Representation of automated proofs in lambdapi,
using the case of GDV-LP

Deducteam Meeting

Guillaume Burel

Friday September 27th, 2024

Samovar, ENSIIE

I EEEEEEE——
Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 1/26 ensiie s@movar

In this talk

» Presentation of GDV-LP [Sutcliffe, Blanqui, Burel]

» Some reflections about what lambdapi proofs should automated theorem
provers produce

» Some words on Skolemization

Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 2/26 ensiie s@movar

GDV-LP

TSTP Proof Format

Generic format to express proof from automated theorem provers
List of declaration of formulae:

fof(name, role, formula, source).

role: axiom, plain, conjecture, negated_conjecture, ...

source: file(file, name)
name

inference(name, [status(status)], list of sources)

Hopefully, represent the DAG of the inferred formulae

Guillaume Burel: Deducteam Meeting, 2024-09-27 I
GDV-LP 3/26 ensilie s@movar

GDV-LP

fof (c_0_0, axiom, (?7[X1]:p(£(X1))), file(, hyp)).
fof (c_0_1, conjecture, (?7[X1]:p(X1)), file(, goal)).
fof (c_0_3, negated_conjecture, (" (?7[X1]:p(X1))),
inference (assume_negation, [status(cth)],[c_0_1]1)).
fof (c_0_4, plain, (p(f(esk1_0))),
inference (skolemize ,[status(esa)l], [
inference (variable_rename , [status(thm)],[c_0_0]1)1)).
fof (c_0_5, negated_conjecture, (![X2]: p(X2)),
inference(variable_rename ,[status(thm)], [
inference (fof_nnf ,[status(thm)],[c_0_31)1)).
cnf (c_0_6, plain, (p(f(esk1_0))),
inference(split_conjunct,[status(thm)],[c_0_41)).
cnf (c_0_7, negated_conjecture, ("p(X1)),
inference(split_conjunct,[status(thm)],[c_0_51)).
cnf(c_0_12, plain, ($false),
inference(sr,[status(thm)],

[c_0_6, c_0_7, theory(equality)]l), [D.
I —
Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 4/26 ensiie s@movar

GDV-LP

GDV Architecture

{f_is_not_a} F ax4

someone_got, John_got, all_created Problem
—ana an_f equal there_is
4 - someond_ else
Copied Copied Copied Copied Leaf verification
{axl,ax2,ax3,ax4} w. . 4 — | s ===1 ep——
l —_—Y— —

{conl} = ~infl <€
Trusted theorem prover

{ASk(ax3)} F inf4 esa

{inf4} F ax3

{ax2,inf3,inf5} F proof €—
1

Trusted theorem prover’

Inferred

Inference verification

Guillaume Burel: St wﬁé}é Meeting, 2024-09-27
ructural ve toR' —_)
GDV-LP 5/26 ensilie s@movar

GDV-LP

From GDV to GDV-LP

Original GDV:
» uses Otter as a trusted verifier
» old automated theorem prover

» stable code, thoroughly tested

GDV-LP:
» uses lambdapi to check steps
» lambdapi proofs are produced by Zenon Modulo

 —— — E E E E E E ———————————
Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 6/26 ensiie s@movar

GDV-LP

Obtaining a global proof

Combine proof of each steps to get a lambdapi proof of the original problem

Problem signature

Ip
Proof step Lambdapi producing ATP| Lambdapi proof
p e.g. Zenon modulo Ip
Proof step Lambdapi producing ATP) Lambdapi proof
p e.g. Zenon modulo Ip

Proof step Lambdapi producing ATP| Lambdapi proof
P e.g. Zenon modulo Ip

Global Lambdapi proof
Ip

Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 7/26 ensiie s@movar

Making proof outputs more consistent

Interoperability

We would like to use any ATP instead of Zenon Modulo
provided it produces lambdapi proofs

Problem:

» there is no consensus on what lambdapi proofs of ATP should be

» Theory for embedding logics?
» Axioms?

» Conjecture in proof by refutation?

I —
Guillaume Burel: Deducteam Meeting, 2024-09-27 I
GDV-LP 8/26 ensilie s@movar

Making proof outputs more consistent

Theory

Each provers comes with its own embedding of FOF in Dedukti/Lambdapi

Not really a problem because it is mostly the same theory, but with different
symbol names

Use theory U?
» lacks built-in equality

 —— — E E E E E E ———————————
Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 9/26 ensiie s@movar

Representing proofs

Problem presentation
Axioms (hypothesis, assumptions, definitions, ...) Ay,... A,

Conjecture (conclusion, goal, ...) C

What should Dedukti prove?

symbol proof: Prf A1 — ... — Prf An — Prf C = ...

or

constant symbol al: Prf A1l;

constant symbol an: Prf An;
symbol c: Prf C = ..

A-lifting
I ——

Guillaume Burel: Deducteam Meeting, 2024-09-27 I
GDV-LP 10/26 ensilie s@movar

Representing proofs

Proof presentation

Often, ATP proofs are sequences of inferred formulas
» resolution proofs

» TSTP files

with extra info to form a DAG
(premises used to infer the formula)

Should the Dedukti proof be a term representing a translation of the whole
DAG?

Or should we add new symbols for each of the inferred formulas, and define them
in term of other ones?

I ——
Guillaume Burel: Deducteam Meeting, 2024-09-27 I
GDV-LP 11/26 ensilie s@movar

Representing proofs

Example

Axioms
a1:A CLQIA:>B agiB:>B:>C

Conjecture
c:C
Inferred formulas

i1 : B from ay and a,
i : C from as, i1 and i

A= B A A= B A
A= B=C B B
C

Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 12/26 ensiie s@movar

Representing proofs

In lambdapi, whole DAG

constant symbol al: Prf A;
constant symbol a2: Prf A — Prf B;
constant symbol a3: Prf B — Prf B — Prf C;
symbol c: Prf C =

a3 (a2 al) (a2 al);

Not the DAG but a tree
» no sharing

symbol c: Prf C :=
let i1 : Prf B := a2 al in
let i2 : Prf C = a3 il il in

i2;
Scaling up?
I —
Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 13/26 ensiie s@movar

Representing proofs
. O L

In lambdapi, symbols for inferred formulas

constant symbol al: Prf A;
constant symbol a2: Prf A — Prf B;
constant symbol a3: Prf B —+ Prf B — Prf C;

symbol il: Prf B = a2 ail;
symbol i2: Prf C = a3 il il;

symbol c: Prf C = i2;
 —— — E E E E E E ———————————

Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 14/26 ensiie s@movar

Representing proofs
. O L

Separating declarations and definitions

Signature.lp

constant symbol al: Prf Aj;

constant symbol a2: Prf A — Prf B;
constant symbol a3: Prf B — Prf B — Prf C;
symbol il: Prf B;

symbol i2: Prf C;

symbol c: Prf C;

il.lp i2.lp proof.Ip
rule il — a2 al; rule i2 — a3 i1 iil; rule c — i2;

 —— — E E E E E E ———————————
Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 15/26 ensiie s@movar

Representing proofs

Why separating?
Pros:

» Useful when subproofs are generated independently
e GDV-LP

» Cleaner signature

Cons:
» Acyclicity is no longer guaranteed!

constant symbol a: Prf A — Prf L;
symbol il: Prf A;
symbol i2: Prf A;
symbol c: Prf 1;

rule il < i2; rule i2 < il; rule ¢ — a il;

Guillaume Burel: Deducteam Meeting, 2024-09-27
GDV-LP

16/26 ENSiiE s@movar

Representing proofs

Acyclicity

However, acyclicity can be checked:
» ask for the normal form of ¢
» if terminates, acyclic
» but expands the DAG into a tree

I EEEEEEE——
Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 17/26 ensiie s@movar

Proof by refutation

Proofs by refutation

In most ATP, do not deduce C' from Ay,..., A,
but deduce L from A;,..., A,,—~C

How to reflect this when using new symbols for inferred clauses?

Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 18/26 ensiie s@movar

Proof by refutation

Naive approach

Add the negation of C' as an axiom
Deduce Prf L

constant symbol al: Prf A1l;

constant symbol an: Prf An;
constant symbol neg_c: Prf C — Prf L;

symbol il: Prf I1 = ...

symbol ik: Prf Im = ...
symbol ik+1: Prf | = ..

*

But this is not a proof of C

Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 19/26 ensiie s@movar

Proof by refutation

Adding the conjecture in the context

Define a new predicate
symbol Prf_c p = Prf (-C) — Prf p;

All inferred formulas are now proved in a context where =C' is assumed

Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 20/26 ensiie s@movar

Proof by refutation

New approach
constant symbol al: Prf A1l;

constant symbol an: Prf An;
symbol c: Prf C;

symbol il: Prf_c Il := X neg_c, ...;

symbol ik: Prf_c Ik := X\ neg_c, ...;
symbol ik+1: Prf_c | = X\ neg_c, ...;
rule ¢ — nnpp C ik+1;

(Prf_c 1) = (Prf (=€) —Prf L) = (Prf (=—0C))

Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 21/26 ensiie s@movar

Skolemization

Skolemization in GDV-LP

Problem: Skolemization steps are not provable
VX, 3V, p(X)Y) % VX, p(X, sk(X))

Futhermore: Skolemization hidden in more complex inferences

fof (c_0_4, plain, (p(f(esk1_0))),
inference (skolemize , [status(esa)], [
inference(variable_rename, [status(thm)],[c_0_0]1)])

Guillaume Burel: Deducteam Meeting, 2024-09-27 I
GDV-LP 22/26 ensilie s@movar

Skolemization
s

Solution

fof (out, plain, OUT, inference(...skolemize...[in]...)).
» Use a trusted tool to Skolemize the formula in into a formula sk_in
» Use Zenon Modulo to prove sk_in = out

» Define the Skolem symbol as a Hilbert e-term to be able to prove
in = sk_in

(3z, Plz|) = Ple(Ax, Plz))]

 —— — E E E E E E ———————————
Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 23/26 ensiie s@movar

Skolemization

Defining Hilbert €

require open Logic.U.Prop Logic.U.Set Logic.U.Quant;
symbol € [a : Set] : (El a — Prop) — El a;

symbol Hilbert_epsilon (a : Set) (p : El1 a — Prop) (x : El1 a)
Prf (p x) — Prf (p (e p));

 —— — E E E E E E ———————————
Guillaume Burel: Deducteam Meeting, 2024-09-27 L=
GDV-LP 24/26 ensiie s@movar

Skolemization
s

Proving Skolemization
symbol p : E1 ¢+ — E1 ¢ — Prop;

symbol hyp : Prf (‘V x, ‘dy, p x y);
symbol sk (x : El ¢t) =¢€¢ (A y, p x y);

symbol conclusion : Prf (‘V x, p x (sk x)) =
begin
assume X;
refine hyp x (p x (sk x))
assume y unsk;
apply Hilbert_epsilon ¢ (A y, p x y) y unsk;

-

end ;
I —
Guillaume Burel: Deducteam Meeting, 2024-09-27

GDV-LP 25/26 ensiie s@movar

Skolemization

Issues

» The trusted Skolemizer must agree with how Skolem symbols are named,
and of which variables they depend
e need to modify ATPs so that they provide this information in the TSTP
inference

» e-terms are not first-order
e in TSTP, need a stronger logic (TXF)
e theoretically, e-terms can be eliminated
but in practice?

I ——
Guillaume Burel: Deducteam Meeting, 2024-09-27 I
GDV-LP 26/26 ensilie s@movar

	GDV-LP
	Making proof outputs more consistent
	Representing proofs
	Proof by refutation
	Skolemization

