Lean4less: A Term-Patching Framework for

Eliminating Definitional Equalities in Lean
(Work in Progress)

Rishikesh Vaishnav

Presented at Fontainebleau Deducteam Seminar

September 27, 2024

école

DEDUCE___ e normale———
~FEAM Formelies supérieure

paris—saclay

Introduction: Lean

@ Lean (https://lean-lang.org/): proof assistant developed by the
Lean FRO (https://lean-fro.org/)

@ Type theory: calculus of inductive constructions with impredicative
universe hierarchy

@ mathlib4: large library of mathematics formalized in Lean 4

mathlib's import graph mathlib’s growth

2/34

https://lean-lang.org/
https://lean-fro.org/
https://github.com/leanprover-community/mathlib4

Introduction: Translation

Some reasons why we would like to translate Lean to other systems:
@ to make the large number of formalizations being done in Lean
available to other systems (e.g. Coq, Agda, Isabelle)
@ improve confidence in Lean's proof libraries by cross-checking them
with other proof assistants

@ prevent duplication of work in writing libraries, tooling, etc.

Rather than O(n?) translations between proof assistants, go through a
central logical framework:

Isabelle Isabelle Isabelle Isabelle
LF
Agda Agda Agda Agda
Lean Lean Lean Lean
Cogq Coq Coq Coq

Naively LF Approach 3/34

Introduction: Dedukti

Dedukti (https://deducteam.github.io/): a logical framework
specifically designed with translation in mind.

@ Type system: lambda-pi calculus modulo rewrite rules (AII/R).
Definitional equality: normal forms via -reduction + rewriting.
@ Translation generally follows these steps:

@ translate from theory A into Dedukti's encoding of A (DK/A)
@ translate from DK/A to another compatible theory B (DK/B)
© translate from DK/B to B

4/34

https://deducteam.github.io/

Lean's Type Theory (Algorithmic)

Lean's “algorithmic” judgments:

T'lFe: A Tlhese ewk Tlrked

ThFese Tlese Tlhresé
(= Tlheioe :Vz:A B Tlheyse,: A
T'FU; < Uy TlFep e el el

FlkA:U, Tlhe:B Il-A:U,

N ! . > ! N ’ . !
o AFe B ToiArz. A4 DFU:Ug T'FAs A To:Alkese THAsA Tao:AFBsB
Tl z: A es Ar: A e TlVz:A. BeVe: A B
IlFe:Va:A. B TIEe: A Tz:Alke: B PlFe:Ve:A.B To:AlFezoea DatAlre:B TlFe: A
Tlkecd : Ble/x] Fa:AlFXz:A e:Vo: A B TIFe oe (A\z: A e) e ~ ele/x]
PiFA:Uy Daw:AFB:Uy Dlre:d THASB PIbPiUy TlhiP THH:P o)
TlEVa: A B Uinax(e) T'lke:B TIFhaeh
Lean's typing Lean’s definitional equality

The head reduction relation a ~~ b covers (- and recursor reduction.
In particular:

@ conversion rule: typing up to definitional equality
@ proof irrelevance rule: proofs are irrelevant for typing
5/34

Inductive Types and Recursors

Can also define “inductive types” that generate recursors and recursor
reduction rules that are included in the defeq judgment:

inductive Nat : Type where
| z : Nat
| s : Nat - Nat

#check Nat.rec

-- Nat.rec.{u} {motive : Nat + Sort u}
-- (2 : motive Nat.z) (s : (a : Nat)
- + motive a + motive (Nat.s a))
-- (t : Nat) : motive t

def decrement (n : Nat) : Nat :=
Nat.rec .z (funn' _ =>n') n

-- “decrement (Nat.s Nat.z)®

-- is defeq to “Nat.z"
example : decrement (.s .z) = .z := rfl

The Nat inductive type

inductive Acc {A : Sort u} (r : A » A - Prop)
where
| intro (x : A) (h : (y : A) »ryx - Accry) : Accr x

: A - Prop

#check Acc.rec

-= Acc.rec.{u, v} {A : Sort v} {r : A + A + Prop}

- {motive : (a : A) + Acc r a + Sort u}

-— (intro : (x : A) + (h : (y : A) = ryz ~+ Accry)
- + ((y : 4) » (a : ryz)~+ motive y _) ~+ motive x _)
-= {a' : A} (t : Acc r a') : motive a' t

The Acc inductive type

6/34

From Lean to Dedukti

Base translation: interpretation of Lean as a “Pure Type System'!.
Additional rules must be translated to rewrite rules such that:

@ they constitute a “confluent” system (i.e. every term has a unique

irreducible/normal form)

@ any two Lean-defeq terms have the same normal form
Rewriting is based on syntax matching — many of Lean's reduction/defeq
rules are compatible, but not all.
Example of encoding Lean’s Nat in Dedukti:

def Nat_rec : (u : Lvl) =

Lvl : Type. (motive : El (s z) Nat = Univ u) =

z ¢ Ll (zero : El u (motive zero)) —>

s ¢ Lvl = Lvl. (succ : (n : El (s z) Nat) — El u (motive n) —>
El u (motive (succ n))) —>

Univ : Lvl => Type. (n : El (s z) Nat) —>

El : s:Lvl —> Univ s —> Type. El u (motive n).

Nat : Univ (s z). [u, motive, cz, csucc, n]

zero : El (s z) Nat. Nat_rec u motive cz csucc (succ n)

succ : El (s z) Nat = El (s z) Nat. —> csucc n (Nat_rec u motive cz csucc n).

[u, motive, cz, csucc] Nat_rec u motive cz csucc zero —> cz.

!Denis Cousineau and Gilles Dowek. “Embedding Pure Type Systems in the

Lambda-Pi-Calculus Modulo™. In: Typed Lambda Calculi and Applications. 2007. 7/34

More complex definitional equalities: proof irrelevance

Recall proof irrelevance:
'-P:Uy T'lth:P TIFHW:P
L-hen
This rule is tricky to encode within Dedukti:
@ It is not a reduction rule, so we must devise a rewrite rule such that
any two proofs of the same type have the same normal form.
@ We may convert the typing condition into a syntactic one by
outputting “annotated” proofs:

(P1)

def erase : (Prp : Univ z) — El z Prp — EIl z Prp.

. . erased : (Prp : Univ z) —> El z Prp.
ax:}om P Prop [Prp, p] erase Prp p —> erased Prp.
axiom p : P
axiom q : P P : Univ z.

p: El zP.
q : El zP.

axiom T : P -+ Type
. . . T : El zP— Univ (s z).
defex (t:Tp) :Tq:=t def ex : El (s z) (T (Erase P p)) — EI (s z) (T (Erase P q)).
[t] ex t —> t.

@ However, this approach runs into typing/pattern matching issues.
8/34

More complex definitional equalities: K-like reduction

Here, we havek : K a b 0, so by (PI) Lean can “rewrite” it to
@K.mk a b, allowing for recursor reduction:

inductive K (a b : Nat) : Nat -+ Prop where
| mk : Kabo

#check K.rec K : Nat —> Nat —> Nat —> Univ z.

—- K.rec.{u} {a b : Nat} mk : (a : Nat) — (b : Nat) — El z (K a b zero).
-- {motive : (c : Nat) + K a b c =+ Sort u} de{ KfrET ((“):NL;’)I) ;>

-- (mk : motive 0 (K.mk a b)) {c : Nat} 2 sz

(b : EI (s z) Nat) —
(motive : (c : EI (s z) Nat) —
El (Ka b c)— Univu) >

-— (t :Kabc): mtive c t

—-- succeeds because of K-like reduction mk : (El u (motive zero (mk a b))) —>
-- (do not need constructor application to reduce) (c : El (s z) Nat) =
theorem KEx (a b : Nat) (b : K a b 0) ko (Bl z (Kabc)) =

. @K.recab _ 10 0 h = 10 := rfl Bl u (motive < k).

[u, a, b, motive, cmk, k]
-- fails because K-like reduction can't be applied; K_rec u a b motive cmk zero k
-- the type of 'h’ does not match that of K.mk a b~ —> cmk.
theorem KEx' (a b : Nat) (h : Kab 1)
: @K.recab _ 10 1 h = 10 := rfl

This happens to be simple enough for a rewrite rule (though it is not
type-correct).

However, this conversion is not possible in general: 0 could instead be an
arbitrarily complex expression involving a and b and quickly run into the

limitations of rewriting pattern matching. 9/34

Idea: use axioms in place of definitional equalities

For ex to be correctly typed, Lean must apply (PI):

axiom P
axiom p : P
axiom q

axiom T : P -+ Type
-= T p’ is defeq to T q°

-- (due to proof irrelevance)
def ex (t : Tp) : Tq :=t

So, cannot directly translate this to Dedukti.

However, we can “patch” it with a Pl axiom + typecasting to get around
the use of (PI):

axiom P : Prop
axiom p : P
axiom q : P

-- proof irrelevance, represented as an axiom
axiom prflIrrel {P : Prop} (pq : P) : p=gq

theorem congrArg {A : Sort u} {B : Sort v} {x y : A}

i T :P =T
(f:A-B (h:x=y) : fx=1£fy:= ... axiom ype

def ex' (t : Tp) : Tq :=

def cast {A B : Sort u} (h : A=B) (a: A) : B := ... cast (congrArg T (preIrrel p q)) t

Question: can this be done in general?
10/34

Our target theory: Lean™

Goal: translate Lean terms into theory “Lean™ ", where (PI) has been
replaced by an axiom (PI-):

'P:U FW
0 p (PI)
/F‘ﬂ—p{@q

I'lF priIrrel : V(P :Ug), (p,q: P).p=pq (PI-)

where =p is the equality type between proofs of proposition P. This is
provable in Lean by reflection + proof irrelevance (so Lean™ C Lean).

11/34

Extensional Type Theory and the Reflection Rule

Suppose we add the “reflection” rule of extensional type theory:

rgA:U, TiEtu:A TIE _:t=au
rgteu

(RFL)

In this theory “Lean_ ", we can recover (PI) from (PI-):

'ig P:Uy Tlgpqg:P TIg prfIrrel Ppqg:p=pgq

L' pegqg

Therefore, any Lean derivation can be translated to one in Lean, by
replacing all uses of (PI) with the above (so, Lean C Lean,).

12/34

Theories overview and translation plan

To summarize our different theories:

Theory Rules -
Lean™ (IF) (PI-) Lean
Lean (IF) (P1) Lean,
Lean. (IfF) | (PI-), (RFL)

As we can easily translate from Lean to Lean_, it is sufficient to translate
from Lean, to Lean™. This is exactly the task of translating from
extensional type theory (ETT) to intensional type theory (ITT) via the
elimination of (RFL).

@ An algorithm for this was described by Winterhalter et al.?> and was
formalized in Coq in ett-to-itt3.

2Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. “Eliminating reflection
from type theory”. In: Proceedings of the 8th ACM SIGPLAN International Conference
on Certified Programs and Proofs (2019).
3Théo Winterhalter and Nicolas Tabareau. ett-to-itt (Github).
13/34

https://api.semanticscholar.org/CorpusID:57379755
https://api.semanticscholar.org/CorpusID:57379755
https://github.com/TheoWinterhalter/ett-to-itt

Complex translations

Translating from Lean_ to Lean™ may seem “overkill” for eliminating (PI)
alone, however it is probably necessary, as proofs themselves are terms that
can appear arbitrarily within other terms (in particular, within types).

Translations can get complex when proofs appear in dependent types:

-- need heterogeneous equality
inductive HEq : {A : Sort u} -+ A =

{B : Sort u} - B - Prop where axiom P : Prop
| refl (a : A) : HEq a a axiom Q : P = Prop
axiom p : P
theorem appHEq {A B : Type u} axiom q : P
{U : A~ Type v} {V : B » Type v} axiom Qp : Q p
{f:(a: A -Ual{g: (b:B) »Vb} axiomQq : Q q

{a : A} {b : B} (hAB : A = B)

(hUvV : (a : A) » (b : B) axiom T : (p : P) = Q p =+ Prop
-+ HEq a b » HEq (U a) (V b))
(hfg : HEq f g) (hab : HEq a b) —-= with proof irrelevance, “t° would suffice
: HEq (f a) (g b) := ... def ex (t : TpQp) : T q Qq := cast (eq_of_heq
(appHEq (congrArg Q (eq_of_heq (prfIrrel rfl p q)))

theorem eq_of_heq {A : Sort u} {a a' : A} (fun _ _ _ => HEq.rfl)

(h : HEg a a') : a=a' := ... (appHEq rfl ... HEq.rfl (prfIrrel rfl p q))

(prfIrrel (congrArg Q (eq_of_heq (prfIrrel rfl p q)))

-- must now be heterogeneous Qp Q@) t

axiom prfIrrel {P Q : Prop} (h : P = Q)
(p:P)(q:Q :HEqQpgq

14/34

Translation strategy

Using ett-to-itt directly presents some difficulties:

@ Input derivations from a minimal extensional theory; must translate
Lean derivations (using temporary axioms + (RFL) for some rules).

@ Will need to modify a Lean typechecker to output these derivations.

@ ett-to-itt outputs terms from a minimal intensional theory; will
have to translate back to Lean (removing uses of temporary axioms).

o Consequently, the output will be very large and contain many
unnecessary casts and redundant proof terms.

It may be easier to modify a typechecker to “patch” terms as necessary in
parallel to typechecking (should also allow for a minimal translation).

15/34

One promising implementation for us to modify is Lean4Lean*, a recent
port of Lean’s C++ typechecker code to Lean 4. The functions of primary
interest to us are these, found in the file Typechecker.lean:

-— type inference
def inferType (e : Expr) : RecM Expr :

-- definitional equality check
def isDefEq (t s : Expr) : RecM Bool :

-- weak-head mormalization
def whnf (e : Expr) : RecM Expr := ...

*Mario Carneiro. Lean4lean: Towards a formalized metatheory for the Lean theorem
prover. 2024. arXiv: 2403.14064 [cs.PL]. GitHub repo.
16/34

https://arxiv.org/abs/2403.14064
https://github.com/digama0/lean4lean

Lean4less: a patching typechecker

We will modify these functions to return an additional Option Expr:

def inferType (e : Expr) : RecM (Expr x Option Expr) := ...
-—- " patched "e’

def isDefEq (t s : Expr) : RecM (Bool x Option Expr) := ...
-— T proof of 'HEq t s~

def whnf (e : Expr) : RecM (Expr x Optlon Expr) := ..

-— " proof of "HEq e (whnf e)”
Terms will be patched by inferType to have type casts (i.e. transports)
“injected” as necessary using proofs constructed by isDefEq / whnf:
@ when checking that constant values have their expected types
@ in the app case (in £ a where £:A - B, we need A defeq inferType a)
@ in the let case (in let x : T := v, we need T defeq inferType v)

@ places where certain expression head constructors are expected after
calling whnf (e.g. Expr.sort 1 for lambda/forall binder types)

17/34

Lean4less: a patching typechecker

Note: the modified isDefEq and whnf return heterogeneous equality
proofs (HEq in Lean) — necessary because the lhs/rhs types may only be

propositionally equal in Lean™. The following “patching lemmas” (a.k.a.
“congruence lemmas”) will be crucial to us °:

-- heterogeneous equality
inductive HEq : {A : Sort u} - A =
{B : Sort u} -+ B + Prop where

| refl (a : A) : HEq a a -- lambda congruence
theorem lamHEq {A B : Type u}
-- proof irrelevance {U : A~ Type v} {V : B » Type v}
axiom prfIrrel (P Q : Prop) (h : P = Q) (f:(a:A ~Ua) (g: (b:B) ~+Vb)
(p:Q (q:P):HEQpgq (hAB : A=B) (h: (a: A) = (b: B)
-+ HEq a b » HEq (f a) (g b))
-= application congruence : HEq (fun a => f a) (fun b => g b) := ...
theorem appHEq {A B : Type u}
{U : A - Type v} {V : B = Type v} -- forall congruence
{f: (@:A ~Uat{g: (b:B) ~+Vb} theorem forA1lHEq {A B : Type u}
{a : A} {b : B} {U : A - Type v} {V : B » Type v}
(hAB : A = B) (hAB : A = B) (hUV : HEq U V)
(hUV : (a : A) =» (b : B) : ((@a:A) »Ua) = (b :B) »Vb) = ...

-+ HEq a b + HEq (U a) (V b))
(hfg : HEq f g) (hab : HEq a b)
: HEq (f a) (g b) := ...
Ssee the full list of patching lemmas at https://github.com/rish987/leandlean/
blob/ef65cababce4b5ee00d0955de4cda6807bd8c371/patch/PatchTheoremsAx . lean

18/34

https://github.com/rish987/lean4lean/blob/ef65caba6ce4b5ee00d0955de4cda6807bd8c371/patch/PatchTheoremsAx.lean
https://github.com/rish987/lean4lean/blob/ef65caba6ce4b5ee00d0955de4cda6807bd8c371/patch/PatchTheoremsAx.lean

Testing plan

Once Lean4less is implemented, we will test it on mathlib4:

[mathiib4 (.1ean files) E (.olean files)

[thm appHEg, thm lamHEq, .

Lean4Less

Ith.m prilrrel := rfl-/ < |ax10m PrfIrrelI

@ Input: mathlib .olean files from Lean (environment E)

@ Outputs two sets of .olean files:

© E7T: the patched environment
@ ET: E + equality proofs between the original and patched types
(for verification only)

19/34

Testing plan

The output environments will then be passed as input to other tools:

[mathiib4 (.1ean files) E (.olean files)

[thm appHEqg, thm lamHEq, ... |

(Lean4Less

Ithm prflrrel := rflI

| axiom prflrrel I

LeandLean - (PI)

verification

.' external tools ‘.
(e.g. translators)

Verification steps:
o typecheck EX w/ modified kernel representing Lean™

o typecheck ET w/ original kernel (checks that the “meaning” of types
was preserved).

20/34

Prospects: extensionality for Lean

Lean4less's patching framework should be consistent with the general
ETT to ITT translation (Winterhalter et al.)

@ So, should be possible to extend to eliminate other definitional
equalities (w/ new axioms for each of them).

@ This could include new, user-defined definitional equalities.

@ While full ETT is undecidable, could add partial extensionality via a
mechanism for registering/deriving new equalities.

Could add a rule for “algorithmic reflection” to Lean:

Nk A:Up Tl t,u: A T I _:t=4u computable

(RFL¥)
Tl t & u

and extend Lean4dless to translate from this theory “Leane-".

Lean4Less could then be integrated with Lean's elaborator, allowing for
reasoning modulo a extensible set of computable definitional equalities.
21/34

Progress so far

e Completed base implementation without the use of partial /unsafe
definitions (ensuring termination)

@ Adapted Lean4lean to integrate it with Lean4less as a dependency
(for verification and in some parts of typechecking)

@ Can now translate all of Lean's standard library and typecheck the
output in Lean™ (502 definitions using proof irrelevance and 126
using K-like reduction)

@ Implemented a number of output optimizations to keep the output
size reasonable (though can still “explode” in certain cases)

Once we can patch & typecheck mathlib with Lean4Lean - (Pl), can “push
the limits” by eliminating other defegs (e.g. struct eta) to identify trickier
bugs and have more confidence in the translation framework as a whole.

22/34

To do: patching lemma dependency extraction

A translated library can be output as a single .olean file, but this can be
quite large and inconvenient to work with.
@ ldeally, we would like to output separate .olean files using the same
file structure from the input.

@ However, patching lemmas depend on definitions strewn throughout
the standard library:

Prelude.olean

prelude Core.olean

o prelude

inductive Eq : ...) .

import Init.Prelude
inductive HEqQ : ... - -

theorem funext : ...

theorem eq_of _heq : ...

theorem appHEq : ... :=

(uses Eq, HEq, eq_of_heq, funext)

@ This makes it difficult to “place” the patching lemmas within existing
.olean environments, as definitions between dependencies can (and
in fact do) require patching. 23/34

To do: patching lemma dependency extraction

Solution: extract patching lemmas + dependencies to separate env output
(as its own .olean file), and have the prelude env import it:

PatchPrelude.olean

prelude
inductive Eq : ...

inductive HEq : ...

theorem funext : ...

theorem appHEq : ...

theorem eq_of_heq : ...

Prelude.olean

- - - >

prelude
import Init.PatchPrelude

Core.olean

prelude

import Init.Prelude

b - -] -

~theeremfunext——

24/34

To do: patching lemma bootstrapping

Some issues arise when attempting to patch the patching lemmas
themselves:

@ Proofs require uniqueness of identity proofs (UIP) to hold
definitionally, which do thanks to PI/K-like reduction

@ However, in Lean™, UIP only holds propositionally, so patching
lemmas must themselves be patched

@ Opens the possibility for dependency cycles, where patched patching
lemmas can refer to themselves/each other

@ Possible solution: manually patch patching lemmas prior to
translation, using simpler lemma variants to avoid cycles

@ Better solution: optimize output to extent that dependency cycles are
automatically eliminated (assuming a certain declaration order)

25/34

Optimization: Minimal patching lemma variants

To address the above bootstrapping issue, it may help to use variants of
patching lemmas with fewer hypotheses.

o E.g., uses of the fully general lemma
theorem appHEQABUV' {A B : Sort u} {U : A - Sort v} {V : B = Sort v}
(hAB : HEq A B) (hUV : (a : A) - (b : B) - HEq a b » HEq (U a) (V b))
{f : (@a: A ~»Uat{g: (b:B) »Vhb} {a: A} {b : B}
(hfg : HEq £ g) (hab : HEq a b)
: HEq (f a) (g b) := ...
can be simplified to uses of
theorem appHEQAB {A B : Sort u} {U : Sort v}
(hAB : HEq A B)
{f:(a:A ~-Ut{g: (b:B) »U} {a: A} {b : B}
(hfg : HEq f g) (hab : HEq a b)
: HEq (f a) (g b) := ...
when output types are non-dependent and defeq in Lean™
@ Simpler variants may use fewer defeqs, making cycles less likely
@ Also help avoid redundant reflexivity proofs in the output

26/34

Optimization: Minimal patching lemma variants

A particular lemma that uses UIP (via K-like reduction) is eq_of _heq:
theorem eq_of_heq {A : Sort u} {a a' : A} (h : HEq a a') : Eq a a' :=
have (A B : Sort u) (a : A) (b : B) (h : HEq a b)
: (h: EQ AB) + Eq (cast h a) b :=
h .rec (fun _ => rfl)
this A A a a' h rfl

which, with a not-fully-optimized patching implementation, translates to:

theorem eq_of_heq {A : Sort u} {a a' : A} (h : HEq a a') : Eq a a'
let_fun this := fun (A B : Sort u) (a : A) (b : B) (b : HEq a b) =>
HEq.rec (L4L.castHEq

(L4L.forallHEq' fun (h : Eq A A) => L4L.appArgHEq (Eq (cast h a))
(L4AL.appArgHEq (Eq.rec a) h rfl (L4L.prfIrrel h rfl)))
fun _ => rfl) h;
this A A a a' h rfl
@ This results in a cycle since L4L. castHEq uses eq_of_heq
@ Can be avoided by further optimizing output to use Eq instead of HEq
when possible (4 defining Eq-based variants of lemmas used above),
allowing a normal cast to be used instead

27/34

Optimization: Lambda-casting

Sometimes, we must apply a cast to a lambda expression:
axiom P : Prop
axiom Q : P -+ Prop
axiom p q : P
axiom X : (p : P) = Qp-Qp
theorem lamDemo : Q @ + Q q := fun (gp : Q p) => X p qp
resulting in the translation:

theorem lamDemo : Q q - Q q :=
@L4L.castHEq (Q p » Qp) (Qq -~ Q @
(L4L.forallHEqAB (L4L.appArgHEq Q (L4L.prfIrrel P p q))
(LAL.appArgHEq Q (L4L.prfIrrel p q)))
fun (qp : Q p) => X p gp
We can “push” the cast into the lambda, obtaining more compact output:
theorem lamDemo : Q g + Q q
fun (gp : Q @) =>
LAL.castHEq (LAL.appArgHEq Q (L4AL.prflIrrel p q))
(X p (L4L.castHEq (LAL.appArgHEq Q (L4L.prfIrrel q p)) gp))

28/34

Optimization: Application argument abstraction

Patching applications “as they are”

axiom A :

axiom Aq : Aq0000O0O0

theorem absDemoA : A p 0000 O

naively translates to:

theorem absDemoA : Ap 00O0O0O
L4L.castHEqQ (A g 0 0 0 0 0 0) (A
(L4L.appFunHEq (A q 0 0 0 0 0)
(L4L.appFunHEq (A q 0 0 0 0)
(L4L.appFunHEq (A q 0 0 0)
(LAL.appFunHEq (A q 0 0)

(L4L.appFunHEq (A q 0)
(LAL.appFunHEq (A q)
(LAL.appArgHEq A q

Aq

can result in large outputs. E.g.:

P -+ Nat - Nat - Nat - Nat -+ Nat -+ Nat - Prop

Aq

0 :=
p00O0O0O0O0)

(Ap) O
p (L4L.prflIrrel q p))))))))

29/34

Optimization: Application argument abstraction

However, note that the application A p 0 0 0 0 0 O is equivalent to
the application (fun (x : P) => A x 000 0 0 0) p.

@ By optimizing the translation to perform this application abstraction
when possible (prior to constructing the equality proof), we can
obtain a much more compact output:

theorem absDemoA : Ap 0 0O0O0OO :=
L4L.castHEq (L4L.appArgHEq (fun (a : P) => A a 000 0 0 0)
(L4L.prflrrel P q p)) Aq

@ In particular, the number of lemmas that need to be applied no longer
depends on the number of Lean™ -defeq application arguments.

30/34

Optimization: Application argument abstraction

This optimization is more complex than it may seem at first glance.
@ Because of dependent types, later arguments may need to be
abstracted even if they are Lean™ -defeq. For example:

inductive I : Type where def IT : I = Type
| left : P -1 | .left _ => Unit
| right : P » I | .right _ => Bool

axiom B : (i : I) - Nat -+ Nat -+ Nat - IT i -+ Nat - Nat -+ Nat - Prop
axiom Bq : B (.left ¢ 000 () 00O
theorem absDemoB : B (.left p) 0 00 () 0 0 0 := Bq

translates to®:
theorem absDemoB : B (I.left p) O O O Unit.unit 0 0 O :
L4L.castHEq (LAL.appFunHEq Unit.unit
(LAL.appArgHEq' (fun (i : I) (a : ITi) =>B i 000 a 0 0 0)
(I.left q) (I.left p)
(L4L.appArgHEq I.left (L4L.prfIrrel P q p))))
Bq
5Note: Here, we can further optimize the abstraction to obtain
fun (x : P) => B (I.left x) 0 0 0 () 0 O O ; the definition of IT.left cannot
depend on the proof argument b/c of weak elimination (related to proof irrelevance).
However, in the general extensional case, the extra abstraction is necessary. 31/34

Optimization: Application argument abstraction

We also need to consider the case of functions with dependent arity:
def ITC : I = Type

| .left _ => Nat - Nat + Nat - Prop

| .right _ => Bool

axiom C : (i : I) = Nat - Nat - Nat - ITC i
axiom Cq : C (.left q) 00 0 000

theorem absDemoC : C (.left p) 0 0 0 0 0 0 := Cq
Need an extra abstraction on partial application C (I.left p) 0 0 O

(because fun (i : I) => C i 00 0 0 0 O isill-typed):
theorem absDemoC : C (I.left p) 0 0 0 0 0 0 :=
L4L.castHEq
(L4L.appArgHEq (fun (f : Nat - Nat - Nat - Prop) => £ 0 0 0)
(LAL.appArgHEq' (fun (i : I) => C i 0 0 0) (I.left q) (I.left p)
(L4L.appArgHEq I.left (L4L.prfIrrel P q p))))
Cq

32/34

Optimization: Application argument abstraction

Some part of the dependent argument range may depend on a previously
abstracted argument, as in this example:

axiom Q : P -+ Prop def ITD : I - Type

axiom Qp : Q p | .left x => Nat =+ Q x » Nat - Prop
axiom Qq : Q q | .right _ => Bool

axiom D : (i : I) = Nat - Nat - Nat - ITD i

axiom Dg : D (.left q) 0 0 0 0 Qg O
theorem absDemoD : D (.left p) 0 0 0 0 Qp O := Dg

This leads to a more complex translation, where part of the abstracted

. . . ' .
partial application’s function type must also be abstracted:
theorem absDemoD: D (I.left p) 0 0 0 0 Qp 0 :=
L4L.castHEq
(LAL.appHEQAB (L4L.appArgHEq Q (L4L.prfIrrel P q p))
(LA4L . appHEQABUV
(LAL.appArgHEq (fun (aT : Prop) => Nat + aT - Nat - Prop) (L4L.appArgHEq Q (LAL.prfIrrel P q p)))
(LAL.appArgHEq (fun (aT : Prop) => aT -+ Prop) (L4L.appArgHEq Q (L4L.prfIrrel P q p)))
(L4L.appArgHEq' (fun (aT : Prop) (f : Nat - aT - Nat - Prop) (a : aT) => £ 0 a 0) (Q q (Q p)
(LA4L.appArgHEq Q (L4L.prfIrrel P q p)))
(L4L.appArgHEq' (fun (i : I) => D i 0 0 0) (I.left q) (I.left p)
(LAL.appArgHEq I.left (LAL.prflrrel P q p))))
(L4L.prflIrrelHEq (Q q) (Q p) (L4L.appArgHEq Q (L4L.prfIrrel P q p)) Qq Qp))
Dq

(note the abstracted aT in the type of f).
33/34

Next steps

Within the coming weeks, | plan to:
o Fix the bootstrapping issue by optimizing the output to use Eq
instead of HEq wherever possible

@ Do some additional output optimizations relating to application
abstraction and the reduction of any redexes produced by patching

@ Attempt to translate all of mathlib

@ Start work on paper describing implementation and output
optimizations, and comparing runtime and output size depending on
which optimizations are applied and which defegs are eliminated

@ Work on runtime optimizations

Thank you for listening!

34/34

