Programming language semantics in Dedukti

1st EuroProofNet Dedukti School, Nantes, 25 June 2022

Most systems that are translated into Dedukti are logical systems.
Here we will deviate a little from this type of systems and address

the encoding in Dedukti of programming languages features.

Part 1. Objects, objects types and structural subtyping in Dedukti
(Catherine Dubois)

Part 2. Semantics definitions as they are provided by the K
framework in Dedukti (Amélie Ledein)

Part 1. Objects and Subtyping in Dedukti

Catherine Dubois

ENSIIE, Samovar, Evry, France

Joint work with Raphaél Cauderlier

The simply-typed ¢-calculus (Abadi, Cardelli 1996)

Types A B,... u= [li:Alici.n

Terms a,b,... = x variable
’ [/,' = §(X,' : A)a,-],-el_,_,, object
| a.l method selection
| al<g(x:A)b method update

Operational semantics
t.l; — ti{x:=t} method selection
tli<¢(x:Au — t{lj:=¢(x:A)u} method update

The simply-typed ¢-calculus (Abadi, Cardelli 1996)

Typing rules
Here A abbr. for [/, . Ai]i:l...n
Ax: At A Vi=1...n

At x: A(x) At [l =¢(x: Atiliz1..n : [l - Aii=1..n
AFa:A (:A)eA AtFa:A A x:AFb: A
AFali: A AFali<=gx:Ab:A

Subtyping is defined by

i Aili=1.nem < [l 2 Aili=1...n
A is a subtype of B iff A and B coincide on the labels of B

+ reflexivity and transitivity of <: and subsumption

A shallow embedding in Dedukti

Shallow here means preservation of variable binding, typing, and
operational semantics.

Roadmap:
1. study of the calculus without subtyping
2. subtyping

Translation of ¢-types

label : Type.

type : Type.
def Obj : type —-> Type.

No records in Dedukti — lists (of pairs of labels and types) in
Dedukti

In lists, order of labels matters

Our solution: rely on the translator to always print the labels in the
same order (e.g. alphabetic order);

tnil: type.
tcons: label -> type —-> type —-> type.

Translation of ¢-types

Other solutions:

1.

use dependent types with logical arguments enforcing that the
lists are sorted and duplicate-free by construction;
— doable but complex!

1t : label -> label -> Type.
def minors : label -> type -> Type.

nil : type

cons : 1 : label -> type -> B : type -> minors 1 B -> type.
minors_nil : 1 : label -> minors 1 nil.

minors_cons : 11 : label -> 12 : label -> A : type -> B : type

-> H : minors 12 B -> 1t 11 12 -> minors 11 (cons 12 A B H).

use rewriting to make lists given in different order convertible.
— declare the list concatenation as an associative
commutative operation or use rewrite rules to sort lists

Notion of position

Position of a pair (I, A) in a type: at head or deeper
pos : label -> type —-> type -> Type.
at_head: 1 : label -> A : type —> B : type —-> pos 1 A (tcons 1 A B).

in_tail : 1 : label -> A : type -> m : label -> C : type -> B : type
-> pos 1 A B -—> pos 1 A (tcons m C B).

(Terminating) Translation of ¢-terms

Objective: define a context X and a translation function [_]
mapping ¢-terms to Dedukti terms preserving typing.

Meth A B: type of methods of objects of type A returning type B
def Meth : type -> type -> Type

An object = a record of methods
— in Dedukti, object = association list of pairs of labels and methods.

10

(Terminating) Translation of ¢-terms

Objective: define a context X and a translation function [_]
mapping ¢-terms to Dedukti terms preserving typing.

Meth A B: type of methods of objects of type A returning type B
def Meth : type -> type -> Type

An object = a record of methods
— in Dedukti, object = association list of pairs of labels and methods.

Create an object step by step, adding a method one at a time

— preobjects (because a sublist of an object is not an object)

A preobject of an object of type A = a list of methods implementing part
of A (type B) : Preobj A B

Preobj : type —-> type —-> Type.

pnil : A : type -> Preobj A tnil

pcons : A : type —> 1 : label -> B : type —-> C : type —>
Meth A B —-> Preobj A C —> Preobj A (tcons 1 B C).

10

(Terminating) Translation of ¢-terms

Objective: define a context X and a translation function [_]
mapping ¢-terms to Dedukti terms preserving typing.

Meth A B: type of methods of objects of type A returning type B
def Meth : type -> type -> Type

An object = a record of methods
— in Dedukti, object = association list of pairs of labels and methods.

Create an object step by step, adding a method one at a time

— preobjects (because a sublist of an object is not an object)

A preobject of an object of type A = a list of methods implementing part
of A (type B) : Preobj A B

Preobj : type —-> type —-> Type.

pnil : A : type -> Preobj A tnil

pcons : A : type —> 1 : label -> B : type —-> C : type —>
Meth A B —-> Preobj A C —> Preobj A (tcons 1 B C).

An object of type A = a preobject of type A defined on A
[A] Obj A ——> Preobj A A

10

(Terminating) Translation of ¢-terms

[A, B] Meth A B ——> (Obj A -> Obj B).

— simplest way but not possible

—> equivalence between Meth A B and Obj A -> Obj B

def Eval_meth : A : type -> B
-> Obj A -> Ob7j B.

def Make_meth : A : type —> B : type —>
-> Meth A B.

type -> Meth A B

(Obj A -> Obj B)

11

(Terminating) Translation of ¢-terms

First selection and update on preobjects

def preselect : A : type -> 1 : label -> B : type —>

C : type -> pos 1 B C —> Preobj A C —-> Meth A B.
def preupdate : A : type -> 1 : label -> B : type —>

C : type -> pos 1 B C -> Preobj A C -> Meth A B -> Preobj A C.
m _) —-—> m.

[m] preselect _ _ _ (at_head _ _ _) (pcons

[A, B, C, 1, o, m]
preupdate _ _ _ _ (at_head _ _ _) (pcons A1 BC _ o) m ——>
pcons A1 B Cm o.

(Terminating) Translation of ¢-terms

First selection and update on preobjects

def preselect : A : type -> 1 : label -> B : type —>
C : type -> pos 1 B C —> Preobj A C —-> Meth A B.
def preupdate : A : type -> 1 : label -> B : type —>

C : type -> pos 1 B C -> Preobj A C -> Meth A B -> Preobj A C.

[m] preselect _ _ (at_head _ _ _) (pcons

[A, B, C, 1, o, m]
preupdate _ _ _ _ (at_head _ _ _) (pcons A1 BC _ o) m ——>
pcons A1 B Cm o.

Now selection and update on objects

def objselect : A : type —> 1 : label -> B : type -> pos 1 B A —>

Obj A -> Obj B
[A,1,B,p,a] objselect A 1Bpa-——>
Eval_meth A B (preselect A1 BApa) a

def objupdate : A : type -> 1 : label -> B : type —-> pos 1 B A ->

Obj A -> Meth A B -> Obj A

[A,1,B,p,a,m] objupdate A 1 B p a m —-> preupdate A 1 B A p am

m _) —-—> m.

12

(Terminating) Translation of ¢-terms

> .= all the declarations and rewrite rules introduced so far

Theorem
The underlying rewrite system is strongly normalizing and
congruent.

13

(Terminating) Translation of ¢-terms

Translation function from ¢-terms to Dedukti terms:

[=]
[l = s(zi : A)aili<..<1,]

peons [A] Iy [A1] [[li : Aili<i<n] [s(z1 2 A)ar](. ..
(pcons [A] I, [An] tnil [¢(zn : A)a,] (pnil [A]))...)
when A is [l; : Aili <<,

[a.] := objselect [A] I [B] p [a]

when a : A, a.l : B and p is the position of (I : B) in A
[a.l < s(z: A)b] = objupdate [A] I [B] p [s(z : A)b] [a]

when b : B and p is the position of (I, B) in A
[s(z : A)b] = Make_meth [A] [B] (z : 0bj [A] => [b])

when b : B

14

(Terminating) Translation of ¢-terms

Translation function from ¢-terms to Dedukti terms:

[=]
[[[lv', = §(Tz : A)ai]ll<.,.<ln]]

peons [A] Iy [A1] [[li : Aili<i<n] [s(z1 2 A)ar](. ..
(pcons [A] 1y [An] t0il [s(n : A)ar] (puil [A]))...
when A is [l : Al <. <1,

[a.] := objselect [A] I [B] p [a]

when a : A, a.l : B and p is the position of (I : B) in A
[a.l < s(z: A)b] = objupdate [A] I [B] p [s(z : A)b] [a]

when b : B and p is the position of (I, B) in A
[s(z : A)b] = Make_meth [A] [B] (z : 0bj [A] => [b])

when b: B

Theorem Typing preservation for simply-typed ¢-calculus.

The translation of a typing derivation A+ a: A is a well-typed
Dedukti term [a] of type 0bj [A] in any context extending [A] by
the declarations of the labels occurring in [A].

14

(Terminating) Translation of ¢-terms

Translation function from ¢-terms to Dedukti terms:

[=]
[[[lv', = §(Tz : A)ai]ll<.,.<ln]]

peons [A] Iy [A1] [[li : Aili<i<n] [s(z1 2 A)ar](. ..
(pcons [A] I, [An] tnil [¢(zn : A)a,] (pnil [A]))...)
when A is [l : Al <. <1,

[a.] := objselect [A] I [B] p [a]

when a : A, a.l : B and p is the position of (I : B) in A
[a.l < s(z: A)b] = objupdate [A] I [B] p [s(z : A)b] [a]

when b : B and p is the position of (I, B) in A
[s(z : A)b] = Make_meth [A] [B] (z : 0bj [A] => [b])

when b: B

Theorem Typing preservation for simply-typed ¢-calculus.

The translation of a typing derivation A+ a: A is a well-typed
Dedukti term [a] of type 0bj [A] in any context extending [A] by
the declarations of the labels occurring in [A].

Yes .. but this encoding does not preserve reduction ...

14

Shallow Embedding

Objective: define a new context ¥ and a translation
function [_] mapping ¢-terms to Dedukti terms preserving
typing and reduction

. may not terminate as it is the case in the ¢-calculus.

— ldentify Meth A B and Obj A -> Obj B

[A,B] Meth A B -——> (Obj A -> Obj B).
[f] Eval_meth _ _ £ —-—> £
[f] Make_meth _ _ £ —-——> £

15

Shallow Embedding

Objective: define a new context ¥ and a translation
function [_] mapping ¢-terms to Dedukti terms preserving
typing and reduction

. may not terminate as it is the case in the ¢-calculus.

— ldentify Meth A B and Obj A -> Obj B

[A,B] Meth A B -——> (Obj A -> Obj B).
[f] Eval_meth _ _ £ —-—> £
[f] Make_meth _ _ £ —-——> £

Theorem Reduction preservation.
Let a and a’ be two ¢-terms of type A such that a ~ a’, we have

[a] —7" [T

15

Subtyping

» Translation of <:

def subtype (A :

1 : label -> C

type) (B : type) := (;
type -> pos 1 C B -> pos 1 C A

16

Subtyping

» Translation of <:

def subtype (A : type) (B : type) := (; A <: B ;)
1 : label -> C : type -> pos 1 C B -> pos 1 C A .

» In Dedukti, explicit coercions to remedy the lack of subtyping

def coerce: A: type -> B: type -> subtype A B -> Obj A -> Obj B

16

Subtyping

» Translation of <:
def subtype (A : type) (B : type) := (; A <: B ;)
1 : label -> C : type -> pos 1 C B -> pos 1 C A
» In Dedukti, explicit coercions to remedy the lack of subtyping

def coerce: A: type -> B: type -> subtype A B -> Obj A -> Obj B

» Adaptation of selection and update to handle coerce

def select
A: type -> 1l: label -> B: type -> pos 1 B A -> Obj A -> Obj B.

[1,B,p,11,B1,Cl,m,0]
select (tcons _ _ _) 1 Bp (pcons _ 11 B1 Cl m o)
--> objselect

[A,B,C,1,p,st,a] select

_1cC coerce A B st a)
-—> select A1 C (st 1Cp

(
a

16

Subtyping

» Adaptation of [_], translation of typing derivation

[a.1] = select [A] ! [B] p [a]

when a : A, a.l : B and p is the position of (I : B) in A
[al =¢(z: A)b] := update [A] ! [B] p [s(z : A)b] [a]

when b : B and p is the position of (I, B) in A
[a] := coerce [A] [B] st [a]

when the derivation ends with a subsume rule
between types A and B

17

Subtyping

» Adaptation of [_], translation of typing derivation

[a.1] = select [A] ! [B] p [a]

when a : A, a.l : B and p is the position of (I : B) in A
[al =¢(z: A)b] := update [A] ! [B] p [s(z : A)b] [a]

when b : B and p is the position of (I, B) in A
[a] := coerce [A] [B] st [a]

when the derivation ends with a subsume rule
between types A and B

» Theorem Properties of (D[¢-calculus], [-])
(Dl[s-calculus), [-]) preserves typing and reduction.
Conjecture (D[s-calculus), []) is strongly conservative.

» Implementation: improvements to get more readable Dedukti
terms (remove positions and subtyping proofs, concrete
objects created from loop methods), type inference for ¢-terms

17

FoCaliZe and Focalide

v

v

A language/environment for specification, implementation and
proof : 15t order logics, pure OCaml like code, declarative
proof language and use of ATP Zenon

Basic component: species
Parametrized species (aka functors)

(Multiple) Inheritance mechanism providing some refinement
through redefinition

Type or definition dependency helps to determine if a proof
has to be erased

Datatypes, pattern-matching, recursive functions
Backends: Coq and Dedukti (Focalide)
Standard FoCaliZe library translated in Dedukti

18

References

Raphaél Cauderlier, Catherine Dubois. ML Pattern-Matching,
Recursion, and Rewriting: From FoCalLiZe to Dedukti. ICTAC
2016.

Raphaél Cauderlier. Object-Oriented Mechanisms for
Interoperability between Proof Systems. PhD thesis, 2016.

Raphaél Cauderlier, Catherine Dubois. FoCaliZe and Dedukti to
the Rescue for Proof Interoperability. ITP 2017.

Thank you!

10

