How to handle systems using automated theorem provers?

1st Dedukti School

Guillaume Burel

Saturday June 25th, 2022

Samovar, ENSIIE

Guillaume Burel:

How to handle systems using automated theorem provers?

1st Dedukti School, 2022-06-25

Proof assistants and ATP

Limitation of proof assistants

- lack of automation
- need for specially trained experts
- bottleneck for widespread use

Limitation of automated theorem provers

- lack of confidence
- highly optimized tools
- code too complex to be certified

Cooperation

Proof assistants:

- use ATPs to discharge some obligations
 - e.g. Sledgehammer, SMTCoq, ...

ATPs:

- Export proofs that can be independently checked
- Ideally, checkable by a well known tool

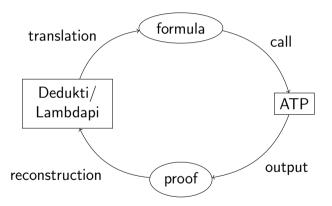
Guillaume Burel: How to handle systems using automated theorem provers?

Dedukti

Dedukti as a pivot for proof interoperability Export from/to ATPs should pass by Dedukti

Introduction

Ideal goal



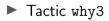
Guillaume Burel: How to handle systems using automated theorem provers? 1st Dedukti School, 2022-06-25

From Lambdapi to ATPs

Why3:

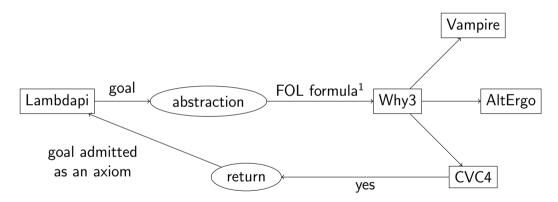
- platform for deductive program verification
- able to delegate proofs to many provers
- https://why3.lri.fr/

Calling provers within Lambdapi:



Guillaume Burel: How to handle systems using automated theorem provers?

Why3 tactic



¹Actually, propositional logic for now

Guillaume Burel:

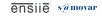
How to handle systems using automated theorem provers?

1st Dedukti School, 2022-06-25

Outline

- Introduction
- Intrumenting provers for Dedukti proof production
 iProverMedule
 - iProverModulo
 - Zenon Modulo
- Reconstructing proofs
- Conclusion

Guillaume Burel: How to handle systems using automated theorem provers?



Trusting automated theorem provers

Automated theorem provers:

- quite big piece of software
- complex proof calculi
- ▶ finely tuned, optimization hacks

Trust?

- Originally, only answer "yes" / "no" (more often, "maybe")
- ▶ More and more, produce at least proof traces (*i.e.* big steps)

Guillaume Burel: How to handle systems using automated theorem provers?



Trusting ATPs

To increase confidence:

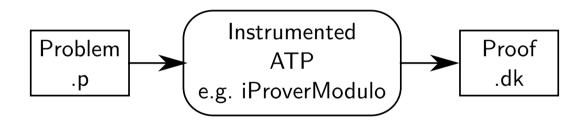
- either build a certified proof checker for proof traces
 - e.g. Coq certified proof checker for DRAT proof traces of SAT solvers
- or directly produce a proof checkable by your favorite assistant

Trusting ATPs

To increase confidence:

- either build a certified proof checker for proof traces
 - e.g. Coq certified proof checker for DRAT proof traces of SAT solvers
- or directly produce a proof checkable by your favorite assistant

Instrumenting a prover to produce a proof



Guillaume Burel: How to handle systems using automated theorem provers? 1st Dedukti School, 2022-06-25

Pros:

Access to all needed informations

Cons:

- Needs to embed the calculus of the prover into Dedukti
- Needs to know precisely the code of the prover
- more or less easy depending on the complexity of the code/the proof calculus
- easier if a proof output was designed from the start (e.g. in Zenon)

Can only be done for a few provers

Provers outputing Dedukti proofs

Zenon Modulo: extension of Zenon to handle Deduction Modulo Theory and arithmetic https://github.com/Deducteam/zenon_modulo.git

ArchSAT: SMT solver https://github.com/Gbury/archsat

Guillaume Burel: How to handle systems using automated theorem provers?

Translating proofs

First, need to carefully choose in which theory we are working

▶ e.g. D[FOL]

Then, two approaches:

- Directly translating proofs into Dedukti
 - iProverModulo
- Embedding the proof calculus into Dedukti
 - Zenon Modulo

Guillaume Burel: How to handle systems using automated theorem provers?

iProverModulo

[Burel 2011]

Patch to iProver [Korovin 2008]

iProver: Combination of two proof procedures:

- ▶ Inst-Gen (not relevant for us)
- Ordered resolution

iProverModulo: Add support of Deduction Modulo Theory

Guillaume Burel: How to handle systems using automated theorem provers?

Resolution Calculus

Clause: set of literals (atoms or negation of atoms) Derive new clauses using

Resolution
$$\frac{P; C \quad \neg Q; D}{\sigma(C; D)} \sigma = mgu(P, Q)$$

until the empty clause is produced

Guillaume Burel: How to handle systems using automated theorem provers?

Representation of clauses

$$\{L_1; \dots; L_m\}$$
 corresponds to $\forall X_1, \dots, \forall X_n, L_1 \lor \dots \lor L_m$
 $(X_1, \dots, X_n \text{ free variables of } L_1, \dots, L_m)$

$$\{L_1; \cdots; L_m\}$$
 translated as

$$\Pi X_1 : \texttt{El} \ \iota. \ \dots \Pi X_n : \texttt{El} \ \iota. \ \Pi \ \flat : \texttt{Prop.} \ ||L_1||_{\flat} \to \dots \to ||L_m||_{\flat} \to \texttt{Prf} \ \flat$$

with $||P||_{\flat} = \Pr f ||P|| \rightarrow \Pr f \flat$ and $||\neg P||_{\flat} = (\Pr f ||P|| \rightarrow \Pr f \flat) \rightarrow \Pr f \flat$

 $\begin{array}{l} \Pr \mathbf{f} \ ||\forall X_1. \ \dots \forall X_n. \ L_1 \lor \dots \lor L_m|| \ \text{implies} \\ \Pi X_1 : \texttt{El} \ \iota. \ \dots \Pi X_n : \texttt{El} \ \iota. \ \Pi \ \flat : \texttt{Prop.} \ ||L_1||_{\flat} \to \dots \to ||L_m||_{\flat} \to \texttt{Prf} \ \flat \end{array}$

Guillaume Burel:

How to handle systems using automated theorem provers?

Translation of resolution

Resolution
$$\frac{P; Q \quad R; \neg P}{Q; R}$$

$$\begin{array}{l} c_1:\Pi \ \flat: \ \texttt{Prop.} \ (P \to \texttt{Prf} \ \flat) \to (Q \to \texttt{Prf} \ \flat) \to \texttt{Prf} \ \flat \\ c_2:\Pi \ \flat: \ \texttt{Prop.} \ (R \to \texttt{Prf} \ \flat) \to ((P \to \texttt{Prf} \ \flat) \to \texttt{Prf} \ \flat) \to \texttt{Prf} \ \flat \\ d:\Pi \ \flat: \ \texttt{Prop.} \ (Q \to \texttt{Prf} \ \flat) \to (R \to \texttt{Prf} \ \flat) \to \texttt{Prf} \ \flat \\ \vdots = \lambda \flat. \ \lambda q. \ \lambda r. \\ c_1 \ \flat \ (\lambda tp: P. \ c_2 \ \flat \ r \ (\lambda tnp: (P \to \texttt{Prf} \ \flat). \ tnp \ tp)) \ q \end{array}$$

Guillaume Burel:

How to handle systems using automated theorem provers?

18/48

ensiie samovar

Limits

Can handle various simplification rules, rewriting Can be extended to superposition (E, Vampire, ...)

But:

- ▶ works only if the proof is found using only resolution (i.e. not Inst-Gen)
- no translation of the transformation into clauses

Zenon Modulo

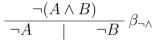
[Delahaye, Doligez, Gilbert, Halmagrand, and Hermant 2013]

- extension of Zenon to Deduction Modulo Theory
- tableau-based
- polymorphic first-order logic with equality

Tableau proofs

- Proofs by contradiction
- \simeq bottom-up sequent-calculus with metavariables

$$\frac{P, \neg P}{\odot} \odot \qquad \qquad \frac{\neg (A \Rightarrow B)}{\neg A, B} \alpha_{\neg \Rightarrow}$$



ensiie

s@movar

Example, proof by refutation of $P \Rightarrow (P \land P)$:

$$\frac{\neg (P \Rightarrow (P \land P))}{P} \alpha_{\neg \Rightarrow}$$

$$\frac{\neg (P \land P)}{\neg (P \land P)} \beta_{\neg \land}$$

$$\frac{\neg P}{\odot} \odot \frac{\neg P}{\odot} \odot$$

Guillaume Burel: How to handle systems using automated theorem provers? 1st Dedukti School, 2022-06-25

Deep embedding of proof calculus $\frac{P, \neg P}{\odot}$ \odot :

symbol Rax p : Prf p \rightarrow Prf (\neg p) \rightarrow Prf \bot ;

$$\frac{\neg (A \Rightarrow B)}{\neg A, B} \alpha_{\neg \Rightarrow} :$$

 $\texttt{symbol} \ R \neg \Rightarrow \texttt{a} \ \texttt{b} \ : \ (\texttt{Prf} \ \texttt{a} \ \rightarrow \texttt{Prf} \ (\neg\texttt{b}) \ \rightarrow \texttt{Prf} \ \bot) \ \rightarrow \texttt{Prf} \ (\neg(\texttt{a} \Rightarrow \texttt{b})) \ \rightarrow \texttt{Prf} \ \bot;$

$$\frac{\neg (A \land B)}{\neg A \mid \neg B} \beta_{\neg \land}$$

Guillaume Burel:

How to handle systems using automated theorem provers?

Deep translation of the example

(after η -reduction to make it more readable)

```
opaque symbol goal : Prf^{c} (p \rightarrow (p \land p)) :=
R \Rightarrow p (p \land p)
(\lambda \ \pi, R \neg \land p p (Rax p \pi) (Rax p \pi));
```

Guillaume Burel: How to handle systems using automated theorem provers?

Making the embedding more shallow Reducing it to Natural Deduction $\wedge -\mathbf{e}_l \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \qquad \wedge -\mathbf{e}_r \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \qquad \wedge -\mathbf{i} \frac{A \quad B}{A \wedge B}$ $\Rightarrow -\mathbf{e} \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B} \qquad \Rightarrow -\mathbf{i} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}$

Natural Deduction in LambdaPi:

Guillaume Burel:

How to handle systems using automated theorem provers?

Defining Tableau rules in term of ND:

rule Rax
$$\hookrightarrow \lambda$$
 p h π , \neg E p π h;
rule R $\neg \land \hookrightarrow \lambda$ p q h1 h2 h3,
h1 (\neg I p (λ h5, h2 (\neg I q (λ h6,
 \neg E (p \land q) h3 (\land I p q h5 h6)))));
rule R $\Rightarrow \hookrightarrow \lambda$ p q h1 h2,
 \neg E (p \Rightarrow q) h2 (\Rightarrow I p q (λ h3, \bot E (h1 h3
(\neg I q (λ h4, \neg E (p \Rightarrow q) h2 (\Rightarrow I p q (λ _, h4))))) q));

Proof that Tableaux rules are derivable in ND

Guillaume Burel: How to handle systems using automated theorem provers?

Example in natural deduction

$$\begin{array}{l} \textbf{assert} \vdash \texttt{goal} : \texttt{Prf}^c \ (\texttt{p} \Rightarrow (\texttt{p} \land \texttt{p}));\\ \textbf{assert} \vdash \texttt{goal} \equiv \lambda \texttt{h2}, \ \neg\texttt{E} \ (\texttt{p} \Rightarrow (\texttt{p} \land \texttt{p})) \texttt{h2} \ (\Rightarrow\texttt{I} \texttt{p} \ (\texttt{p} \land \texttt{p})\\ (\lambda \texttt{h3}, \ \bot\texttt{E} \ (\neg\texttt{E} \ (\texttt{p} \Rightarrow (\texttt{p} \land \texttt{p})) \texttt{h2}\\ (\Rightarrow\texttt{I} \texttt{p} \ (\texttt{p} \land \texttt{p}) \ (\lambda _, \ \land\texttt{I} \texttt{p} \texttt{p} \texttt{h3} \texttt{h3}))) \ (\texttt{p} \land \texttt{p}))); \end{array}$$

Guillaume Burel: How to handle systems using automated theorem provers? 1st Dedukti School, 2022-06-25

<u>ensije samovar</u>

Making it even more shallow

Reduce Natural Deduction thanks to the shallow encoding of FOL

```
rule \RightarrowI \hookrightarrow \lambda p q \pi, \pi;
rule \RightarrowE \hookrightarrow \lambda p q \pi, \pi;
rule \landI \hookrightarrow \lambda p q \pip \piq r \pip\Rightarrowq\Rightarrowr, \pip\Rightarrowq\Rightarrowr \pip \piq;
rule \landEl \hookrightarrow \lambda p q \pip\landq, \pip\landq p (\lambda x _, x);
rule \landEr \hookrightarrow \lambda p q \pip\landq, \pip\landq q (\lambda _ x, x);
```

Guillaume Burel:

How to handle systems using automated theorem provers?

1st Dedukti School, 2022-06-25

Shallow proof from the example

assert
$$\vdash$$
 goal : Prf^c (p \Rightarrow (p \land p));
assert \vdash goal \equiv
 λ h2, h2 (λ h3, h2 (λ _ _ π , π h3 h3) (p \land p));

Guillaume Burel: How to handle systems using automated theorem provers? 1st Dedukti School, 2022-06-25

Outline

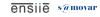
- Introduction
- Intrumenting provers for Dedukti proof production
- Reconstructing proofs
- Conclusion

Guillaume Burel: How to handle systems using automated theorem provers?

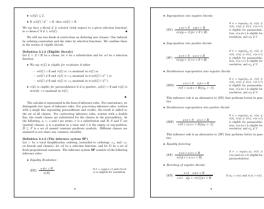
Limits of instrumentation

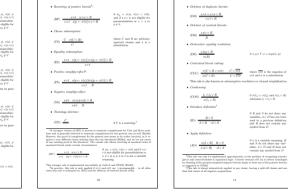
Provers can be hard to instrument to produce exact Dedukti proofs

- large piece of software
- \blacktriangleright developers not expert in $\lambda\Pi\text{-calculus}$ modulo theory
- non stable and quite big proof calculus



Proof calculus of E





Guillaume Burel:

How to handle systems using automated theorem provers?

31/48

ensiie samovar

Proof trace

But often, provers produce at least a proof trace:

- list of formulas that were derived to obtain the proof
- sometimes with more informations
 - premises
 - name of the inference rules
 - theory
 - ...

Guillaume Burel: How to handle systems using automated theorem provers?

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, ...

List of formulas

each annotated by an inference tree whose leafs are other formulas

Guillaume Burel: How to handle systems using automated theorem provers?

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, ...

List of formulas

each annotated by an inference tree whose leafs are other formulas

Independent of the proof calculus

ensiie

33/48

s@movar

How to handle systems using automated theorem provers?

Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof Idea:

- Reprove each step using a Dedukti producing tool
- Combine the proofs of the steps to get a proof of the original formula

Try to be agnostic:

- ▶ w.r.t. the prover that produces the trace
- ▶ w.r.t. the prover that reprove the steps

Guillaume Burel: How to handle systems using automated theorem provers?

Ekstrakto

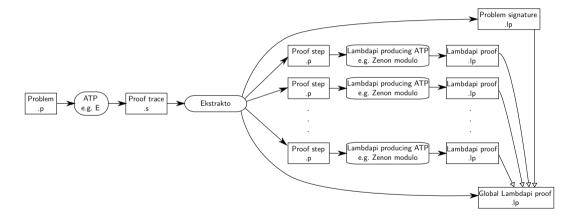
[El Haddad 2021]

- ► Input: TSTP proof trace
- Output: Reconstructed Lambdapi proof

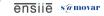
https://github.com/Deducteam/ekstrakto

Guillaume Burel: How to handle systems using automated theorem provers?

Ekstrakto architecture



Guillaume Burel: How to handle systems using automated theorem provers?



Experimental evaluation

Benchmark:

CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

► E and Vampire

Step provers:

Zenon modulo and ArchSat

Guillaume Burel: How to handle systems using automated theorem provers?

Results

Percentage of Lambdapi proofs on the extracted TPTP files

Prover	% E	% VAMPIRE
ZenonModulo	87%	60%
ArchSAT	92%	81%
ZenonModulo U ArchSAT	95%	85%

Percentage of complete Lambdapi proofs

Prover	% E TSTP	% VAMPIRE TSTP
ZenonModulo	45%	54%
ArchSAT	56%	74%
ZenonModulo U ArchSAT	69%	83%

Guillaume Burel:

How to handle systems using automated theorem provers?

Non provable steps

Problem:

- some steps are not provable their conclusion is not a logical consequence of their premises
- OK because they preserve provability
- but Ekstrakto cannot work for them

Non provable steps

Problem:

- some steps are not provable their conclusion is not a logical consequence of their premises
- OK because they preserve provability
- but Ekstrakto cannot work for them

Main instance: Skolemization

 $\Gamma, \forall \vec{x}, \exists y, A[\vec{x}, y] \vdash B \text{ iff } \Gamma, \forall \vec{x}, A[\vec{x}, f(\vec{x})] \vdash B \text{ for a fresh } f$

Present in the CNF transformation used by almost all ATPs

Guillaume Burel:

How to handle systems using automated theorem provers?

Skonverto

[El Haddad 2021]

Inputs:

- an axiom and its Skolemized version
- ▶ a Lambdapi proof using the latter

Output:

▶ a Lambdapi proof using the non-Skolemized axiom

Guillaume Burel: How to handle systems using automated theorem provers?

Content

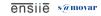
Implementation of a constructive proof of Skolem theorem by [Dowek and Werner 2005]

▶ in the context of first-order natural deduction

Problem:

- ▶ the proof assumes that proofs are in normal form
- ▶ also w.r.t. so-called commuting cuts

Guillaume Burel: How to handle systems using automated theorem provers?



Commuting cuts

$$\begin{array}{c|c} \hline \Gamma \vdash A \lor B & \Gamma, A \vdash C \land D & \Gamma, B \vdash C \land D \\ \hline \hline \hline \hline \hline \Gamma \vdash C \land D & \land_{El} \\ \hline \end{array} \lor_E$$

$$\sim \rightarrow$$

$$\frac{\Gamma \vdash A \lor B}{\Gamma \vdash C} \xrightarrow{\Gamma, A \vdash C \land D} \land_{El} \xrightarrow{\Gamma, B \vdash C \land D} \land_{El} \land_{El} \land_{El} \land_{El}$$

Guillaume Burel: How to handle systems using automated theorem provers? 1st Dedukti School, 2022-06-25

Reducing commuting cuts

If we work on shallow proofs, these cuts are no longer visible

► cannot reduce them

(On the other hand, regular cuts are embedded into $\beta\text{-redexes},$ so they are reduced.)

Needs to stay at the ND encoding level

Add rules to reduce the commuting cuts

rule \land El \$c \$d (\lor E \$a \$b \$paorb (\$c \land \$d) \$pac \$pbc) \hookrightarrow \lor E \$a \$b \$paorb \$c (λ pa, \land El \$c \$d (\$pac pa)) (λ pb, \land El \$c \$d (\$pbc pb));

Guillaume Burel:

How to handle systems using automated theorem provers?


```
symbol axiom : Prf (\forall (\lambda X, \exists (\lambda Y, (p X (s Y)))));
symbol goal
  (ax_tran : Prf (\forall (\lambda X1 : El \iota, \forall (\lambda X2 : El \iota, \forall (\lambda X3 : El
      (p X1 X2) \Rightarrow ((p X2 X3) \Rightarrow (p X1 X3)))))))
  (ax_step : Prf (\forall (\lambda X1 : El \iota, (p X1 (s (f X1))))))
  (ax_congr : Prf (\forall (\lambda X1 : El \iota, \forall (\lambda X2 : El \iota,
      (p X1 X2) \Rightarrow (p (s X1) (s X2)))))
  (ax_goal : Prf (\neg (\exists (\lambda X4 : El \iota, ((p a (s (s X4))))))))
   : Prf |
:= ax_goal (\existsI (\lambda X4 : El \iota, p a (s (s X4))) (f (f a))
    (ax_tran a (s (f a)) (s (s (f (f a))))
      (ax_step a)
      (ax_congr (f a) (s (f (f a))) (ax_step (f a)))));
```

Guillaume Burel:

1st Dedukti School, 2022-06-25

44/48

ensiie samovar

How to handle systems using automated theorem provers?

```
symbol goal
   (ax_tran : Prf (\forall (\lambda X1 : El \iota, \forall (\lambda X2 : El \iota, \forall (\lambda X3 : El
       (p X1 X2) \Rightarrow ((p X2 X3) \Rightarrow (p X1 X3)))))))
   (ax_step : Prf (\forall (\lambda X, \exists (\lambda Y, (p X (s Y))))))
   (ax_congr : Prf (\forall (\lambda X1 : El \iota, \forall (\lambda X2 : El \iota,
       (p X1 X2) \Rightarrow (p (s X1) (s X2)))))
   (ax_goal : Prf (\neg (\exists (\lambda X4 : El \iota, ((p a (s (s X4))))))))
   : Prf |
\coloneqq ax_goal (\lambda r h, \existsE (\lambda z, p a (s z)) (ax_step a) r
            (\lambda z a1, \exists E (\lambda z0, p z (s z0)) (ax_step z) r
            (\lambda z0 a2, h z0 (ax_tran a (s z) (s (s z0)) a1)
                 (ax_congr z (s z0) a2))));
```

Guillaume Burel:

How to handle systems using automated theorem provers?

1st Dedukti School, 2022-06-25

45/48

ensije s@movar

Outline

- Introduction
- Intrumenting provers for Dedukti proof production
- Reconstructing proofs
- Conclusion

Guillaume Burel: How to handle systems using automated theorem provers?

Conclusion

Instrumenting a prover to produce Dedukti proofs

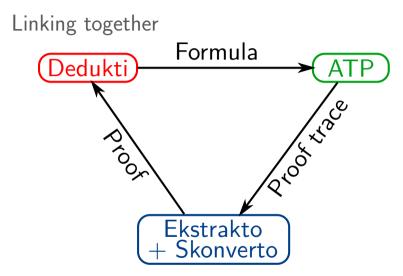
good if you start your prover from scratch

Reconstructing proofs

- more adapted for existing provers
- cannot reconstruct all proofs
- also for proof assistants
 - PVS, Atelier B

Guillaume Burel: How to handle systems using automated theorem provers?

Conclusion



Guillaume Burel: How to handle systems using automated theorem provers? 1st Dedukti School, 2022-06-25

