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Introduction

Proof assistants and ATP

Limitation of proof assistants

I lack of automation

I need for specially trained experts

I bottleneck for widespread use

Limitation of automated theorem provers

I lack of confidence

I highly optimized tools

I code too complex to be certified
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Introduction

Cooperation

Proof assistants:

I use ATPs to discharge some obligations

• e.g. Sledgehammer, SMTCoq, . . .

ATPs:

I Export proofs that can be independently checked

I Ideally, checkable by a well known tool
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Introduction

Dedukti

Dedukti as a pivot for proof interoperability
Export from/to ATPs should pass by Dedukti
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Introduction

Ideal goal

Dedukti/
Lambdapi

formula

ATP

proof

translation call

outputreconstruction
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Introduction

From Lambdapi to ATPs

Why3:

I platform for deductive program verification

I able to delegate proofs to many provers

I https://why3.lri.fr/

Calling provers within Lambdapi:

I Tactic why3
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Introduction

Why3 tactic

Lambdapi abstraction Why3

Vampire

AltErgo

CVC4

goal FOL formula1

return yes

goal admitted
as an axiom

1Actually, propositional logic for now
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Intrumenting provers for Dedukti proof production

Outline

� Introduction

� Intrumenting provers for Dedukti proof production
• iProverModulo
• Zenon Modulo

� Reconstructing proofs

� Conclusion
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Intrumenting provers for Dedukti proof production

Trusting automated theorem provers

Automated theorem provers:

I quite big piece of software

I complex proof calculi

I finely tuned, optimization hacks

Trust?

I Originally, only answer “yes”/“no” (more often, “maybe”)

I More and more, produce at least proof traces (i.e. big steps)
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Intrumenting provers for Dedukti proof production

Trusting ATPs

To increase confidence:

I either build a certified proof checker for proof traces

• e.g. Coq certified proof checker for DRAT proof traces of SAT solvers

I or directly produce a proof checkable by your favorite assistant
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Intrumenting provers for Dedukti proof production

Instrumenting a prover to produce a proof

Problem
.p

Instrumented
ATP

e.g. iProverModulo
Proof
.dk
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Intrumenting provers for Dedukti proof production

Pros:

I Access to all needed informations

Cons:

I Needs to embed the calculus of the prover into Dedukti

I Needs to know precisely the code of the prover

I more or less easy depending on the complexity of the code/the proof calculus

I easier if a proof output was designed from the start (e.g. in Zenon)

Can only be done for a few provers
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Intrumenting provers for Dedukti proof production

Provers outputing Dedukti proofs

iProverModulo: extension of iProver to handle Deduction Modulo Theory
https://github.com/gburel/iProverModulo.git

Zenon Modulo: extension of Zenon to handle Deduction Modulo Theory and
arithmetic
https://github.com/Deducteam/zenon_modulo.git

ArchSAT: SMT solver
https://github.com/Gbury/archsat
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Intrumenting provers for Dedukti proof production

Translating proofs

First, need to carefully choose in which theory we are working

I e.g. D[FOL]

Then, two approaches:

I Directly translating proofs into Dedukti

• iProverModulo

I Embedding the proof calculus into Dedukti

• Zenon Modulo
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Intrumenting provers for Dedukti proof production iProverModulo

iProverModulo

[Burel 2011]

Patch to iProver [Korovin 2008]

iProver: Combination of two proof procedures:

I Inst-Gen (not relevant for us)

I Ordered resolution

iProverModulo: Add support of Deduction Modulo Theory
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Intrumenting provers for Dedukti proof production iProverModulo

Resolution Calculus

Clause: set of literals (atoms or negation of atoms)
Derive new clauses using

P ;C ¬Q;D
Resolution σ = mgu(P,Q)

σ(C;D)

until the empty clause is produced
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Intrumenting provers for Dedukti proof production iProverModulo

Representation of clauses

{L1; · · · ;Lm} corresponds to ∀X1. . . . ∀Xn. L1 ∨ · · · ∨ Lm

(X1, . . . , Xn free variables of L1, . . . , Lm)

{L1; · · · ;Lm} translated as

ΠX1 : El ι. . . .ΠXn : El ι. Π [ : Prop. ||L1||[ → · · · → ||Lm||[ → Prf [

with ||P ||[ = Prf ||P || → Prf [ and ||¬P ||[ = (Prf||P || → Prf [)→ Prf [

Prf ||∀X1. . . . ∀Xn. L1 ∨ · · · ∨ Lm|| implies
ΠX1 : El ι. . . .ΠXn : El ι. Π [ : Prop. ||L1||[ → · · · → ||Lm||[ → Prf [
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Intrumenting provers for Dedukti proof production iProverModulo

Translation of resolution

P ;Q R;¬P
Resolution

Q;R

c1 : Π [ : Prop. (P → Prf [)→ (Q→ Prf [)→ Prf [

c2 : Π [ : Prop. (R→ Prf [)→ ((P → Prf [)→ Prf [)→ Prf [

d : Π [ : Prop. (Q→ Prf [)→ (R→ Prf [)→ Prf [

:= λ[. λq. λr.

c1 [ (λtp : P. c2 [ r (λtnp : (P → Prf [). tnp tp)) q
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Intrumenting provers for Dedukti proof production iProverModulo

Limits

Can handle various simplification rules, rewriting

Can be extended to superposition (E, Vampire, . . . )

But:

I works only if the proof is found using only resolution (i.e. not Inst-Gen)

I no translation of the transformation into clauses
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Intrumenting provers for Dedukti proof production Zenon Modulo

Zenon Modulo

[Delahaye, Doligez, Gilbert, Halmagrand, and Hermant 2013]

I extension of Zenon to Deduction Modulo Theory

I tableau-based

I polymorphic first-order logic with equality
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Intrumenting provers for Dedukti proof production Zenon Modulo

Tableau proofs
Proofs by contradiction
' bottom-up sequent-calculus with metavariables

P,¬P ��
¬(A⇒ B)

α¬⇒¬A,B
¬(A ∧B)

β¬∧¬A | ¬B
Example, proof by refutation of P ⇒ (P ∧ P ):

¬(P ⇒ (P ∧ P ))
α¬⇒

P
¬(P ∧ P )

β¬∧¬P ��
¬P ��
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Intrumenting provers for Dedukti proof production Zenon Modulo

Deep embedding of proof calculus
P,¬P �� :

symbol Rax p : Prf p → Prf (¬p) → Prf ⊥;
¬(A⇒ B)

α¬⇒¬A,B :

symbol R¬⇒ a b : (Prf a → Prf (¬b) → Prf ⊥) → Prf (¬(a ⇒ b)) → Prf ⊥;

¬(A ∧B)
β¬∧¬A | ¬B

:

symbol R¬∧ a b : (Prf (¬ a) → Prf ⊥) → (Prf (¬ b) → Prf ⊥) →
Prf (¬ (a ∧ b)) → Prf ⊥;
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Intrumenting provers for Dedukti proof production Zenon Modulo

Deep translation of the example

(after η-reduction to make it more readable)

opaque symbol goal : Prf c (p ⇒ (p ∧ p)) :=
R¬⇒ p (p ∧ p)

(λ π, R¬∧ p p (Rax p π) (Rax p π));
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Intrumenting provers for Dedukti proof production Zenon Modulo

Making the embedding more shallow
Reducing it to Natural Deduction

Γ − A ∧B∧-el
Γ − A

Γ − A ∧B∧-er
Γ − B

A B∧-i
A ∧B

Γ − A⇒ B Γ − A⇒-e
Γ − B

Γ, A − B⇒-i
Γ − A⇒ B

Natural Deduction in LambdaPi:

symbol ∧I p q : Prf p → Prf q → Prf (p ∧ q);

symbol ∧El p q : Prf (p ∧ q) → Prf p;

symbol ∧Er p q : Prf (p ∧ q) → Prf q;

symbol ⇒I p q : (Prf p → Prf q) → Prf (p ⇒ q);

symbol ⇒E p q : Prf (p ⇒ q) → Prf p → Prf q;
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Intrumenting provers for Dedukti proof production Zenon Modulo

Defining Tableau rules in term of ND:

rule Rax ↪→ λ p h π, ¬E p π h;

rule R¬∧ ↪→ λ p q h1 h2 h3 ,

h1 (¬I p (λ h5, h2 (¬I q (λ h6 ,

¬E (p ∧ q) h3 (∧I p q h5 h6 )))));

rule R¬⇒ ↪→ λ p q h1 h2 ,

¬E (p ⇒ q) h2 (⇒I p q (λ h3 , ⊥E (h1 h3

(¬I q (λ h4 , ¬E (p ⇒ q) h2 (⇒I p q (λ _, h4))))) q));

Proof that Tableaux rules are derivable in ND
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Intrumenting provers for Dedukti proof production Zenon Modulo

Example in natural deduction

assert ` goal : Prf c (p ⇒ (p ∧ p));

assert ` goal ≡ λ h2, ¬E (p ⇒ (p ∧ p)) h2 (⇒I p (p ∧ p)

(λ h3 , ⊥E (¬E (p ⇒ (p ∧ p)) h2

(⇒I p (p ∧ p) (λ _, ∧I p p h3 h3))) (p ∧ p)));
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Intrumenting provers for Dedukti proof production Zenon Modulo

Making it even more shallow

Reduce Natural Deduction thanks to the shallow encoding of FOL

rule ⇒I ↪→ λ p q π, π;
rule ⇒E ↪→ λ p q π, π;

rule ∧I ↪→ λ p q πp πq r πp⇒q⇒r, πp⇒q⇒r πp πq;
rule ∧El ↪→ λ p q πp∧q, πp∧q p (λ x _, x);

rule ∧Er ↪→ λ p q πp∧q, πp∧q q (λ _ x, x);
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Intrumenting provers for Dedukti proof production Zenon Modulo

Shallow proof from the example

assert ` goal : Prf c (p ⇒ (p ∧ p));

assert ` goal ≡
λ h2, h2 (λ h3, h2 (λ _ _ π, π h3 h3) (p ∧ p));
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Reconstructing proofs

Outline

� Introduction

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 29/48



Reconstructing proofs

Limits of instrumentation

Provers can be hard to instrument to produce exact Dedukti proofs

I large piece of software

I developers not expert in λΠ-calculus modulo theory

I non stable and quite big proof calculus
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Reconstructing proofs

Proof calculus of E

• sel(C) ⊆ C.

• If sel(C) ∩ C− = ∅, then sel(C) = ∅.

We say that a literal L is selected (with respect to a given selection function)
in a clause C if L ∈ sel(C). J

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.1.2 (Eligible literals)
Let C = L ∨ R be a clause, let σ be a substitution and let sel be a selection
function.

• We say σ(L) is eligible for resolution if either

– sel(C) = ∅ and σ(L) is >L-maximal in σ(C) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C−) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C+).

• σ(L) is eligible for paramodulation if L is positive, sel(C) = ∅ and σ(L) is
strictly >L-maximal in σ(C).

J

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double
line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, σ is a substitution and R, S and T are
(partial) clauses. p is a position in a term and λ is the empty or top-position.
D ⊆ F is a set of unused constant predicate symbols. Different clauses are
assumed to not share any common variables.

Definition 3.1.3 (The inference system SP)
Let > be a total simplification ordering (extended to orderings >L and >C

on literals and clauses), let sel be a selection function, and let D be a set of
fresh propositional constants. The inference system SP consists of the following
inference rules:

• Equality Resolution:

(ER)
u 6'v ∨R
σ(R)

if σ = mgu(u, v) and σ(u 6'
v) is eligible for resolution.

8

• Superposition into negative literals:

(SN)
s' t ∨ S u 6'v ∨R

σ(u[p← t] 6'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

• Superposition into positive literals:

(SP)
s' t ∨ S u'v ∨R

σ(u[p← t]'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u'v) is eligible for
resolution, and u|p /∈ V .

• Simultaneous superposition into negative literals

(SSN)
s' t ∨ S u 6'v ∨R

σ(S ∨ (u 6'v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SN) that performs better in prac-
tice.

• Simultaneous superposition into positive literals

(SSP)
s' t ∨ S u'v ∨R

σ(S ∨ (u'v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SP) that performs better in prac-
tice.

• Equality factoring :

(EF)
s' t ∨ u'v ∨R

σ(t 6'v ∨ u'v ∨R)

if σ = mgu(s, u), σ(t) 6>
σ(s) and σ(s' t) eligible for
paramodulation.

• Rewriting of negative literals:

(RN)
s' t u 6'v ∨R

s' t u[p← σ(t)] 6'v ∨R
if u|p = σ(s) and σ(s) > σ(t).

9

• Rewriting of positive literals2:

(RP)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t),
and if u' v is not eligible for
paramodulation or v > u or
p 6= λ.

• Clause subsumption:

(CS)
C σ(C ∨R)

C

where C and R are arbitrary
(partial) clauses and σ is a
substitution.

• Equality subsumption:

(ES)
s' t u[p← σ(s)]'u[p← σ(t)] ∨R

s' t

• Positive simplify-reflect3:

(PS)
s' t u[p← σ(s)] 6'u[p← σ(t)] ∨R

s' t R

• Negative simplify-reflect

(NS)
s 6' t σ(s) 6'σ(t) ∨R

s 6' t R

• Tautology deletion:

(TD)
C

if C is a tautology4

2A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

(RP’)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t) and if u'
v is not eligible for paramdulation or
u 6> v or p 6= λ or σ is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
3In practice, this rule is only applied if σ(s) and σ(t) are >-incomparable – in all other

cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).

10

• Deletion of duplicate literals:

(DD)
s' t ∨ s' t ∨R

s' t ∨R

• Deletion of resolved literals:

(DR)
s 6's ∨R

R

• Destructive equality resolution:

(DE)
x 6'y ∨R
σ(R)

if x, y ∈ V, σ = mgu(x, y)

• Contextual literal cutting :

(CLC)
σ(C ∨R ∨ s'̇t) C ∨ s'̇t
σ(C ∨R) C ∨ s'̇t

where s'̇t is the negation of
s'̇t and σ is a substitution

This rule is also known as subsumption resolution or clausal simplification.

• Condensing :

(CON)
l1 ∨ l2 ∨R
σ(l1 ∨R)

if σ(l1) = σ(l2) and σ(l1 ∨ R)
subsumes l1 ∨ l2 ∨R

• Introduce definition5

(ID)
R ∨ S

d ∨R ¬d ∨ S

if R and S do not share any
variables, d ∈ D has not been
used in a previous definition
and R does not contain any
symbol from D

• Apply definition

(AD)
σ(d ∨R) R ∨ S
σ(d ∨R) ¬d ∨ S

if σ is a variable renaming, R
and S do not share any vari-
ables, d ∈ D and R does not
contain any symbol from D

4This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. Current versions of E try to detect tautologies
by checking if the ground-completed negative literals imply at least one of the positive literals,
as suggested in [NN93].

5This rule is always exhaustively applied to any clause, leaving n split-off clauses and one
final link clause of all negative propositions.

11
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Reconstructing proofs

Proof trace

But often, provers produce at least a proof trace:

I list of formulas that were derived to obtain the proof

I sometimes with more informations

• premises
• name of the inference rules
• theory
• . . .
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Reconstructing proofs

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

List of formulas

I each annotated by an inference tree whose leafs are other formulas

cnf(c_0_60,plain,

( join(X1,join(X2,X3)) = join(X2,join(X1,X3)) ),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).

Independent of the proof calculus
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Reconstructing proofs

Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof

Idea:

I Reprove each step using a Dedukti producing tool

I Combine the proofs of the steps to get a proof of the original formula

Try to be agnostic:

I w.r.t. the prover that produces the trace

I w.r.t. the prover that reprove the steps
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Reconstructing proofs

Ekstrakto

[El Haddad 2021]

I Input: TSTP proof trace

I Output: Reconstructed Lambdapi proof

https://github.com/Deducteam/ekstrakto
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Reconstructing proofs

Ekstrakto architecture

Problem
.p

Proof trace
.s

Proof step
.p

Lambdapi proof
.lp

Problem signature
.lp

Global Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

EkstraktoATP
e.g. E

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo
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Reconstructing proofs

Experimental evaluation

Benchmark:

I CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

I E and Vampire

Step provers:

I Zenon modulo and ArchSat
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Reconstructing proofs

Results

Percentage of Lambdapi proofs on the extracted TPTP files
Prover % E % Vampire

ZenonModulo 87% 60%
ArchSAT 92% 81%

ZenonModulo ∪ ArchSAT 95% 85%

Percentage of complete Lambdapi proofs
Prover % E TSTP % Vampire TSTP

ZenonModulo 45% 54%
ArchSAT 56% 74%

ZenonModulo ∪ ArchSAT 69% 83%

Guillaume Burel: 1st Dedukti School, 2022-06-25

How to handle systems using automated theorem provers? 38/48



Reconstructing proofs

Non provable steps

Problem:

I some steps are not provable
their conclusion is not a logical consequence of their premises

I OK because they preserve provability

I but Ekstrakto cannot work for them

Main instance: Skolemization

Γ, ~∀x,∃y, A[~x, y] ` B iff Γ, ~∀x,A[~x, f(~x)] ` B for a fresh f

Present in the CNF transformation used by almost all ATPs
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Reconstructing proofs

Skonverto

[El Haddad 2021]

Inputs:

I an axiom and its Skolemized version

I a Lambdapi proof using the latter

Output:

I a Lambdapi proof using the non-Skolemized axiom
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Reconstructing proofs

Content

Implementation of a constructive proof of Skolem theorem by [Dowek and
Werner 2005]

I in the context of first-order natural deduction

Problem:

I the proof assumes that proofs are in normal form

I also w.r.t. so-called commuting cuts
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Reconstructing proofs

Commuting cuts

Γ ` A ∨B Γ, A ` C ∧D Γ, B ` C ∧D ∨E
Γ ` C ∧D ∧El

Γ ` C

 

Γ ` A ∨B
Γ, A ` C ∧D ∧El

Γ, A ` C
Γ, B ` C ∧D ∧El

Γ, B ` C ∨E
Γ ` C
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Reconstructing proofs

Reducing commuting cuts

If we work on shallow proofs, these cuts are no longer visible

I cannot reduce them

(On the other hand, regular cuts are embedded into β-redexes, so they are
reduced.)

I Needs to stay at the ND encoding level

Add rules to reduce the commuting cuts

rule ∧El $c $d (∨E $a $b $paorb ($c ∧ $d) $pac $pbc) ↪→
∨E $a $b $paorb $c (λ pa, ∧El $c $d ($pac pa))

(λ pb, ∧El $c $d ($pbc pb));
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Reconstructing proofs

symbol axiom : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y)))));

symbol goal

(ax_tran : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι , ∀ (λ X3 : El ι ,
(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3 )))))))

(ax_step : Prf (∀ (λ X1 : El ι , (p X1 (s (f X1 ))))))

(ax_congr : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι ,
(p X1 X2) ⇒ (p (s X1) (s X2 ))))))

(ax_goal : Prf (¬ (∃ (λ X4 : El ι , ((p a (s (s X4 ))))))))

: Prf ⊥
:= ax_goal (∃I (λ X4 : El ι , p a (s (s X4))) (f (f a))

(ax_tran a (s (f a)) (s (s (f (f a))))

(ax_step a)

(ax_congr (f a) (s (f (f a))) (ax_step (f a)))));
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Reconstructing proofs

symbol goal

(ax_tran : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι , ∀ (λ X3 : El ι ,
(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3 )))))))

(ax_step : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y))))))

(ax_congr : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι ,
(p X1 X2) ⇒ (p (s X1) (s X2 ))))))

(ax_goal : Prf (¬ (∃ (λ X4 : El ι , ((p a (s (s X4 ))))))))

: Prf ⊥
:= ax_goal (λ r h, ∃E (λ z, p a (s z)) (ax_step a) r

(λ z a1, ∃E (λ z0 , p z (s z0)) (ax_step z) r

(λ z0 a2 , h z0 (ax_tran a (s z) (s (s z0)) a1

(ax_congr z (s z0) a2 )))));
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Conclusion

Outline

� Introduction

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion
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Conclusion

Conclusion

Instrumenting a prover to produce Dedukti proofs

I good if you start your prover from scratch

Reconstructing proofs

I more adapted for existing provers

I cannot reconstruct all proofs

I also for proof assistants

• PVS, Atelier B
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Conclusion

Linking together

Dedukti ATP

Ekstrakto
+ Skonverto

Formula

Pr
oo

f t
rac

e

Proof
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