol i1: Prf B := a2 a1;

symbol i2: Prf C := a3 i1 i1;

symbol c: Prf C := i2;

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 14/26

Representing proofs

Separating declarations and definitions

Signature.lp

constant symbol a1: Prf A;

constant symbol a2: Prf A → Prf B;

constant symbol a3: Prf B → Prf B → Prf C;

symbol i1: Prf B;

symbol i2: Prf C;

symbol c: Prf C;

i1.lp

rule i1 ↪→ a2 a1;

i2.lp

rule i2 ↪→ a3 i1 i1;

proof.lp

rule c ↪→ i2;

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 15/26

Representing proofs

Why separating?
Pros:
▶ Useful when subproofs are generated independently

• GDV-LP

▶ Cleaner signature

Cons:
▶ Acyclicity is no longer guaranteed!

constant symbol a: Prf A → Prf ⊥;
symbol i1: Prf A;

symbol i2: Prf A;

symbol c: Prf ⊥;
rule i1 ↪→ i2; rule i2 ↪→ i1; rule c ↪→ a i1;

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 16/26

Representing proofs

Acyclicity

However, acyclicity can be checked:

▶ ask for the normal form of c

▶ if terminates, acyclic

▶ but expands the DAG into a tree

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 17/26

Proof by refutation

Proofs by refutation

In most ATP, do not deduce C from A1, . . . , An

but deduce ⊥ from A1, . . . , An,¬C

How to reflect this when using new symbols for inferred clauses?

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 18/26

Proof by refutation

Naive approach
Add the negation of C as an axiom
Deduce Prf ⊥

constant symbol a1: Prf A1;

...

constant symbol an: Prf An;

constant symbol neg_c: Prf C → Prf ⊥;

symbol i1: Prf I1 := ...;

...

symbol ik: Prf In := ...;

symbol ik+1: Prf ⊥ := ...;

But this is not a proof of C

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 19/26

Proof by refutation

Adding the conjecture in the context

Define a new predicate

symbol Prf_c p := Prf (¬C) → Prf p;

All inferred formulas are now proved in a context where ¬C is assumed

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 20/26

Proof by refutation

New approach

constant symbol a1: Prf A1;

...

constant symbol an: Prf An;

symbol c: Prf C;

symbol i1: Prf_c I1 := λ neg_c , ...;

...

symbol ik: Prf_c Ik := λ neg_c , ...;

symbol ik+1: Prf_c ⊥ := λ neg_c , ...;

rule c ↪→ nnpp C ik+1;

(Prf_c ⊥) ≡ (Prf (¬C) → Prf ⊥) ≡ (Prf (¬¬C))

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 21/26

Skolemization

Skolemization in GDV-LP

Problem: Skolemization steps are not provable

∀X, ∃Y, p(X, Y) ̸⇒ ∀X, p(X, sk(X))

Futhermore: Skolemization hidden in more complex inferences

fof(c_0_4 , plain , (p(f(esk1_0))),

inference(skolemize ,[status(esa)],[

inference(variable_rename ,[status(thm)],[c_0_0])])).

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 22/26

Skolemization

Solution

fof(out , plain , OUT , inference (... skolemize ...[in]...)).

▶ Use a trusted tool to Skolemize the formula in into a formula sk_in

▶ Use Zenon Modulo to prove sk_in ⇒ out

▶ Define the Skolem symbol as a Hilbert ϵ-term to be able to prove
in ⇒ sk_in

(∃x, P [x]) ⇒ P [ϵ(λx, P [x])]

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 23/26

Skolemization

Defining Hilbert ϵ

require open Logic.U.Prop Logic.U.Set Logic.U.Quant;

symbol ϵ [a : Set] : (El a → Prop) → El a;

symbol Hilbert_epsilon (a : Set) (p : El a → Prop) (x : El a) :

Prf (p x) → Prf (p (ϵ p));

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 24/26

Skolemization

Proving Skolemization
symbol p : El ι → El ι → Prop;

symbol hyp : Prf (‘∀ x, ‘∃ y, p x y);

symbol sk (x : El ι) := ϵ (λ y, p x y);

symbol conclusion : Prf (‘∀ x, p x (sk x)) :=
begin

assume x;

refine hyp x (p x (sk x)) _;

assume y unsk;

apply Hilbert_epsilon ι (λ y, p x y) y unsk;

end;

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 25/26

Skolemization

Issues

▶ The trusted Skolemizer must agree with how Skolem symbols are named,
and of which variables they depend

• need to modify ATPs so that they provide this information in the TSTP
inference

▶ ϵ-terms are not first-order

• in TSTP, need a stronger logic (TXF)
• theoretically, ϵ-terms can be eliminated

but in practice?

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 26/26

	GDV-LP
	Making proof outputs more consistent
	Representing proofs
	Proof by refutation
	Skolemization

