
1/21

Progress on the reconstruction of TLAPS proofs
solved by SMT in Lambdapi

Alessio Coltellacci

Univ. Lorraine, CNRS, Inria, Loria

Fontainebleau

2/21

TLA+ at a glance

▸ Specification language to design
and verify reactive systems

▸ Systems are described as state
machines

VARIABLE x
CONSTANT N
ASSUME N ∈ Nat

Init ∆
= ∧ x = 0

Next ∆
= ∧ x < N

∧ x′ = x+ 1

Spec ∆
= Init∧◻[Next]⟨x⟩

3/21

Targeted validation process

TLAPS cvc5

Lambdapi

1 proof obligations

3 proof4 typecheck? (yes/no)

2 (get-proof) (sat/unsat)

4/21

Cantor theorem proof with TLAPS

-------------- MODULE Cantor1 -----------------
THEOREM cantor ==
\A S :
\A f \in [S -> SUBSET S] :

\E A \in SUBSET S :
\A x \in S :

f [x] # A
PROOF
<1>1. TAKE S
<1>2. TAKE f \in [S -> SUBSET S]
<1>3. DEFINE T == { z \in S : z \notin f[z] }
<1>4. WITNESS T \in SUBSET S
<1>5. TAKE x \in S
<1>6. QED BY x \in T \/ x \notin T

===

5/21

Proof script obtained from veriT

(assume |ExtTrigEqDef SetSt_flatnd_1| (forall ((x Idv) (y Idv))
(= (TrigEq_Idv x y) (= x y))))

(assume h2 (Mem CONST_x_ CONST_S_))
(assume |SetStDef SetSt_flatnd_1|

(forall ((a Idv) (x Idv)) (= (Mem x (SetSt_flatnd_1 a))
(and (Mem x a) (not (Mem x (FunApp CONST_f_ x)))))))

(assume ∣ Goal ∣ (not (not (TrigEq_Idv (FunApp CONST_f_ CONST_x_)
(SetSt_flatnd_1 CONST_S_)))))

(step t5 (cl (not (not (not (TrigEq_Idv (FunApp CONST_f_ CONST_x_)
(SetSt_flatnd_1 CONST_S_)))))
(TrigEq_Idv (FunApp CONST_f_ C CONST_x_)
(SetSt_flatnd_1 CONST_S_))) :rule not_not)

...
(step t47 (cl (Mem CONST_x_ (FunApp CONST_f_ CONST_x_)))

:rule resolution :premises (t46 t38 t41 t42))
...
(step t52 (cl) :rule resolution :premises (t51 t32 t49 t47))

6/21

Alethe format

▸ Alethe is a new SMT proof format that aims to be usable by many different
solvers.

▸ It is currently supported by the SMT solvers veriT and cvc5

▸ Alethe uses a term language that directly extend SMT-LIB.

▸ Alethe provides rules with varying levels of granularity

▸ This allows solver to rely on powerful checkers and produce coarse-grained
proofs, or take the effort to produce more fine-grained proofs.

7/21

Alethe format through examples

Proof statement examples:
(assume h1 (not (p a)))

(step t1 (cl (= z2 vr4)) :rule refl)

(step t4 (cl (= (P x) (P y))) :rule cong :premises (t3))

(step t7 (cl) :rule resolution :premises (h1 h2 t5 t6))

8/21

Alethe rules example

▷ ¬(φ1 ≈ φ2), φ1, ¬φ2 (equiv pos2)

▷ t ≈ t (equiv refl)

▷ �∨ ⋅ ⋅ ⋅ ∨ �⇒ � (or simplify)

φ1 ∨ ⋅ ⋅ ⋅ ∨ ⊺ ∨ ⋅ ⋅ ⋅ ∨ φn ⇒ ⊺

A∨B∨ x C∨¬x
A∨B∨C

(resolution)

9/21

Alethe rule bind

Renaming of bound variables with (bind)

j. Γ, y1 . . . yn, x1 ↦ y1, . . . , xn ↦ yn ▷ φ ≈ φ′ (. . .)
k. ▷ ∀x1, . . . , xn.φ ≈ ∀y1, . . . , yn.φ′ (bind)

10/21

Alethe format through examples

Sub proof example:
...
(anchor :step t9 :args ((:= z2 vr4)))
(step t9.t1 (cl (= z2 vr4)) :rule refl)
(step t9.t2 (cl (= (p z2) (p vr4)))

:rule cong :premises (t9.t1))
(step t9 (cl (= (forall ((z2 U)) (p z2))

(forall ((vr4 U)) (p vr4))))
:rule bind)

...

11/21

Main difficulties

1. SMT solvers produce very coarse-grained proofs, which can be very hard to
check.

▸ Operation on clause are modulo associativity and commutativity

▸ Implicit contraction of literals in clause

▸ Implicit reordering of literals in clause

▸ Implicit application of symmetry on equality

2. Fine-grained proofs are necessary due to the lack of automation in Lambdapi.

12/21

Carcara

▸ Carcara [ALB23] is an efficient and
independent proof checker and
elaborator for Alethe proofs

▸ It is written in Rust, a high
performance language

13/21

Proposed solution

TLAPS veriT

Carcara CVC5

Lambdapi

1 proof obligations

2 (get-proof) (sat/unsat)

3 proof script6 reconstructed? (y/n)

4 proof5 typecheck? (y/n)

elaborate lia generic

14/21

Elaborated proof with Carcara

▸ Replace lia generic by finer-grained steps by using SMT solver

▸ Adds pivots in resolution

(step t1 (cl a b c) :rule ...)
(step t2 (cl (not a) d) :rule ...)
(step t3 (cl (not c) e (not f)) :rule ...)
(step t4 (cl f) :rule ...)
(step t5 (cl b d e) :rule resolution :premises (t1 t2 t3 t4)

:args (a true c true f false))

▸ Removing the implicit reordering of equalities

15/21

Reconstructing Fine-Grained Proofs of Rewrites

RARE, the reconstruction proofs of rewrite in cvc5 [Nöt+22].

16/21

Reconstructing Fine-Grained Proofs of Rewrites
Rewriting rules overview

(define-rule arith-plus-zero ((t ? :list) (s ? :list)) (+ t 0 s) (+ t s))

(define-rule arith-mul-zero ((t ? :list) (s ? :list)) (* t 0 s) 0)

(define-rule* bool-or-false
((xs Bool :list) (ys Bool :list)) (or xs false ys) (or xs ys))

(define-cond-rule ite-neg-branch ((c Bool) (x Bool) (y Bool))
(= (not y) x) (ite c x y) (= c x))

17/21

Translation into Lambdapi
Classical logic

⊺ ∣ � ∣ ∧
c
∣ ∨

c
∣ ∀

c
∣ ∃

c
∣ ¬

c
∣ ⇒

c
∣ ↔

c

/ ∣ πc
() ∣ = ∣ ≤

18/21

Translation overview
Alethe Lambdapi

(assume h1 (forall ((x S)) (P x))) have h1: πc(∀c (x: S), P x)
{ admit }

(step t1 (cl (= (P x) (P y)))
:rule cong :premises (t3))

have t1: πc(P x = P y)
{ apply feq P t3 }

(anchor :step t9 :args ((:= z2 vr4)))
(step t9.t1 (cl (X)) :rule ...)
...
(step t9.tn (cl (Y)) :rule ...)
(step t9 (cl Y) :rule subproof)

opaque symbol t9 z2 vr4
(p: πc(z2 = vr4)): π(Y) :=
begin

have t9.1: πc(X) { ... };
have t9.n: πc(X) { ... };
apply t9.n;

end;

19/21

Translation overview
Resolution

Alethe Lambdapi

(step tn (cl b d e) :rule
resolution :premises (t1 t2 t3)
:args (a true c true))

have tn: πc(b, d, e)
{
have t1': πc(c, b, a)
-> π(a, c, b)
{ ... };
have t1_t2: πc(...)
{ apply resolution (t1' t1) t2};
have t2_t3: πc(...)
{ apply resolution t1_t2 t2};
apply t2_t3

}

20/21

Conclusion

▸ The -simplify step can be reconstructed with the rewrite rules of
Lambdapi and RARE.

▸ Elaborated proof produced by Carcara allows us to reconstruct resolution
and tautologies step.

▸ We do not yet know how to reconstruct arithmetic proof.

21/21

References I

[Nöt+22] Andres Nötzli et al. “Reconstructing Fine-Grained Proofs of Rewrites
Using a Domain-Specific Language”. In: 2022 Formal Methods in
Computer-Aided Design (FMCAD). 2022, pp. 65–74. DOI:
10.34727/2022/isbn.978-3-85448-053-2_12.

[ALB23] Bruno Andreotti, Hanna Lachnitt, and Haniel Barbosa. “Carcara: An
Efficient Proof Checker and Elaborator for SMT Proofs in the Alethe
Format”. In: TACAS 2023, April 22–27, 2023. Springer-Verlag, 2023. DOI:
10.1007/978-3-031-30823-9_19.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
https://doi.org/10.1007/978-3-031-30823-9_19

	References

