Deducteam Type Universe Seminar

Yoan Géran, Rishikesh Vaishnav, Thiago Felicissimo

September 29, 2023

0 has type Nat, but what is the type of Nat?

0 has type Nat, but what is the type of Nat? Some universe ${\bf U}$

0 has type Nat, but what is the type of Nat? Some universe ${\bf U}$

In type theory, (small) types can be given the type of a universe

0 has type Nat, but what is the type of Nat? Some universe ${\bf U}$

In type theory, (small) types can be given the type of a universe

Many flavours: predicative/impredicative, cumulative/non-cumulative, etc

0 has type Nat, but what is the type of Nat? Some universe U

In type theory, (small) types can be given the type of a universe

Many flavours: predicative/impredicative, cumulative/non-cumulative, etc

In many proof assistants: Coq, Agda, Lean, Matita

0 has type Nat, but what is the type of Nat? Some universe U

In type theory, (small) types can be given the type of a universe

Many flavours: predicative/impredicative, cumulative/non-cumulative, etc

In many proof assistants: Coq, Agda, Lean, Matita

This talk How to define them in Dedukti

 $\begin{array}{ll} \mathsf{T}\mathsf{y}:\mathsf{T}\mathsf{Y}\mathsf{P}\mathsf{E} & (\llbracket A \ \mathsf{t}\mathsf{y}\mathsf{p}\mathsf{e}\rrbracket := \llbracket A\rrbracket : \mathsf{T}\mathsf{y}) \\ \mathsf{T}\mathsf{m}:\mathsf{T}\mathsf{y}\to\mathsf{T}\mathsf{Y}\mathsf{P}\mathsf{E} & (\llbracket t:A\rrbracket := \llbracket t\rrbracket : \mathsf{T}\mathsf{m} \ \llbracket A\rrbracket) \end{array}$

$$\begin{split} \mathsf{Ty}: \mathsf{TYPE} & (\llbracket A \ \mathsf{type} \rrbracket := \llbracket A \rrbracket : \mathsf{Ty}) \\ \mathsf{Tm}: \mathsf{Ty} \to \mathsf{TYPE} & (\llbracket t : A \rrbracket := \llbracket t \rrbracket : \mathsf{Tm} \llbracket A \rrbracket) \end{split}$$

Tarski style

U : TyEI : Tm U \rightarrow Ty u : Tm U EI u \rightarrow U

Ty : TYPE	$(\llbracket A type \rrbracket := \llbracket A \rrbracket : Ty)$
$Tm:Ty\to \mathtt{TYPE}$	$(\llbracket t : A \rrbracket := \llbracket t \rrbracket : Tm \llbracket A \rrbracket)$

Tarski style Coquand style

U: TyEI: Tm U \rightarrow Ty

u : Tm U

 $EI u \longrightarrow U$

 $\begin{array}{l} \mathsf{U}:\mathsf{Ty}\\ \mathsf{EI}:\mathsf{Tm}\;\mathsf{U}\to\mathsf{Ty}\\ \mathsf{c}:\mathsf{Ty}\to\mathsf{Tm}\;\mathsf{U}\\ \mathsf{EI}\;(\mathsf{c}\;A)\longrightarrow A\\ \mathsf{c}\;(\mathsf{EI}\;A)\longrightarrow A \end{array}$

 $\begin{array}{ll} \mathsf{Ty}: \mathsf{TYPE} & (\llbracket A \; \mathsf{type} \rrbracket := \llbracket A \rrbracket : \mathsf{Ty}) \\ \mathsf{Tm}: \mathsf{Ty} \to \mathsf{TYPE} & (\llbracket t: A \rrbracket := \llbracket t \rrbracket : \mathsf{Tm} \; \llbracket A \rrbracket) \end{array}$

Tarski style Coquand style

U: Ty U: Ty EI: Tm U \rightarrow Ty u: Tm U EI u \rightarrow U

Ty : TYPE	$(\llbracket A type \rrbracket := \llbracket A \rrbracket : Ty)$
$Tm:Ty\to \mathtt{TYPE}$	$(\llbracket t : A \rrbracket := \llbracket t \rrbracket : Tm \llbracket A \rrbracket)$

Tarski style	Coquand style	Russell style
U : Ty	U : Ty	U : Ty
$EI:Tm~U\toTy$	$EI:Tm~U\simeqTy:c$	$Tm\;U\longrightarrowTy$
u : Tm U		
$EI \; u \longrightarrow U$		

Ty : TYPE	$(\llbracket A type \rrbracket := \llbracket A \rrbracket : Ty)$
$Tm:Ty\to \mathtt{TYPE}$	$(\llbracket t : A \rrbracket := \llbracket t \rrbracket : Tm \llbracket A \rrbracket)$

Tarski styleCoquand styleRussell styleU: TyU: TyU: Ty $EI: Tm U \rightarrow Ty$ $EI: Tm U \simeq Ty: c$ $Tm U \rightarrow Ty$ u: Tm U $EI u \rightarrow U$ Tm U = Ty = Ty = Ty = Ty

In the Dedukti literature, we often use Russell style and change names

Ту	$\sim \rightarrow$	U	
Tm	$\sim \rightarrow$	El	
U	$\sim \rightarrow$	u	3/34

u: U causes inconsistencies

Solution Stratify universes into an hierarchy

u: U causes inconsistencies

Solution Stratify universes into an hierarchy

 U_s : TYPE $EI_s : U_s \rightarrow TYPE$

for $s \in \mathcal{S}$

u : U causes inconsistencies

Solution Stratify universes into an hierarchy

 u : U causes inconsistencies

Solution Stratify universes into an hierarchy

 $\begin{array}{ll} \mathbb{U}_{s}: \mathrm{TYPE} \\ \mathbb{E}I_{s}: \mathbb{U}_{s} \to \mathrm{TYPE} & \text{for } s \in \mathcal{S} \\ \\ \mathrm{u}_{s}: \mathbb{U}_{s'} \\ \mathbb{E}I_{s'} \ \mathrm{u}_{s} \longrightarrow \mathbb{U}_{s} & \text{for } (s, s') \in \mathcal{A} \\ \\ \\ \pi_{s,s'}: (A: \mathbb{U}_{s}) \to (B: \mathbb{E}I_{s} \ A \to \mathbb{U}_{s'}) \to \mathbb{U}_{s''} \\ \\ \mathbb{E}I_{s''} \ (\pi_{s,s'} \ A \ B) \longrightarrow (x: \mathbb{E}I_{s} \ A) \to \mathbb{E}I_{s'} \ (B \ x) & \text{for } (s, s', s'') \in \mathcal{R} \end{array}$

u : U causes inconsistencies

Solution Stratify universes into an hierarchy

U.: TYPE $\mathsf{E}_{\mathsf{e}}: \mathsf{U}_{\mathsf{e}} \to \mathsf{TYPE}$ for $s \in \mathcal{S}$ $\mathbf{u}_{s}: \mathbf{U}_{s'}$ for $(s, s') \in \mathcal{A}$ $EI_{s'} u_s \longrightarrow U_s$ $\pi_{s,s'}: (A: \mathsf{U}_s) \to (B: \mathsf{El}_s A \to \mathsf{U}_{s'}) \to \mathsf{U}_{s''}$ $\mathsf{El}_{s''}(\pi_{s,s'} \land B) \longrightarrow (x : \mathsf{El}_s \land A) \rightarrow \mathsf{El}_{s'}(B \land x) \quad \text{for } (s, s', s'') \in \mathcal{R}$

Finite encoding?

Universe hierarchies, finitely

S : TYPE $\mathcal{A} : S \to S$ $\mathcal{R} : S \to S \to S$

...

Universe hierarchies, finitely

S : TYPE $\mathcal{A} : S \to S$ $\mathcal{R} : S \to S \to S$...

 $\mathsf{U}:\mathcal{S} \to \mathsf{TYPE}$ $\mathsf{EI}:(s:\mathcal{S}) \to \mathsf{U} \ s \to \mathsf{TYPE}$

$$\begin{split} \mathbf{u} : (s:\mathcal{S}) &\to \mathbf{U} \ (\mathcal{A} \ s) \\ & \mathsf{El} \ _ (\mathbf{u} \ s) \longrightarrow \mathbf{U} \ s \end{split}$$

 $\begin{aligned} \pi: (s \ s': \mathcal{S}) &\to (A: \mathsf{U} \ s) \to (B: \mathsf{El} \ s \ A \to \mathsf{U} \ s') \to \mathsf{U} \ (\mathcal{R} \ s \ s') \\ \mathsf{El} \ _ (\pi \ s \ s' \ A \ B) &\longrightarrow (x: \mathsf{El} \ s \ A) \to \mathsf{El} \ s' \ (B \ x) \end{aligned}$

Introduction: Universe Polymorphism

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_s for each universe U_s .

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_s for each universe U_s .

Universe polymorphism allows definitions that can be used at multiple universes

$$\mathsf{id}_i: \Pi A: \mathsf{U}_i.A \to A := \lambda A \ x.x$$

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_s for each universe U_s .

Universe polymorphism allows definitions that can be used at multiple universes

 $\mathsf{id}_i: \Pi A: \mathsf{U}_i.A \to A := \lambda A \ x.x$

We have $id_0 \text{ Nat } 0 = 0$ and $id_1 \text{ U}_0 \text{ Nat} = \text{Nat}$

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_s for each universe U_s .

Universe polymorphism allows definitions that can be used at multiple universes

 $\mathsf{id}_i: \Pi A: \mathsf{U}_i.A \to A := \lambda A \ x.x$

We have $id_0 \text{ Nat } 0 = 0$ and $id_1 \text{ U}_0 \text{ Nat} = \text{Nat}$

In Dedukti Level (= sort) quantification can be simulated directly by framework's function type

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_s for each universe U_s .

Universe polymorphism allows definitions that can be used at multiple universes

 $\mathsf{id}_i: \Pi A: \mathsf{U}_i.A \to A := \lambda A \ x.x$

We have $id_0 \text{ Nat } 0 = 0$ and $id_1 \text{ U}_0 \text{ Nat} = \text{Nat}$

In Dedukti Level (= sort) quantification can be simulated directly by framework's function type

However, often we require levels to satisfy a specific equational theory. This is the hard part

Predicative Universe Polymorphism

Predicative levels

$$l, l' ::= i \mid 0 \mid \mathsf{S} \mid l \mid l \sqcup l'$$

with equality defined by

$$l \simeq l'$$
 iff $\forall \sigma : \mathcal{V} \to \mathbb{N}$. $[\![l]\!]_{\sigma} = [\![l']\!]_{\sigma}$

where $\llbracket - \rrbracket_{\sigma}$ interprets levels in obvious way.

Predicative levels

$$l, l' ::= i \mid 0 \mid \mathsf{S} \mid l \mid l \sqcup l'$$

with equality defined by

$$l \simeq l'$$
 iff $\forall \sigma : \mathcal{V} \to \mathbb{N}$. $\llbracket l \rrbracket_{\sigma} = \llbracket l' \rrbracket_{\sigma}$

where $[\![-]\!]_{\sigma}$ interprets levels in obvious way.

Problem How to encode \simeq in Dedukti?

Genestier 20 Rewrite system to decide \simeq Based on existence of canonical forms for levels Requires AC matching and AC equivalence

Genestier 20 Rewrite system to decide \simeq Based on existence of canonical forms for levels Requires AC matching and AC equivalence

Blanqui 22 AC matching normalized rewriting

 $x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y$

Genestier 20 Rewrite system to decide \simeq Based on existence of canonical forms for levels Requires AC matching and AC equivalence

Blanqui 22 AC matching normalized rewriting

 $x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y$

Felicissimo 23 Abandon idea of encoding \simeq with rewriting We have $\simeq \cdot \longrightarrow \subseteq \longrightarrow \cdot \simeq$, so can postpone \simeq to end of conversion check AC matching/normalized rewriting syntactic matching + decide \simeq

Genestier 20 Rewrite system to decide \simeq Based on existence of canonical forms for levels Requires AC matching and AC equivalence

Blanqui 22 AC matching normalized rewriting

 $x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y$

Felicissimo 23 Abandon idea of encoding \simeq with rewriting We have $\simeq \cdot \longrightarrow \subseteq \longrightarrow \cdot \simeq$, so can postpone \simeq to end of conversion check AC matching/normalized rewriting syntactic matching + decide \simeq If Dedukti+AC is ok, why not Dedukti+E for arbitrary E?

Genestier 20 Rewrite system to decide \simeq Based on existence of canonical forms for levels Requires AC matching and AC equivalence

Blanqui 22 AC matching normalized rewriting

 $x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y$

Felicissimo 23 Abandon idea of encoding \simeq with rewriting We have $\simeq \cdot \longrightarrow \subseteq \longrightarrow \cdot \simeq$, so can postpone \simeq to end of conversion check AC matching/normalized rewriting syntactic matching + decide \simeq If Dedukti+AC is ok, why not Dedukti+E for arbitrary E?

Takeaway message No way to encode in vanilla Dedukti

Genestier 20 Rewrite system to decide \simeq Based on existence of canonical forms for levels Requires AC matching and AC equivalence

Blanqui 22 AC matching normalized rewriting

 $x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y$

Felicissimo 23 Abandon idea of encoding \simeq with rewriting We have $\simeq \cdot \longrightarrow \subseteq \longrightarrow \cdot \simeq$, so can postpone \simeq to end of conversion check AC matching/normalized rewriting syntactic matching + decide \simeq If Dedukti+AC is ok, why not Dedukti+E for arbitrary E?

Takeaway message No way to encode in vanilla Dedukti Moreover, to show confluence, all 3 options require confinement or showing SN before confluence (reason: non-left-linear rules)

Impredicative Universe Normalization

• In theorem provers like Lean and Coq, we have an infinite universe hierarchy starting with the base universe (Sort 0) which is reserved for propositions.

- In theorem provers like Lean and Coq, we have an infinite universe hierarchy starting with the base universe (Sort 0) which is reserved for propositions.
- We must encode universe impredicativity in the context of polymorphic types deriving from the rule:

 $\frac{\Gamma \vdash A : \mathsf{U}_{\ell} \quad \Gamma, x : A \vdash B : \mathsf{U}_{\ell'}}{\Gamma \vdash \forall x : A. \ B : \mathsf{U}_{\mathbf{i}(\ell,\ell')}}$

- In theorem provers like Lean and Coq, we have an infinite universe hierarchy starting with the base universe (Sort 0) which is reserved for propositions.
- We must encode universe impredicativity in the context of polymorphic types deriving from the rule:

$$\Gamma \vdash A : \mathsf{U}_{\ell} \qquad \Gamma, x : A \vdash B : \mathsf{U}_{\ell'}$$

 $\Gamma \vdash \forall x : A. B : \mathsf{U}_{\mathfrak{i}(\ell,\ell')}$

where i (i.e. imax, "impredicative max") has the semantics:

$$\mathfrak{i}(\ell,\ell') = egin{cases} 0, & ext{if } \ell' = 0 \ \max(\ell,\ell'), & ext{otherwise.} \end{cases}$$

- In theorem provers like Lean and Coq, we have an infinite universe hierarchy starting with the base universe (Sort 0) which is reserved for propositions.
- We must encode universe impredicativity in the context of polymorphic types deriving from the rule:

 $\Gamma \vdash A: \mathsf{U}_\ell \qquad \Gamma, x: A \vdash B: \mathsf{U}_{\ell'}$

 $\Gamma \vdash \forall x : A. B : \mathsf{U}_{\mathfrak{i}(\ell,\ell')}$

where i (i.e. imax, "impredicative max") has the semantics:

$$\mathbf{i}(\ell,\ell') = egin{cases} 0, & ext{if } \ell' = 0 \ \max(\ell,\ell'), & ext{otherwise.} \end{cases}$$

• In total, we have the following grammar for universe terms:

$$\ell := 0 \mid \mathbf{s}\left(\ell\right) \mid \mathbf{m}(\ell,\ell') \mid \mathbf{i}(\ell,\ell') \mid x$$

where x is from a countable set of variables \mathcal{X} . We denote this set of terms by \mathcal{L} .

• For a valuation $\sigma : \mathcal{X} \to \mathbb{N}$ we define the value $\llbracket \ell \rrbracket_{\sigma}$ of a level term ℓ according to the rules:

$$\begin{split} \llbracket \mathbf{0} \rrbracket_{\sigma} &= 0 \qquad \llbracket \mathbf{s}\left(t\right) \rrbracket_{\sigma} = \mathbf{s}\left(\llbracket t \rrbracket_{\sigma}\right) \qquad \llbracket x \rrbracket_{\sigma} = \sigma(t) \\ & \llbracket \mathbf{m}(\ell, \ell') \rrbracket_{\sigma} = \max(\llbracket \ell \rrbracket_{\sigma}, \llbracket \ell' \rrbracket_{\sigma}) \\ & \llbracket \mathbf{i}(\ell, \ell') \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \llbracket \ell' \rrbracket_{\sigma} = 0 \\ \max(\llbracket \ell \rrbracket_{\sigma}, \llbracket \ell' \rrbracket_{\sigma}), & \text{otherwise.} \end{cases} \end{split}$$

• For a valuation $\sigma : \mathcal{X} \to \mathbb{N}$ we define the value $\llbracket \ell \rrbracket_{\sigma}$ of a level term ℓ according to the rules:

$$\begin{split} \llbracket 0 \rrbracket_{\sigma} &= 0 \qquad \llbracket \mathbf{s} \left(t \right) \rrbracket_{\sigma} = \mathbf{s} \left(\llbracket t \rrbracket_{\sigma} \right) \qquad \llbracket x \rrbracket_{\sigma} = \sigma(t) \\ & \llbracket \mathbf{m}(\ell, \ell') \rrbracket_{\sigma} = \max(\llbracket \ell \rrbracket_{\sigma}, \llbracket \ell' \rrbracket_{\sigma}) \\ & \llbracket \mathbf{i}(\ell, \ell') \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \llbracket \ell' \rrbracket_{\sigma} = 0 \\ \max(\llbracket \ell \rrbracket_{\sigma}, \llbracket \ell' \rrbracket_{\sigma}), & \text{otherwise.} \end{cases} \end{split}$$

• We define semantic relations between universe terms:

$$\begin{split} \ell &=_{\mathbb{I}} \ell' \iff \text{for all } \sigma : \mathcal{X} \to \mathbb{N}, \ \llbracket \ell \rrbracket_{\sigma} = \llbracket \ell' \rrbracket_{\sigma} \\ \ell &\leq_{\mathbb{I}} \ell' \iff \text{for all } \sigma : \mathcal{X} \to \mathbb{N}, \ \llbracket \ell \rrbracket_{\sigma} \leq \llbracket \ell' \rrbracket_{\sigma} \end{split}$$

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1 + \mathtt{m}(1 + x, \mathtt{m}(\mathtt{m}(5, x), y))$$

$$1+\mathtt{m}(1+x,\mathtt{m}(\mathtt{m}(5,x),y))$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1 + \mathtt{m}(1 + x, \mathtt{m}(\mathtt{m}(5, x), y))$$

$$\mathtt{m}(2+x,1+\mathtt{m}(\mathtt{m}(5,x),y))$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1 + \mathtt{m}(1 + x, \mathtt{m}(\mathtt{m}(5, x), y))$$

$$\mathtt{m}(2+x, \mathtt{1}+\mathtt{m}(\mathtt{m}(5,x),y))$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1 + \mathtt{m}(1 + x, \mathtt{m}(\mathtt{m}(5, x), y))$$

$$\mathtt{m}(2+x, \mathtt{m}(1+\mathtt{m}(5,x),1+y))$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1 + \mathtt{m}(1 + x, \mathtt{m}(\mathtt{m}(5, x), y))$$

$$\mathtt{m}(2+x, \mathtt{m}(1+\mathtt{m}(5,x),1+y))$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1 + \mathtt{m}(1 + x, \mathtt{m}(\mathtt{m}(5, x), y))$$

$$\mathtt{m}(2+x, \mathtt{m}(\mathtt{m}(\mathbf{6}, \mathbf{1}+x), \mathbf{1}+y))$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1 + \mathtt{m}(1 + x, \mathtt{m}(\mathtt{m}(5, x), y))$$

$$m(2+x,m(m(6,1+x),1+y))$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1 + \mathtt{m}(1 + x, \mathtt{m}(\mathtt{m}(5, x), y))$$

$$\max S(2+x, 1+x, 1+y, 6)$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1+\mathtt{m}(1+x,\mathtt{m}(\mathtt{m}(5,x),y))$$

becomes

$$\max S(2+x, 1+x, 1+y, 6)$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

- We can take some inspiration from the normal form introduced by Genestier¹ for the predicative (no i) case. Here, we consider "subterms" of the form n + x or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$\max(n_1 + x_1, \ldots, n_k + x_k, n),$$

with all subterms incomparable.

For example:

$$1 + \mathtt{m}(1 + x, \mathtt{m}(\mathtt{m}(5, x), y))$$

$$\max(2+x, 1+y, 6)$$

¹Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

• We also want a normal form like $\max S(u_1, \ldots, u_n)$, where the u_i are "minimal" subterms picked from a grammar and semantic such that:

Impredicative normal form: goals

- We also want a normal form like $maxS(u_1, \ldots, u_n)$, where the u_i are "minimal" subterms picked from a grammar and semantic such that:
 - (existence) they completely characterize all universe terms, that is, for all t there exists $\{u_1, \ldots, u_n\}$ such that $t = \max(u_1, \ldots, u_n)$.

Impredicative normal form: goals

- We also want a normal form like maxS (u_1, \ldots, u_n) , where the u_i are "minimal" subterms picked from a grammar and semantic such that:
 - (existence) they completely characterize all universe terms, that is, for all t there exists $\{u_1, \ldots, u_n\}$ such that $t = \max(u_1, \ldots, u_n)$.
 - (uniqueness) they uniquely identify a normal form, such that:

$$\max \mathbf{S}(u_1,\ldots,u_n) =_{\mathbb{I}} \max \mathbf{S}(v_1,\ldots,v_m) \iff \{u_1,\ \ldots,\ u_n\} = \{v_1,\ \ldots,\ v_m\}$$

when $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ are incomparable.

Impredicative normal form: goals

- We also want a normal form like maxS (u_1, \ldots, u_n) , where the u_i are "minimal" subterms picked from a grammar and semantic such that:
 - (existence) they completely characterize all universe terms, that is, for all t there exists $\{u_1, \ldots, u_n\}$ such that $t = \max(u_1, \ldots, u_n)$.
 - (uniqueness) they uniquely identify a normal form, such that:

$$\max(u_1,\ldots,u_n) =_{\mathbb{I}} \max(v_1,\ldots,v_m) \iff \{u_1,\ \ldots,\ u_n\} = \{v_1,\ \ldots,\ v_m\}$$

when $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ are incomparable.

(attainability) they are easily comparable via rewrite rules, so we can reduce $\max S(u, v)$ into $\max S(u)$ when $v \leq_{\mathbb{I}} u$, implying that a normal form can be practically attained.

• We plan to produce a normal form consisting of the maximum of a set of subterms. To this end, we must "pull out" the m operators until they are no longer nested within any other operator.

- We plan to produce a normal form consisting of the maximum of a set of subterms. To this end, we must "pull out" the m operators until they are no longer nested within any other operator.
- We immediately have s(m(x, y)) = m(s(x), s(y)). For the i case we derive the equalities:

$$\mathbf{i}(\mathbf{m}(x,y),z) = \mathbf{m}(\mathbf{i}(x,z),\mathbf{i}(y,z)) \qquad \qquad \mathcal{L} \to \mathcal{S}_{\mathsf{nf}}^{--}$$

- We plan to produce a normal form consisting of the maximum of a set of subterms. To this end, we must "pull out" the m operators until they are no longer nested within any other operator.
- We immediately have s(m(x, y)) = m(s(x), s(y)). For the i case we derive the equalities:

- We plan to produce a normal form consisting of the maximum of a set of subterms. To this end, we must "pull out" the m operators until they are no longer nested within any other operator.
- We immediately have s(m(x, y)) = m(s(x), s(y)). For the i case we derive the equalities:

• To restrict s to variables, we can push it into the i terms according to the equality:

$$\mathbf{s}\left(\mathbf{i}(x,y)\right) = \mathbf{m}(\mathbf{s}\left(y\right),\mathbf{i}(\mathbf{s}\left(x\right),y)) \qquad \qquad \mathcal{L} \to \mathcal{S}_{\mathsf{nf}}^{--}$$

$$\mathbf{i}(u,\mathbf{i}(v,w)) = \mathbf{m}(\mathbf{i}(u,w),\mathbf{i}(v,w)) \qquad \qquad \mathcal{L} \to \mathcal{S}_{\mathrm{nf}}^{--}$$

which serve to restrict the RHS to variables.

which serve to restrict the RHS to variables.

$$\begin{split} \mathbf{i}(u,\mathbf{i}(v,w)) &= \mathbf{m}(\mathbf{i}(u,w),\mathbf{i}(v,w)) \\ \mathbf{i}(u,\mathbf{s}(v)) &= \mathbf{m}(u,\mathbf{s}(v)) \\ \mathbf{i}(u,0) &= 0 \end{split}$$

which serve to restrict the RHS to variables.

$$\begin{split} \mathbf{i}(u,\mathbf{i}(v,w)) &= \mathbf{m}(\mathbf{i}(u,w),\mathbf{i}(v,w)) \\ \mathbf{i}(u,\mathbf{s}(v)) &= \mathbf{m}(u,\mathbf{s}(v)) \\ \mathbf{i}(u,0) &= 0 \end{split}$$

which serve to restrict the RHS to variables.

• As there are no rules to further simplify the lefthand-side of i, we accept the s, i, and 0 in the LHS of i as part of our subterms.

A pseudo-pseudo-normal form

• This leads us to a normal form that looks like $\max(u_1, \ldots, u_n)$, where the subterms u_i are constructed from the grammar:

$$u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{i}(u, x).$$

We denote this set of subterms by \mathcal{S}_{nf}^{--} .

• This leads us to a normal form that looks like $\max(u_1, \ldots, u_n)$, where the subterms u_i are constructed from the grammar:

$$u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{i}(u, x).$$

We denote this set of subterms by \mathcal{S}_{nf}^{--} .

• However, this normal form is not enough! It does not guarantee uniqueness of the representation.

• This leads us to a normal form that looks like $\max(u_1, \ldots, u_n)$, where the subterms u_i are constructed from the grammar:

$$u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{i}(u, x).$$

We denote this set of subterms by \mathcal{S}_{nf}^{--} .

- However, this normal form is not enough! It does not guarantee uniqueness of the representation.
- For example, we have the equality:

$$\max \mathtt{S}(\mathtt{i}(x,y),\mathtt{i}(y,x)) =_{\mathbb{I}} \max \mathtt{S}(x,y).$$

Deconstructing i(x, y)

• This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:

Deconstructing i(x, y)

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.

Deconstructing i(x, y)

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathtt{A}(\{y\},x)$ with the semantic:

$$\llbracket \mathbf{A}(S, x) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x), & \text{otherwise.} \end{cases}$$

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathtt{A}(\{y\},x)$ with the semantic:

$$\llbracket \mathbb{A}(S, x) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x), & \text{otherwise.} \end{cases}$$

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathtt{A}(\{y\},x)$ with the semantic:

$$\llbracket \mathbb{A}(S, x) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x), & \text{otherwise.} \end{cases}$$

$$\mathtt{maxS}(\mathtt{i}(x,y),\mathtt{i}(y,x))$$

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathtt{A}(\{y\},x)$ with the semantic:

$$\llbracket \mathbb{A}(S, x) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x), & \text{otherwise.} \end{cases}$$

$$\max \mathtt{S}(\mathtt{i}(x,y),\mathtt{i}(y,x))$$

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathtt{A}(\{y\},x)$ with the semantic:

$$\llbracket \mathbb{A}(S, x) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x), & \text{otherwise.} \end{cases}$$

• With this idea, the previous counterexample is resolved:

 $\max(\mathbf{A}(\{y\},x),\mathbf{A}(\{\},y),\mathbf{A}(\{x\},y),\mathbf{A}(\{\},x))$

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathtt{A}(\{y\},x)$ with the semantic:

$$\llbracket \mathbb{A}(S, x) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x), & \text{otherwise.} \end{cases}$$

$$\max S(\underbrace{A(\{y\}, x), A(\{\}, y), A(\{x\}, y), A(\{\}, x))}_{\leq_{[]}}$$

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathtt{A}(\{y\},x)$ with the semantic:

$$\llbracket \mathbb{A}(S, x) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x), & \text{otherwise.} \end{cases}$$

• With this idea, the previous counterexample is resolved:

 $\max \mathsf{S}(\mathsf{A}(\{\}, x), \mathsf{A}(\{\}, y), \mathsf{A}(\{x\}, y))$

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathtt{A}(\{y\},x)$ with the semantic:

$$\llbracket \mathbb{A}(S, x) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x), & \text{otherwise.} \end{cases}$$

$$\max \mathbf{S}(\mathbf{A}(\{\}, x), \mathbf{A}(\{\}, y), \mathbf{A}(\{x\}, y)) \\ \geq_{\mathbb{I}}$$

- This issue suggests that i(x, y) can be considered the maximum of simpler component subterms. We can observe that:
 - y is **always** considered as part of the maximum, and so should be its own subterm.
 - x is **only considered when** $y \neq 0$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathtt{A}(\{y\},x)$ with the semantic:

$$\llbracket \mathbb{A}(S, x) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x), & \text{otherwise.} \end{cases}$$

$$\max \mathtt{S}(\mathtt{A}(\{\},x), \mathtt{A}(\{\},y))$$

• However, recall our grammar:

$$u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{i}(u, x).$$

• However, recall our grammar:

$$u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{i}(u, x).$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $s^n(0)$ or $s^n(x)$.

• However, recall our grammar:

$$u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{i}(u, x).$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $s^n(0)$ or $s^n(x)$.

 $\bullet\,$ So, we generalize our subterms to the forms ${\rm A}(S,x,n)$ and ${\rm B}(S,n)$ where

.

• However, recall our grammar:

$$u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{i}(u, x).$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $s^n(0)$ or $s^n(x)$.

 $\bullet\,$ So, we generalize our subterms to the forms ${\rm A}(S,x,n)$ and ${\rm B}(S,n)$ where

$$\llbracket \mathbf{A}(S, x, n) \rrbracket_{\sigma} = \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x) + n, & \text{otherwise.} \end{cases}$$

.

• However, recall our grammar:

$$u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{i}(u, x).$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $s^n(0)$ or $s^n(x)$.

 $\bullet\,$ So, we generalize our subterms to the forms ${\rm A}(S,x,n)$ and ${\rm B}(S,n)$ where

$$\begin{split} \llbracket \mathbf{A}(S,x,n) \rrbracket_{\sigma} &= \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x) + n, & \text{otherwise.} \end{cases} \\ \llbracket \mathbf{B}(S,x) \rrbracket_{\sigma} &= \begin{cases} 0, & \text{if } \exists x \in S, \sigma(x) = 0\\ n, & \text{otherwise.} \end{cases} \end{split}$$

.

• However, recall our grammar:

$$u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{i}(u, x).$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $s^n(0)$ or $s^n(x)$.

 $\bullet\,$ So, we generalize our subterms to the forms ${\rm A}(S,x,n)$ and ${\rm B}(S,n)$ where

$$\begin{split} \llbracket \mathbf{A}(S, x, n) \rrbracket_{\sigma} &= \begin{cases} 0, & \text{if } \exists y \in S, \sigma(y) = 0\\ \sigma(x) + n, & \text{otherwise.} \end{cases} \\ \llbracket \mathbf{B}(S, x) \rrbracket_{\sigma} &= \begin{cases} 0, & \text{if } \exists x \in S, \sigma(x) = 0\\ n, & \text{otherwise.} \end{cases} \end{split}$$

We also refer to these new subterms as "sublevels".

• We can equate terms of the form:

$$i(i(\cdots i(i(s^n(y), x_1), x_2) \cdots, x_{n-1}), x_n)$$

with:

maxS(

).

• We can equate terms of the form:

$$i(i(\cdots i(i(s^n(y), x_1), x_2) \cdots, x_{n-1}), x_n)$$
unguarded
$$s($$

$$A(\{\}, x_n, 0)).$$

maxS(

with:

• We can equate terms of the form:

$$i(\mathbf{i}(\cdots \mathbf{i}(\mathbf{i}(s^n(y), x_1), x_2) \cdots, x_{n-1}), x_n)$$

guarded by x_n only
$$\mathbf{A}(\{x_n\}, x_{n-1}, 0\}, \mathbf{A}(\{\}, x_n, 0)).$$

maxS(

with:

21/34

• We can equate terms of the form:

with:

$$i(i(\cdots i(i(s^{n}(y), x_{1}), x_{2}) \cdots, x_{n-1}), x_{n})$$

$$guarded by all of x_{2}, \dots, x_{n}$$

$$A(\{x_{2}, \dots, x_{n}\}, x_{1}, 0), \dots, A(\{x_{n}\}, x_{n-1}, 0), A(\{\}, x_{n}, 0)).$$

• We can equate terms of the form:

• We can equate terms of the form:

$$\mathbf{i}(\mathbf{i}(\cdots \mathbf{i}(\mathbf{i}(s^n(y), x_1), x_2) \cdots, x_{n-1}), x_n) \qquad \qquad \mathcal{S}_{\mathsf{nf}}^{--} \to \mathcal{S}_{\mathsf{nf}}^{-}$$

with:

$$\max(\mathbf{A}(\{x_1,...,x_n\},y,n),\mathbf{A}(\{x_2,...,x_n\},x_1,0),...,\mathbf{A}(\{x_n\},x_{n-1},0),\mathbf{A}(\{\},x_n,0)).$$

• Similarly,

$$\mathbf{i}(\mathbf{i}(\cdots \mathbf{i}(\mathbf{i}(s^n(0), x_1), x_2) \cdots, x_{n-1}), x_n) \qquad \qquad \mathcal{S}_{\mathsf{nf}}^{--} \to \mathcal{S}_{\mathsf{nf}}^{-}$$

becomes:

$$\texttt{maxS}(\texttt{B}(\{x_1,...,x_n\},n),\texttt{A}(\{x_2,...,x_n\},x_1,0),...,\texttt{A}(\{x_n\},x_{n-1},0),\texttt{A}(\{\},x_n,0))$$

• We now have the following subterm grammar:

 $u := \mathbf{s}^{n}(0) \mid \mathbf{s}^{n}(x) \mid \mathbf{A}(\{x_{1}, \dots, x_{n}\}, x, n) \mid \mathbf{B}(\{x_{1}, \dots, x_{n}\}, n)$

We denote this set of subterms by \mathcal{S}_{nf}^- .

• We now have the following subterm grammar:

 $u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{A}(\{x_1, \dots, x_n\}, x, n) \mid \mathbf{B}(\{x_1, \dots, x_n\}, n)$

We denote this set of subterms by \mathcal{S}_{nf}^- .

• However, this normal form still not sufficient to satisfy the uniqueness property. We have the equalities:

$$\begin{split} \max \mathbf{S}(\mathbf{s}^n(0)) =_{\mathbb{I}} \max \mathbf{S}(\mathbf{B}(\{\},n)) & \qquad \mathcal{S}_{\mathsf{nf}}^- \to \mathcal{S}_{\mathsf{nf}} \\ \max \mathbf{S}(\mathbf{s}^n(x)) =_{\mathbb{I}} \max \mathbf{S}(\mathbf{A}(\{\},x,n)), \end{split}$$

• We now have the following subterm grammar:

 $u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{A}(\{x_1, \dots, x_n\}, x, n) \mid \mathbf{B}(\{x_1, \dots, x_n\}, n)$

We denote this set of subterms by \mathcal{S}_{nf}^- .

• However, this normal form still not sufficient to satisfy the uniqueness property. We have the equalities:

$$\begin{split} \max \mathbf{S}(\mathbf{s}^n(0)) =_{\mathbb{I}} \max \mathbf{S}(\mathbf{B}(\{\},n)) & \mathcal{S}_{\mathsf{nf}}^- \to \mathcal{S}_{\mathsf{nf}} \\ \max \mathbf{S}(\mathbf{s}^n(x)) =_{\mathbb{I}} \max \mathbf{S}(\mathbf{A}(\{\},x,n)), \end{split}$$

and we also have

$$\mathtt{maxS}(\mathtt{B}(S,0)) =_{\mathbb{I}\mathbb{I}} \mathtt{maxS}() \qquad \qquad \mathcal{S}_{\mathsf{nf}}^- \to \mathcal{S}_{\mathsf{nf}}$$

for all sets S (where we interpret maxS() as 0).

• We now have the following subterm grammar:

 $u := \mathbf{s}^n(0) \mid \mathbf{s}^n(x) \mid \mathbf{A}(\{x_1, \dots, x_n\}, x, n) \mid \mathbf{B}(\{x_1, \dots, x_n\}, n)$

We denote this set of subterms by \mathcal{S}_{nf}^- .

• However, this normal form still not sufficient to satisfy the uniqueness property. We have the equalities:

$$\begin{split} \max \mathbf{S}(\mathbf{s}^n(0)) =_{\mathbb{I}} \max \mathbf{S}(\mathbf{B}(\{\}, n)) & \mathcal{S}_{\mathsf{nf}}^- \to \mathcal{S}_{\mathsf{nf}} \\ \max \mathbf{S}(\mathbf{s}^n(x)) =_{\mathbb{I}} \max \mathbf{S}(\mathbf{A}(\{\}, x, n)), \end{split}$$

and we also have

$$\max \mathtt{S}(\mathtt{B}(S,0)) =_{\mathbb{I}} \mathtt{maxS}() \qquad \qquad \mathcal{S}_{\mathsf{nf}}^- \to \mathcal{S}_{\mathsf{nf}}$$

for all sets S (where we interpret maxS() as 0).

• These equalities, when applied, allow us to restrict to a subterm grammar consisting of sublevels alone:

$$u := \mathbf{A}(\{x_1, \dots, x_n\}, x, n) \mid \mathbf{B}(\{x_1, \dots, x_n\}, n+1).$$

• However, we still have the following equality:

 $\max(\mathbf{A}(\{\},x,0)) =_{\mathbb{I}} \max(\mathbf{A}(\{x\},x,0))$

• However, we still have the following equality:

 $\max(\mathbf{A}(\{\},x,0)) =_{\mathbb{I}} \max(\mathbf{A}(\{x\},x,0))$

which is an instance of the more general equality:

$$\max \mathtt{S}(\mathtt{A}(S,x,n)) =_{\mathbb{II}} \max \mathtt{S}(\mathtt{A}(S \cup \{x\},x,n),\mathtt{B}(S,n)) \qquad \mathcal{S}_{\mathsf{nf}}^- \to \mathcal{S}_{\mathsf{nf}}$$

when $x \notin S$.

• However, we still have the following equality:

 $\max \mathbf{S}(\mathbf{A}(\{\},x,0)) =_{\mathbb{I}} \max \mathbf{S}(\mathbf{A}(\{x\},x,0))$

which is an instance of the more general equality:

$$\max \mathbf{S}(\mathbf{A}(S,x,n)) =_{\mathbb{II}} \max \mathbf{S}(\mathbf{A}(S \cup \{x\},x,n),\mathbf{B}(S,n)) \qquad \mathcal{S}_{\mathsf{nf}}^{-} \to \mathcal{S}_{\mathsf{nf}}$$

when $x \notin S$.

• Applying this last equality leads us to our final subterm grammar:

$$u := \mathbf{A}(\{x\} \cup \{x_1, \dots, x_n\}, x, n) \mid \mathbf{B}(\{x_1, \dots, x_n\}, n+1).$$

We denote this set of subterms by \mathcal{S}_{nf} .

• However, we still have the following equality:

 $\max(\mathbf{A}(\{\},x,0)) =_{\mathbb{I}} \max(\mathbf{A}(\{x\},x,0))$

which is an instance of the more general equality:

$$\max \mathbf{S}(\mathbf{A}(S,x,n)) =_{\mathbb{I}} \max \mathbf{S}(\mathbf{A}(S \cup \{x\},x,n),\mathbf{B}(S,n)) \qquad \mathcal{S}_{\mathsf{nf}}^- \to \mathcal{S}_{\mathsf{nf}}$$

when $x \notin S$.

• Applying this last equality leads us to our final subterm grammar:

$$u := \mathbf{A}(\{x\} \cup \{x_1, \dots, x_n\}, x, n) \mid \mathbf{B}(\{x_1, \dots, x_n\}, n+1).$$

We denote this set of subterms by S_{nf} .

• Thanks to the $\mathcal{L} \to \mathcal{S}_{nf}^{--}$, $\mathcal{S}_{nf}^{--} \to \mathcal{S}_{nf}^{-}$, and $\mathcal{S}_{nf}^{-} \to \mathcal{S}_{nf}$ equations we know that these subterms satisfy the existence property.

• However, we still have the following equality:

$$\max \mathbf{S}(\mathbf{A}(\{\},x,0)) =_{\mathbb{I}\mathbb{J}} \max \mathbf{S}(\mathbf{A}(\{x\},x,0))$$

which is an instance of the more general equality:

$$\max \mathbf{S}(\mathbf{A}(S,x,n)) =_{\mathbb{II}} \max \mathbf{S}(\mathbf{A}(S \cup \{x\},x,n),\mathbf{B}(S,n)) \qquad \mathcal{S}_{\mathsf{nf}}^- \to \mathcal{S}_{\mathsf{nf}}$$

when $x \notin S$.

• Applying this last equality leads us to our final subterm grammar:

$$u := \mathbf{A}(\{x\} \cup \{x_1, \dots, x_n\}, x, n) \mid \mathbf{B}(\{x_1, \dots, x_n\}, n+1).$$

We denote this set of subterms by \mathcal{S}_{nf} .

- Thanks to the $\mathcal{L} \to S_{nf}^{--}$, $S_{nf}^{--} \to S_{nf}^{-}$, and $S_{nf}^{-} \to S_{nf}$ equations we know that these subterms satisfy the existence property.
- However, do they also satisfy uniqueness and attainability?

• Recall the uniqueness property:

$$\max \mathbf{S}(u_1, \dots, u_n) = \lim \max \mathbf{S}(v_1, \dots, v_m) \iff \{u_1, \dots, u_n\} = \{v_1, \dots, v_m\}$$

when $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ are incomparable.

• Recall the uniqueness property:

$$\max \mathbf{S}(u_1,\ldots,u_n) =_{\mathbb{I}} \max \mathbf{S}(v_1,\ldots,v_m) \iff \{u_1,\ \ldots,\ u_n\} = \{v_1,\ \ldots,\ v_m\}$$

when $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ are incomparable.

• In fact, our normal form is now sufficient to prove this!

• Recall the uniqueness property:

 $\max \mathbf{S}(u_1,\ldots,u_n) =_{\mathbb{I}} \max \mathbf{S}(v_1,\ldots,v_m) \iff \{u_1,\ \ldots,\ u_n\} = \{v_1,\ \ldots,\ v_m\}$

when $\{u_1, \ \ldots, \ u_n\}$ and $\{v_1, \ \ldots, \ v_m\}$ are incomparable.

- In fact, our normal form is now sufficient to prove this!
- We use the following lemma:

Lemma (Independence)

Let $u \in S_{nf}$ and $t = \max(v_1, \ldots, v_n)$ with $\{v_1, \ldots, v_n\}$ incomparable. Then, $u \leq_{\mathbb{I}} t$ if and only if there exists an i such that $u \leq_{\mathbb{I}} v_i$.

• Recall the uniqueness property:

 $\max \mathbf{S}(u_1,\ldots,u_n) =_{\mathbb{I}} \max \mathbf{S}(v_1,\ldots,v_m) \iff \{u_1,\ \ldots,\ u_n\} = \{v_1,\ \ldots,\ v_m\}$

when $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ are incomparable.

- In fact, our normal form is now sufficient to prove this!
- We use the following lemma:

Lemma (Independence)

Let $u \in S_{nf}$ and $t = \max(v_1, \ldots, v_n)$ with $\{v_1, \ldots, v_n\}$ incomparable. Then, $u \leq_{\mathbb{I}} t$ if and only if there exists an i such that $u \leq_{\mathbb{I}} v_i$.

Proof sketch: consider the u = A(S, x, n), u = B(S, x) cases in turn and proceed by contradiction, assuming $u \not\leq_{\mathbb{II}} v_i$ for all i and prove $u \not\leq_{\mathbb{II}} v$, i.e. construct a σ such that $\llbracket u \rrbracket_{\sigma} > \llbracket v_i \rrbracket_{\sigma}$ for all i.

• We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ in S_{nf} ,

 $\max S(u_1,\ldots,u_n) =_{\mathbb{I}} \max S(v_1,\ldots,v_m) \iff \{u_1,\ \ldots,\ u_n\} = \{v_1,\ \ldots,\ v_n\}.$

• We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ in \mathcal{S}_{nf} ,

 $\max S(u_1,\ldots,u_n) =_{\mathbb{I}} \max S(v_1,\ldots,v_m) \iff \{u_1,\ \ldots,\ u_n\} = \{v_1,\ \ldots,\ v_n\}.$

Proof.

• WTS that for any i, there exists a j such that $u_i = v_j$ (and vice versa).

Proving uniqueness

• We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ in S_{nf} ,

 $\max \mathbf{S}(u_1,\ldots,u_n) =_{\mathbb{I}} \max \mathbf{S}(v_1,\ldots,v_m) \iff \{u_1,\ \ldots,\ u_n\} = \{v_1,\ \ldots,\ v_n\}.$

Proof.

- WTS that for any i, there exists a j such that $u_i = v_j$ (and vice versa).
- For any u_i , we know that $u_i \leq_{\mathbb{I}} u \leq_{\mathbb{I}} v$, so by the independence lemma $u_i \leq_{\mathbb{I}} v_j$ for some j. Similarly, $v_j \leq_{\mathbb{I}} u_k$ for some k, so $u_i \leq_{\mathbb{I}} u_k$.

Proving uniqueness

• We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ in S_{nf} ,

 $\max \mathbf{S}(u_1,\ldots,u_n) =_{\mathbb{I}} \max \mathbf{S}(v_1,\ldots,v_m) \iff \{u_1,\ \ldots,\ u_n\} = \{v_1,\ \ldots,\ v_n\}.$

Proof.

- WTS that for any i, there exists a j such that $u_i = v_j$ (and vice versa).
- For any u_i , we know that $u_i \leq_{\mathbb{I}} u \leq_{\mathbb{I}} v$, so by the independence lemma $u_i \leq_{\mathbb{I}} v_j$ for some j. Similarly, $v_j \leq_{\mathbb{I}} u_k$ for some k, so $u_i \leq_{\mathbb{I}} u_k$.
- Because the u₁, ..., u_n are incomparable, we know that i = k, which implies v_j =_□ u_i, and (by another lemma) this implies v_j = u_i.
- The proof starting from v_j is identical.

 \bullet We have the following simple tests for semantic inequality on \mathcal{S}_{nf} :

$$\begin{split} \mathbf{A}(S,x,n) \leq_{\mathbb{I}} \mathbf{A}(T,y,m) & \Longleftrightarrow \ S \subseteq T \land x = y \land n \leq m \\ \mathbf{B}(S,n) \leq_{\mathbb{I}} \mathbf{B}(T,m) & \Longleftrightarrow \ S \subseteq T \land n \leq m \\ \mathbf{B}(S,n) \leq_{\mathbb{I}} \mathbf{A}(T,x,m) & \Longleftrightarrow \ (S \subseteq T \land n \leq m+1) \lor n = 0, \end{split}$$

all of which are easily implementable with a confluent rewrite system.

• We have the following simple tests for semantic inequality on \mathcal{S}_{nf} :

$$\begin{split} \mathbf{A}(S,x,n) \leq_{\mathbb{I}} \mathbf{A}(T,y,m) & \Longleftrightarrow \ S \subseteq T \land x = y \land n \leq m \\ \mathbf{B}(S,n) \leq_{\mathbb{I}} \mathbf{B}(T,m) & \Longleftrightarrow \ S \subseteq T \land n \leq m \\ \mathbf{B}(S,n) \leq_{\mathbb{I}} \mathbf{A}(T,x,m) & \Longleftrightarrow \ (S \subseteq T \land n \leq m+1) \lor n = 0, \end{split}$$

all of which are easily implementable with a confluent rewrite system. • Note also that $A(T, x, m) \not\leq_{\mathbb{II}} B(S, n)$, so this covers all possible cases of $u \leq_{\mathbb{II}} v$, and we thus achieve attainability of the normal form.

Handling Universe Cumulativity

- A subtyping relation.
- Implicit in Coq.
- Implicit (but optional) in Agda.

 $\mathbb{N} \in \mathsf{U}_0 \subset \mathsf{U}_1 \cdots \subset \mathsf{U}_i \cdots$

- A subtyping relation.
- Implicit in Coq.
- Implicit (but optional) in Agda.

 $\mathbb{N} \in \mathsf{U}_0 \subset \mathsf{U}_1 \cdots \subset \mathsf{U}_i \cdots$

Broke type uniqueness!

Assaf 2014 System with explicit subtyping

- A lift function $\uparrow_i : U_i \to U_{i+1}$.
- $\mathsf{El}_{i+1}(\uparrow_i A) \longrightarrow \mathsf{El}_i A$
- Equivalent to implicit system.

But...

- Confluence?
- Compatibility with universe polymorphism?

$$\frac{\Gamma \vdash A \colon \operatorname{Type}_i \quad \Gamma, x \colon A \vdash A \colon \operatorname{Type}_j}{\Gamma \vdash \Pi x \colon A \cdot B \colon \operatorname{Type}_{\mathbf{i}(i,j)}}$$

Many way to write the same term!

$$\uparrow_1(\mathbb{N}\to\mathbb{N}) \equiv \uparrow_1\mathbb{N}\to\uparrow_1\mathbb{N} \equiv \uparrow_1\mathbb{N}\to\mathbb{N} \equiv \mathbb{N}\to\uparrow_1\mathbb{N}$$

Definition cast (A: Type) := A. Definition prod (A B: Type) := A -> B.

(* nat -> nat as Type instead of Set *)
Goal (prod nat nat) = (nat -> (cast nat)).
Proof.
now cbv.
Qed.

31/34

- Choose a representative for each types.
- Restrict the syntax.

- Choose a representative for each types.
- Restrict the syntax.

Cast of minimal/main types as representative.

 $\uparrow_1(\mathbb{N}\to\mathbb{N})$ is the representative of the previous type.

Minimal types Usable types Terms

$$\begin{split} M &\coloneqq x \mid \mathsf{u}_i \mid \pi_{i,j} \ M \ M \mid \mathrm{Unbox}_i C \\ C &\coloneqq \mathrm{Box}_i M \mid \uparrow_i^k C \\ N &\coloneqq x \mid NN \mid \lambda x \colon T \cdot N \mid C \end{split}$$

Types $T \coloneqq \mathsf{U}_i \mid \mathsf{U}_i' \mid \mathsf{El}_i C \mid \mathsf{El}_i' M \mid \Pi x \colon T \cdot T$

$$\mathsf{El}_k(\uparrow_i^k C) \longrightarrow \mathsf{El}_i C$$
$$\mathsf{El}_i(\operatorname{Box}_i M) \longrightarrow \mathsf{El}_i' M$$

Translate $f: (A: Type_i) := A \rightarrow A$?

 $[\![A]\!]$ is a usable type. Then, the procedure is the following.

• Unbox the translation.

$\operatorname{Unbox}_{i} \llbracket A \rrbracket$

Translate $f: (A: Type_i) := A \rightarrow A$?

 $\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.

$\pi_{\mathtt{i}(?,?)} \operatorname{Unbox}_{i} \llbracket A \rrbracket \quad \operatorname{Unbox}_{i} \llbracket A \rrbracket$

Translate $f: (A: Type_i) := A \rightarrow A$?

 $\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.
- Box the result.

Box_? $(\pi_{i(?,?)} \text{Unbox}_i \llbracket A \rrbracket \text{Unbox}_i \llbracket A \rrbracket)$

Translate $f: (A: Type_i) := A \rightarrow A$?

 $\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.
- Box the result.
- Lift it.

 $\uparrow_{?}^{i} \left[\operatorname{Box}_{?} \left(\pi_{i(?,?)} \operatorname{Unbox}_{i} \left[\!\left[A \right]\!\right] \right. \operatorname{Unbox}_{i} \left[\!\left[A \right]\!\right] \right) \right]$

Translate $f: (A: Type_i) := A \rightarrow A$?

 $\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.
- Box the result.
- Lift it.

 $\uparrow_{?}^{i} \left[\operatorname{Box}_{?} \left(\pi_{i(?,?)} \operatorname{Unbox}_{i} \left[\!\left[A \right]\!\right] \right. \operatorname{Unbox}_{i} \left[\!\left[A \right]\!\right] \right) \right]$

Translate $f: (A: Type_i) := A \rightarrow A$?

 $\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.
- Box the result.
- Lift it.

 $\uparrow_{?}^{i} \left[\operatorname{Box}_{?} \left(\pi_{i(?,?)} \operatorname{Unbox}_{i} \left[\!\left[A\right]\!\right] \operatorname{Unbox}_{i} \left[\!\left[A\right]\!\right] \right) \right]$

A way to get the sort of the minimal type!