Progress on the reconstruction of TLAPS proofs
solved by SMT in Lambdapi

Alessio Coltellacci

Univ. Lorraine, CNRS, Inria, Loria

Fontainebleau

UNIVERSITE
DE LORRAINE @ &z'zca/-

TLA* at a glance

» Specification language to design
and verify reactive systems

» Systems are described as state
machines

VARIABLE x
CONSTANT N
ASSUME N € Nat

Init2 Ax=0

Next® Ax<N
Ax'=x+1

Spec = Init A O[Next])

Targeted validation process

@ proof obligations

TLAPS

@ typecheck? (yes/no) @ proof

Lambdapi

@ (get-proof) (sat/unsat)

cveh

Cantor theorem proof with TLAPS

—————————————— MODULE Cantorl -————————————————
THEOREM cantor ==
\A S
\A f \in [S -> SUBSET S]
\E A \in SUBSET S
\A x \in S
f [x] # A
PROOF
<1>1. TAKE S
<1>2. TAKE f \in [S -> SUBSET S]
<1>3. DEFINE T == { z \in S : z \notin f[z] }
<1>4. WITNESS T \in SUBSET S
<1>5. TAKE x \in S
<1>6. QED BY x \in T \/ x \notin T

Proof script obtained from veriT

(assume |ExtTrigEgDef SetSt_flatnd_1| (forall ((x Idv) (y Idv))
(= (TrigEg_Idv x y) (= x v))))

(assume h2 (Mem CONST_x_ CONST_S_))

(assume |SetStDef SetSt_flatnd_1|
(forall ((a Idv) (x Idv)) (= (Mem x (SetSt_flatnd_1 a))
(and (Mem x a) (not (Mem x (FunApp CONST_f_ x)))))))

(assume | Goal | (not (not (TrigEg_Idv (FunApp CONST_f_ CONST_x_)
(SetSt_flatnd_1 CONST_S)))))

(step t5 (cl (not (not (not (TrigEg_Idv (FunApp CONST_f_ CONST_x_)
(SetSt_flatnd_1 CONST_S_)))))
(TrigEg_Idv (FunApp CONST_f_ C CONST_x_)
(SetSt_flatnd_1 CONST_S_))) :rule not_not)

(step t47 (cl (Mem CONST_x_ (FunApp CONST_f_ CONST_x_)))
:rule resolution :premises (t46 t38 t4l t42))

(step t52 (cl) :rule resolution :premises (t51 t32 t49 t47))

Alethe format

v

Alethe is a new SMT proof format that aims to be usable by many different
solvers.

» It is currently supported by the SMT solvers veriT and cvcb

v

Alethe uses a term language that directly extend SMT-LIB.

v

Alethe provides rules with varying levels of granularity

v

This allows solver to rely on powerful checkers and produce coarse-grained
proofs, or take the effort to produce more fine-grained proofs.

Alethe format through examples

Proof statement examples:

(assume hl (not (p a)))
(step tl1 (cl (= z2 vr4d)) :rule refl)
(step t4 (cl (= (P x) (P vy))) :rule cong :premises (t3))

(step t7 (cl) :rule resolution :premises (hl h2 t5 t6))

Alethe rules example

> (@1~ @2), 91, ~¢2
> twt

> lLVvV-eevI=>1

PIV- VTV V@, =T

AvBvx Cv-x
AvBvC

(equiv_pos2)
(equiv_refl)

(or_simplify)

(resolution)

Alethe rule bind

Renaming of bound variables with (bind)

o Ly ywxioy, o, Xy > 9o (...)
k. > VXY, X0 @ 8 VY., Y9 (bind)

Alethe format through examples

Sub proof example:

(anchor :step t9 :args ((:= z2 vr4d)))

(step t9.tl1 (cl (= z2 vr4d)) :rule refl)
(step £9.t2 (cl (= (p z2) (p vr4d)))
:rule cong :premises (t9.tl))
(step t9 (cl (= (forall ((z2 U)) (p z2))
(forall ((vr4d U)) (p vrd))))

:rule bind)

Main difficulties

1. SMT solvers produce very coarse-grained proofs, which can be very hard to
check.

*» Operation on clause are modulo associativity and commutativity

*» Implicit contraction of literals in clause

*» Implicit reordering of literals in clause

» Implicit application of symmetry on equality

2. Fine-grained proofs are necessary due to the lack of automation in Lambdapi.

Carcara

» Carcara [ALB23] is an efficient and

. Rust API | cu
independent proof checker and carcard
elaborator for Alethe proofs
Parser Elaborator
» It is written in Rust, a high Checker —

performance language T—

Proof Printer (LS

Fig. 2: Overview of the architecture of CARCARA.

Proposed solution

TLAPS

@ proof obligations

@ reconstructed? (y/n)

Carc

(5) typecheck? (y/n)

@ proof

Lambdapi

veriT
@ (get-proof) (sat/unsat)
@ proof script
elaborate 1ia_generic
ara CVC5

Elaborated proof with Carcara
» Replace 1ia_generic by finer-grained steps by using SMT solver

» Adds pivots in resolution

(step tl (cl a b c¢) :rule ...)

(step t2 (cl (not a) d) :rule ...)

(step t3 (cl (not c) e (not f)) :rule ...)

(step t4 (cl f) :rule ...)

(step t5 (cl b d e) :rule resolution :premises (tl t2 t3 t4)
rargs (a true c true f false))

» Removing the implicit reordering of equalities

Reconstructing Fine-Grained Proofs of Rewrites

RARE, the reconstruction proofs of rewrite in cvcd [N6t+22].

Theory Solver

Theory Solver

Theory Rewriter ‘ ‘ Theory Rewnter ‘

il

Rules Rules
Flle Flle

Rewriter

DSL Compller

Rewrite Proof
Reconstructor

Proof Module

Rewrite Rule

Database

Reconstructing Fine-Grained Proofs of Rewrites

Rewriting rules overview

(define-rule arith-plus—-zero ((t ? :list) (s ? :list)) (+ t 0 s) (+ t s))
(define-rule arith-mul-zero ((t ? :list) (s ? :1list)) (+ t 0 s) 0)

(define-rulex bool-or—-false
((xs Bool :1list) (ys Bool :1ist)) (or xs false ys) (or xs ys))

(define-cond-rule ite-neg-branch ((c Bool) (x Bool) (y Bool))
(= (not y) x) (ite c x y) (= c x))

Translation into Lambdapi
Classical logic

TLLp AT Ve v 3]s
v =1 <

Translation overview

Alethe Lambdapi
(assume hl (forall ((x S)) (P x))) have hl: 7 (V¥ (x: S), P x)
{ admit }
(step t1 (cl (= (P x) (P y))) have tl: (P x = P y)
:rule cong :premises (t3)) { apply feq P t3 }
(anchor :step t9 :args ((:= z2 vrd))) opaque symbol t9 z2 wvr4
(step t9.tl (cl (X)) :rule ...) (p: °(z2 = vrd)): m(Y) :=
begin
(step t9.tn (cl (Y)) :rule ...) have t9.1: 7TC(X) { ...}
(step t9 (cl Y) :rule subproof) have t9.n: 7°(X) { ... };
apply t9.n;
end;

Translation overview
Resolution

Alethe

Lambdapi

(step tn (cl b d e)
resolution :premises
rargs

:rule
(tl t2 t3)

(a true c true))

have tn: 7°(b, d, e)
{
have t1': 7°(c, b,
-> m(a, ¢, b)
{ ... 1
have tl1_t2: 7n“(..
{ apply resolution
have t2_t3: 7nf(..
{ apply resolution
apply t2_t3

-)

(t1' t1) t2};

-)

tl_t2 t2};

Conclusion

» The -simplify step can be reconstructed with the rewrite rules of
Lambdapi and RARE.

» Elaborated proof produced by Carcara allows us to reconstruct resolution
and tautologies step.

» We do not yet know how to reconstruct arithmetic proof.

References 1

[NGt+22]

[ALB23]

Andres Notzli et al. “Reconstructing Fine-Grained Proofs of Rewrites
Using a Domain-Specific Language”. In: 2022 Formal Methods in
Computer-Aided Design (FMCAD). 2022, pp. 65-74. DOTI:
10.34727/2022/1sbn.978-3-85448-053-2_12.

Bruno Andreotti, Hanna Lachnitt, and Haniel Barbosa. “Carcara: An
Efficient Proof Checker and Elaborator for SMT Proofs in the Alethe
Format”. In: TACAS 2023, April 22-27, 2023. Springer-Verlag, 2023. DOIL:
10.1007/978-3-031-30823-9_109.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
https://doi.org/10.1007/978-3-031-30823-9_19

	References

