
How to handle systems using
automated theorem provers?

1st Dedukti School

Guillaume Burel

Saturday June 25th, 2022

Samovar, ENSIIE

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 1/48

Introduction

Proof assistants and ATP

Limitation of proof assistants

I lack of automation

I need for specially trained experts

I bottleneck for widespread use

Limitation of automated theorem provers

I lack of confidence

I highly optimized tools

I code too complex to be certified

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 2/48

Introduction

Cooperation

Proof assistants:

I use ATPs to discharge some obligations

• e.g. Sledgehammer, SMTCoq, . . .

ATPs:

I Export proofs that can be independently checked

I Ideally, checkable by a well known tool

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 3/48

Introduction

Dedukti

Dedukti as a pivot for proof interoperability
Export from/to ATPs should pass by Dedukti

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 4/48

Introduction

Ideal goal

Dedukti/
Lambdapi

formula

ATP

proof

translation call

outputreconstruction

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 5/48

Introduction

From Lambdapi to ATPs

Why3:

I platform for deductive program verification

I able to delegate proofs to many provers

I https://why3.lri.fr/

Calling provers within Lambdapi:

I Tactic why3

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 6/48

https://why3.lri.fr/

Introduction

Why3 tactic

Lambdapi abstraction Why3

Vampire

AltErgo

CVC4

goal FOL formula1

return yes

goal admitted
as an axiom

1Actually, propositional logic for now

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 7/48

Intrumenting provers for Dedukti proof production

Outline

� Introduction

� Intrumenting provers for Dedukti proof production
• iProverModulo
• Zenon Modulo

� Reconstructing proofs

� Conclusion

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 8/48

Intrumenting provers for Dedukti proof production

Trusting automated theorem provers

Automated theorem provers:

I quite big piece of software

I complex proof calculi

I finely tuned, optimization hacks

Trust?

I Originally, only answer “yes”/“no” (more often, “maybe”)

I More and more, produce at least proof traces (i.e. big steps)

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 9/48

Intrumenting provers for Dedukti proof production

Trusting ATPs

To increase confidence:

I either build a certified proof checker for proof traces

• e.g. Coq certified proof checker for DRAT proof traces of SAT solvers

I or directly produce a proof checkable by your favorite assistant

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 10/48

Intrumenting provers for Dedukti proof production

Trusting ATPs

To increase confidence:

I either build a certified proof checker for proof traces

• e.g. Coq certified proof checker for DRAT proof traces of SAT solvers

I or directly produce a proof checkable by your favorite assistant

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 10/48

Intrumenting provers for Dedukti proof production

Instrumenting a prover to produce a proof

Problem
.p

Instrumented
ATP

e.g. iProverModulo
Proof
.dk

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 11/48

Intrumenting provers for Dedukti proof production

Pros:

I Access to all needed informations

Cons:

I Needs to embed the calculus of the prover into Dedukti

I Needs to know precisely the code of the prover

I more or less easy depending on the complexity of the code/the proof calculus

I easier if a proof output was designed from the start (e.g. in Zenon)

Can only be done for a few provers

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 12/48

Intrumenting provers for Dedukti proof production

Provers outputing Dedukti proofs

iProverModulo: extension of iProver to handle Deduction Modulo Theory
https://github.com/gburel/iProverModulo.git

Zenon Modulo: extension of Zenon to handle Deduction Modulo Theory and
arithmetic
https://github.com/Deducteam/zenon_modulo.git

ArchSAT: SMT solver
https://github.com/Gbury/archsat

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 13/48

https://github.com/gburel/iProverModulo.git
https://github.com/Deducteam/zenon_modulo.git
https://github.com/Gbury/archsat

Intrumenting provers for Dedukti proof production

Translating proofs

First, need to carefully choose in which theory we are working

I e.g. D[FOL]

Then, two approaches:

I Directly translating proofs into Dedukti

• iProverModulo

I Embedding the proof calculus into Dedukti

• Zenon Modulo

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 14/48

Intrumenting provers for Dedukti proof production iProverModulo

iProverModulo

[Burel 2011]

Patch to iProver [Korovin 2008]

iProver: Combination of two proof procedures:

I Inst-Gen (not relevant for us)

I Ordered resolution

iProverModulo: Add support of Deduction Modulo Theory

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 15/48

Intrumenting provers for Dedukti proof production iProverModulo

Resolution Calculus

Clause: set of literals (atoms or negation of atoms)
Derive new clauses using

P ;C ¬Q;D
Resolution σ = mgu(P,Q)

σ(C;D)

until the empty clause is produced

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 16/48

Intrumenting provers for Dedukti proof production iProverModulo

Representation of clauses

{L1; · · · ;Lm} corresponds to ∀X1. . . . ∀Xn. L1 ∨ · · · ∨ Lm

(X1, . . . , Xn free variables of L1, . . . , Lm)

{L1; · · · ;Lm} translated as

ΠX1 : El ι. . . .ΠXn : El ι. Π [: Prop. ||L1||[→ · · · → ||Lm||[→ Prf [

with ||P ||[= Prf ||P || → Prf [and ||¬P ||[= (Prf||P || → Prf [)→ Prf [

Prf ||∀X1. . . . ∀Xn. L1 ∨ · · · ∨ Lm|| implies
ΠX1 : El ι. . . .ΠXn : El ι. Π [: Prop. ||L1||[→ · · · → ||Lm||[→ Prf [

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 17/48

Intrumenting provers for Dedukti proof production iProverModulo

Translation of resolution

P ;Q R;¬P
Resolution

Q;R

c1 : Π [: Prop. (P → Prf [)→ (Q→ Prf [)→ Prf [

c2 : Π [: Prop. (R→ Prf [)→ ((P → Prf [)→ Prf [)→ Prf [

d : Π [: Prop. (Q→ Prf [)→ (R→ Prf [)→ Prf [

:= λ[. λq. λr.

c1 [(λtp : P. c2 [r (λtnp : (P → Prf [). tnp tp)) q

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 18/48

Intrumenting provers for Dedukti proof production iProverModulo

Limits

Can handle various simplification rules, rewriting

Can be extended to superposition (E, Vampire, . . .)

But:

I works only if the proof is found using only resolution (i.e. not Inst-Gen)

I no translation of the transformation into clauses

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 19/48

Intrumenting provers for Dedukti proof production Zenon Modulo

Zenon Modulo

[Delahaye, Doligez, Gilbert, Halmagrand, and Hermant 2013]

I extension of Zenon to Deduction Modulo Theory

I tableau-based

I polymorphic first-order logic with equality

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 20/48

Intrumenting provers for Dedukti proof production Zenon Modulo

Tableau proofs
Proofs by contradiction
' bottom-up sequent-calculus with metavariables

P,¬P ��
¬(A⇒ B)

α¬⇒¬A,B
¬(A ∧B)

β¬∧¬A | ¬B
Example, proof by refutation of P ⇒ (P ∧ P):

¬(P ⇒ (P ∧ P))
α¬⇒

P
¬(P ∧ P)

β¬∧¬P ��
¬P ��

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 21/48

Intrumenting provers for Dedukti proof production Zenon Modulo

Deep embedding of proof calculus
P,¬P �� :

symbol Rax p : Prf p → Prf (¬p) → Prf ⊥;
¬(A⇒ B)

α¬⇒¬A,B :

symbol R¬⇒ a b : (Prf a → Prf (¬b) → Prf ⊥) → Prf (¬(a ⇒ b)) → Prf ⊥;

¬(A ∧B)
β¬∧¬A | ¬B

:

symbol R¬∧ a b : (Prf (¬ a) → Prf ⊥) → (Prf (¬ b) → Prf ⊥) →
Prf (¬ (a ∧ b)) → Prf ⊥;

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 22/48

Intrumenting provers for Dedukti proof production Zenon Modulo

Deep translation of the example

(after η-reduction to make it more readable)

opaque symbol goal : Prf c (p ⇒ (p ∧ p)) :=
R¬⇒ p (p ∧ p)

(λ π, R¬∧ p p (Rax p π) (Rax p π));

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 23/48

Intrumenting provers for Dedukti proof production Zenon Modulo

Making the embedding more shallow
Reducing it to Natural Deduction

Γ − A ∧B∧-el
Γ − A

Γ − A ∧B∧-er
Γ − B

A B∧-i
A ∧B

Γ − A⇒ B Γ − A⇒-e
Γ − B

Γ, A − B⇒-i
Γ − A⇒ B

Natural Deduction in LambdaPi:

symbol ∧I p q : Prf p → Prf q → Prf (p ∧ q);

symbol ∧El p q : Prf (p ∧ q) → Prf p;

symbol ∧Er p q : Prf (p ∧ q) → Prf q;

symbol ⇒I p q : (Prf p → Prf q) → Prf (p ⇒ q);

symbol ⇒E p q : Prf (p ⇒ q) → Prf p → Prf q;

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 24/48

Intrumenting provers for Dedukti proof production Zenon Modulo

Defining Tableau rules in term of ND:

rule Rax ↪→ λ p h π, ¬E p π h;

rule R¬∧ ↪→ λ p q h1 h2 h3 ,

h1 (¬I p (λ h5, h2 (¬I q (λ h6 ,

¬E (p ∧ q) h3 (∧I p q h5 h6)))));

rule R¬⇒ ↪→ λ p q h1 h2 ,

¬E (p ⇒ q) h2 (⇒I p q (λ h3 , ⊥E (h1 h3

(¬I q (λ h4 , ¬E (p ⇒ q) h2 (⇒I p q (λ _, h4))))) q));

Proof that Tableaux rules are derivable in ND

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 25/48

Intrumenting provers for Dedukti proof production Zenon Modulo

Example in natural deduction

assert ` goal : Prf c (p ⇒ (p ∧ p));

assert ` goal ≡ λ h2, ¬E (p ⇒ (p ∧ p)) h2 (⇒I p (p ∧ p)

(λ h3 , ⊥E (¬E (p ⇒ (p ∧ p)) h2

(⇒I p (p ∧ p) (λ _, ∧I p p h3 h3))) (p ∧ p)));

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 26/48

Intrumenting provers for Dedukti proof production Zenon Modulo

Making it even more shallow

Reduce Natural Deduction thanks to the shallow encoding of FOL

rule ⇒I ↪→ λ p q π, π;
rule ⇒E ↪→ λ p q π, π;

rule ∧I ↪→ λ p q πp πq r πp⇒q⇒r, πp⇒q⇒r πp πq;
rule ∧El ↪→ λ p q πp∧q, πp∧q p (λ x _, x);

rule ∧Er ↪→ λ p q πp∧q, πp∧q q (λ _ x, x);

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 27/48

Intrumenting provers for Dedukti proof production Zenon Modulo

Shallow proof from the example

assert ` goal : Prf c (p ⇒ (p ∧ p));

assert ` goal ≡
λ h2, h2 (λ h3, h2 (λ _ _ π, π h3 h3) (p ∧ p));

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 28/48

Reconstructing proofs

Outline

� Introduction

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 29/48

Reconstructing proofs

Limits of instrumentation

Provers can be hard to instrument to produce exact Dedukti proofs

I large piece of software

I developers not expert in λΠ-calculus modulo theory

I non stable and quite big proof calculus

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 30/48

Reconstructing proofs

Proof calculus of E

• sel(C) ⊆ C.

• If sel(C) ∩ C− = ∅, then sel(C) = ∅.

We say that a literal L is selected (with respect to a given selection function)
in a clause C if L ∈ sel(C). J

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.1.2 (Eligible literals)
Let C = L ∨ R be a clause, let σ be a substitution and let sel be a selection
function.

• We say σ(L) is eligible for resolution if either

– sel(C) = ∅ and σ(L) is >L-maximal in σ(C) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C−) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C+).

• σ(L) is eligible for paramodulation if L is positive, sel(C) = ∅ and σ(L) is
strictly >L-maximal in σ(C).

J

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double
line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, σ is a substitution and R, S and T are
(partial) clauses. p is a position in a term and λ is the empty or top-position.
D ⊆ F is a set of unused constant predicate symbols. Different clauses are
assumed to not share any common variables.

Definition 3.1.3 (The inference system SP)
Let > be a total simplification ordering (extended to orderings >L and >C

on literals and clauses), let sel be a selection function, and let D be a set of
fresh propositional constants. The inference system SP consists of the following
inference rules:

• Equality Resolution:

(ER)
u 6'v ∨R
σ(R)

if σ = mgu(u, v) and σ(u 6'
v) is eligible for resolution.

8

• Superposition into negative literals:

(SN)
s' t ∨ S u 6'v ∨R

σ(u[p← t] 6'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

• Superposition into positive literals:

(SP)
s' t ∨ S u'v ∨R

σ(u[p← t]'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u'v) is eligible for
resolution, and u|p /∈ V .

• Simultaneous superposition into negative literals

(SSN)
s' t ∨ S u 6'v ∨R

σ(S ∨ (u 6'v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SN) that performs better in prac-
tice.

• Simultaneous superposition into positive literals

(SSP)
s' t ∨ S u'v ∨R

σ(S ∨ (u'v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SP) that performs better in prac-
tice.

• Equality factoring :

(EF)
s' t ∨ u'v ∨R

σ(t 6'v ∨ u'v ∨R)

if σ = mgu(s, u), σ(t) 6>
σ(s) and σ(s' t) eligible for
paramodulation.

• Rewriting of negative literals:

(RN)
s' t u 6'v ∨R

s' t u[p← σ(t)] 6'v ∨R
if u|p = σ(s) and σ(s) > σ(t).

9

• Rewriting of positive literals2:

(RP)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t),
and if u' v is not eligible for
paramodulation or v > u or
p 6= λ.

• Clause subsumption:

(CS)
C σ(C ∨R)

C

where C and R are arbitrary
(partial) clauses and σ is a
substitution.

• Equality subsumption:

(ES)
s' t u[p← σ(s)]'u[p← σ(t)] ∨R

s' t

• Positive simplify-reflect3:

(PS)
s' t u[p← σ(s)] 6'u[p← σ(t)] ∨R

s' t R

• Negative simplify-reflect

(NS)
s 6' t σ(s) 6'σ(t) ∨R

s 6' t R

• Tautology deletion:

(TD)
C

if C is a tautology4

2A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

(RP’)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t) and if u'
v is not eligible for paramdulation or
u 6> v or p 6= λ or σ is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
3In practice, this rule is only applied if σ(s) and σ(t) are >-incomparable – in all other

cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).

10

• Deletion of duplicate literals:

(DD)
s' t ∨ s' t ∨R

s' t ∨R

• Deletion of resolved literals:

(DR)
s 6's ∨R

R

• Destructive equality resolution:

(DE)
x 6'y ∨R
σ(R)

if x, y ∈ V, σ = mgu(x, y)

• Contextual literal cutting :

(CLC)
σ(C ∨R ∨ s'̇t) C ∨ s'̇t
σ(C ∨R) C ∨ s'̇t

where s'̇t is the negation of
s'̇t and σ is a substitution

This rule is also known as subsumption resolution or clausal simplification.

• Condensing :

(CON)
l1 ∨ l2 ∨R
σ(l1 ∨R)

if σ(l1) = σ(l2) and σ(l1 ∨ R)
subsumes l1 ∨ l2 ∨R

• Introduce definition5

(ID)
R ∨ S

d ∨R ¬d ∨ S

if R and S do not share any
variables, d ∈ D has not been
used in a previous definition
and R does not contain any
symbol from D

• Apply definition

(AD)
σ(d ∨R) R ∨ S
σ(d ∨R) ¬d ∨ S

if σ is a variable renaming, R
and S do not share any vari-
ables, d ∈ D and R does not
contain any symbol from D

4This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. Current versions of E try to detect tautologies
by checking if the ground-completed negative literals imply at least one of the positive literals,
as suggested in [NN93].

5This rule is always exhaustively applied to any clause, leaving n split-off clauses and one
final link clause of all negative propositions.

11

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 31/48

Reconstructing proofs

Proof trace

But often, provers produce at least a proof trace:

I list of formulas that were derived to obtain the proof

I sometimes with more informations

• premises
• name of the inference rules
• theory
• . . .

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 32/48

Reconstructing proofs

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

List of formulas

I each annotated by an inference tree whose leafs are other formulas

cnf(c_0_60,plain,

(join(X1,join(X2,X3)) = join(X2,join(X1,X3))),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).

Independent of the proof calculus

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 33/48

Reconstructing proofs

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

List of formulas

I each annotated by an inference tree whose leafs are other formulas

cnf(c_0_60,plain,

(join(X1,join(X2,X3)) = join(X2,join(X1,X3))),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).

Independent of the proof calculus

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 33/48

Reconstructing proofs

Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof

Idea:

I Reprove each step using a Dedukti producing tool

I Combine the proofs of the steps to get a proof of the original formula

Try to be agnostic:

I w.r.t. the prover that produces the trace

I w.r.t. the prover that reprove the steps

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 34/48

Reconstructing proofs

Ekstrakto

[El Haddad 2021]

I Input: TSTP proof trace

I Output: Reconstructed Lambdapi proof

https://github.com/Deducteam/ekstrakto

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 35/48

https://github.com/Deducteam/ekstrakto

Reconstructing proofs

Ekstrakto architecture

Problem
.p

Proof trace
.s

Proof step
.p

Lambdapi proof
.lp

Problem signature
.lp

Global Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

EkstraktoATP
e.g. E

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 36/48

Reconstructing proofs

Experimental evaluation

Benchmark:

I CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

I E and Vampire

Step provers:

I Zenon modulo and ArchSat

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 37/48

Reconstructing proofs

Results

Percentage of Lambdapi proofs on the extracted TPTP files
Prover % E % Vampire

ZenonModulo 87% 60%
ArchSAT 92% 81%

ZenonModulo ∪ ArchSAT 95% 85%

Percentage of complete Lambdapi proofs
Prover % E TSTP % Vampire TSTP

ZenonModulo 45% 54%
ArchSAT 56% 74%

ZenonModulo ∪ ArchSAT 69% 83%

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 38/48

Reconstructing proofs

Non provable steps

Problem:

I some steps are not provable
their conclusion is not a logical consequence of their premises

I OK because they preserve provability

I but Ekstrakto cannot work for them

Main instance: Skolemization

Γ, ~∀x,∃y, A[~x, y] ` B iff Γ, ~∀x,A[~x, f(~x)] ` B for a fresh f

Present in the CNF transformation used by almost all ATPs

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 39/48

Reconstructing proofs

Non provable steps

Problem:

I some steps are not provable
their conclusion is not a logical consequence of their premises

I OK because they preserve provability

I but Ekstrakto cannot work for them

Main instance: Skolemization

Γ, ~∀x,∃y, A[~x, y] ` B iff Γ, ~∀x,A[~x, f(~x)] ` B for a fresh f

Present in the CNF transformation used by almost all ATPs

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 39/48

Reconstructing proofs

Skonverto

[El Haddad 2021]

Inputs:

I an axiom and its Skolemized version

I a Lambdapi proof using the latter

Output:

I a Lambdapi proof using the non-Skolemized axiom

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 40/48

Reconstructing proofs

Content

Implementation of a constructive proof of Skolem theorem by [Dowek and
Werner 2005]

I in the context of first-order natural deduction

Problem:

I the proof assumes that proofs are in normal form

I also w.r.t. so-called commuting cuts

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 41/48

Reconstructing proofs

Commuting cuts

Γ ` A ∨B Γ, A ` C ∧D Γ, B ` C ∧D ∨E
Γ ` C ∧D ∧El

Γ ` C

Γ ` A ∨B
Γ, A ` C ∧D ∧El

Γ, A ` C
Γ, B ` C ∧D ∧El

Γ, B ` C ∨E
Γ ` C

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 42/48

Reconstructing proofs

Reducing commuting cuts

If we work on shallow proofs, these cuts are no longer visible

I cannot reduce them

(On the other hand, regular cuts are embedded into β-redexes, so they are
reduced.)

I Needs to stay at the ND encoding level

Add rules to reduce the commuting cuts

rule ∧El $c $d (∨E $a $b $paorb ($c ∧ $d) $pac $pbc) ↪→
∨E $a $b $paorb $c (λ pa, ∧El $c $d ($pac pa))

(λ pb, ∧El $c $d ($pbc pb));

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 43/48

Reconstructing proofs

symbol axiom : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y)))));

symbol goal

(ax_tran : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι , ∀ (λ X3 : El ι ,
(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3)))))))

(ax_step : Prf (∀ (λ X1 : El ι , (p X1 (s (f X1))))))

(ax_congr : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι ,
(p X1 X2) ⇒ (p (s X1) (s X2))))))

(ax_goal : Prf (¬ (∃ (λ X4 : El ι , ((p a (s (s X4))))))))

: Prf ⊥
:= ax_goal (∃I (λ X4 : El ι , p a (s (s X4))) (f (f a))

(ax_tran a (s (f a)) (s (s (f (f a))))

(ax_step a)

(ax_congr (f a) (s (f (f a))) (ax_step (f a)))));

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 44/48

Reconstructing proofs

symbol goal

(ax_tran : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι , ∀ (λ X3 : El ι ,
(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3)))))))

(ax_step : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y))))))

(ax_congr : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι ,
(p X1 X2) ⇒ (p (s X1) (s X2))))))

(ax_goal : Prf (¬ (∃ (λ X4 : El ι , ((p a (s (s X4))))))))

: Prf ⊥
:= ax_goal (λ r h, ∃E (λ z, p a (s z)) (ax_step a) r

(λ z a1, ∃E (λ z0 , p z (s z0)) (ax_step z) r

(λ z0 a2 , h z0 (ax_tran a (s z) (s (s z0)) a1

(ax_congr z (s z0) a2)))));

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 45/48

Conclusion

Outline

� Introduction

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 46/48

Conclusion

Conclusion

Instrumenting a prover to produce Dedukti proofs

I good if you start your prover from scratch

Reconstructing proofs

I more adapted for existing provers

I cannot reconstruct all proofs

I also for proof assistants

• PVS, Atelier B

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 47/48

Conclusion

Linking together

Dedukti ATP

Ekstrakto
+ Skonverto

Formula

Pr
oo

f t
rac

e

Proof

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 48/48

	Introduction
	Intrumenting provers for Dedukti proof production
	iProverModulo
	Zenon Modulo

	Reconstructing proofs
	Conclusion

