Deducteam Type Universe Seminar

Yoan Géran, Rishikesh Vaishnav, Thiago Felicissimo

September 29, 2023

Universes

0 has type Nat, but what is the type of Nat?

Universes

0 has type Nat, but what is the type of Nat? Some universe U

Universes

0 has type Nat, but what is the type of Nat?

Some universe U

In type theory, (small) types can be given the type of a universe

Universes

0 has type Nat, but what is the type of Nat?

Some universe U

In type theory, (small) types can be given the type of a universe

Many flavours: predicative/impredicative, cumulative/non-cumulative, etc

Universes

0 has type Nat, but what is the type of Nat?

Some universe U

In type theory, (small) types can be given the type of a universe

Many flavours: predicative/impredicative, cumulative/non-cumulative, etc

In many proof assistants: Coq, Agda, Lean, Matita

Universes

0 has type Nat, but what is the type of Nat?

Some universe U

In type theory, (small) types can be given the type of a universe

Many flavours: predicative/impredicative, cumulative/non-cumulative, etc

In many proof assistants: Coq, Agda, Lean, Matita

This talk How to define them in Dedukti

Universe styles in a logical framework

```
Ty:TYPE
Tm : Ty }->\mathrm{ TYPE
(\llbracketA type\rrbracket:= \llbracketA\rrbracket: Ty)
    (\llbrackett:A\rrbracket:= \llbrackett\rrbracket: Tm \llbracketA\rrbracket)
```


Universe styles in a logical framework

Ty: TYPE
Tm : Ty \rightarrow TYPE

$$
\begin{aligned}
(\llbracket A \text { type } \rrbracket & :=\llbracket A \rrbracket: \text { Ty }) \\
(\llbracket t: A \rrbracket & :=\llbracket t \rrbracket: \operatorname{Tm} \llbracket A \rrbracket)
\end{aligned}
$$

Tarski style

U : Ty
El : Tm U \rightarrow Ty
u: Tm U
$\mathrm{El} \mathrm{u} \longrightarrow \mathrm{U}$

Universe styles in a logical framework

```
Ty: TYPE
Tm : Ty }->\mathrm{ TYPE
\[
\begin{aligned}
(\llbracket A \text { type } \rrbracket & :=\llbracket A \rrbracket: \text { Ty }) \\
(\llbracket t: A \rrbracket & :=\llbracket t \rrbracket: \operatorname{Tm} \llbracket A \rrbracket)
\end{aligned}
\]
```

Tarski style
U : Ty
El : Tm U \rightarrow Ty
u:Tm U
$\mathrm{El} \mathrm{u} \longrightarrow \mathrm{U}$

Coquand style
U : Ty
$\mathrm{El}: \mathrm{Tm} \mathrm{U} \rightarrow \mathrm{Ty}$
$\mathrm{c}: \mathrm{Ty} \rightarrow \mathrm{Tm} \mathrm{U}$
$\mathrm{El}(\mathrm{c} A) \longrightarrow A$
c $(\mathrm{El} A) \longrightarrow A$

Universe styles in a logical framework

Ty: TYPE
Tm : Ty \rightarrow TYPE

$$
\begin{aligned}
(\llbracket A \text { type } \rrbracket & :=\llbracket A \rrbracket: \text { Ty }) \\
(\llbracket t: A \rrbracket & :=\llbracket t \rrbracket: \operatorname{Tm} \llbracket A \rrbracket)
\end{aligned}
$$

Tarski style
U : Ty
El : Tm U \rightarrow Ty
u: Tm U
$\mathrm{El} u \longrightarrow \mathrm{U}$

Coquand style
U : Ty
$\mathrm{El}: \mathrm{Tm} U \simeq \operatorname{Ty}: c$

Universe styles in a logical framework

```
Ty : TYPE
Tm : Ty }->\mathrm{ TYPE
\[
\begin{aligned}
& (\llbracket A \text { type } \rrbracket:=\llbracket A \rrbracket: \operatorname{Ty}) \\
& (\llbracket t: A \rrbracket:=\llbracket t \rrbracket: \operatorname{Tm} \llbracket A \rrbracket)
\end{aligned}
\]
```

Tarski style
U : Ty
El : Tm U \rightarrow Ty
u: Tm U
$\mathrm{El} u \longrightarrow \mathrm{U}$

Coquand style
U : Ty
$\mathrm{El}: \mathrm{Tm} U \simeq \mathrm{Ty}: c$
Russell style
U : Ty
$\mathrm{Tm} \mathrm{U} \longrightarrow \mathrm{Ty}$

Universe styles in a logical framework

$$
\begin{array}{lr}
\text { Ty }: \text { TYPE } & (\llbracket A \text { type } \rrbracket:=\llbracket A \rrbracket: \text { Ty }) \\
\mathrm{Tm}: \text { Ty } \rightarrow \text { TYPE } & (\llbracket t: A \rrbracket:=\llbracket t \rrbracket: \operatorname{Tm} \llbracket A \rrbracket)
\end{array}
$$

Tarski style
U : Ty
El : Tm U \rightarrow Ty
u:Tm U
$\mathrm{El} \mathrm{u} \longrightarrow \mathrm{U}$

Coquand style
U : Ty
$\mathrm{El}: \mathrm{Tm} \mathrm{U} \simeq \operatorname{Ty}: c$
Russell style
U : Ty
$\mathrm{Tm} \mathrm{U} \longrightarrow \mathrm{Ty}$

In the Dedukti literature, we often use Russell style and change names

Ty	\rightsquigarrow	U
Tm	\rightsquigarrow	El
U	\rightsquigarrow	u

Universe hierarchies

$\mathrm{u}: \mathrm{U}$ causes inconsistencies
Solution Stratify universes into an hierarchy

Universe hierarchies

$\mathrm{u}: \mathrm{U}$ causes inconsistencies
Solution Stratify universes into an hierarchy

$$
\begin{aligned}
& \mathrm{U}_{s}: \text { TYPE } \\
& \mathrm{EI}_{s}: \mathrm{U}_{s} \rightarrow \text { TYPE }
\end{aligned}
$$

Universe hierarchies

$\mathrm{u}: \mathrm{U}$ causes inconsistencies
Solution Stratify universes into an hierarchy

$$
\begin{array}{ll}
\mathrm{U}_{s}: \text { TYPE } & \\
\mathrm{EI}_{s}: \mathrm{U}_{s} \rightarrow \text { TYPE } & \text { for } s \in \mathcal{S} \\
\mathrm{u}_{s}: \mathrm{U}_{s^{\prime}} & \\
\mathrm{EI}_{s^{\prime}} \mathrm{u}_{s} \longrightarrow \mathrm{U}_{s} & \text { for }\left(s, s^{\prime}\right) \in \mathcal{A}
\end{array}
$$

Universe hierarchies

$\mathrm{u}: \mathrm{U}$ causes inconsistencies
Solution Stratify universes into an hierarchy

$$
\begin{array}{ll}
\mathrm{U}_{s}: \text { TYPE } & \text { for } s \in \mathcal{S} \\
\mathrm{El}_{s}: \mathrm{U}_{s} \rightarrow \text { TYPE } & \\
\mathrm{u}_{s}: \mathrm{U}_{s^{\prime}} & \text { for }\left(s, s^{\prime}\right) \in \mathcal{A} \\
\mathrm{EI}_{s^{\prime}} \mathrm{u}_{s} \longrightarrow \mathrm{U}_{s} & \\
\pi_{s, s^{\prime}}:\left(A: \mathrm{U}_{s}\right) \rightarrow\left(B: \mathrm{El}_{s} A \rightarrow \mathrm{U}_{s^{\prime}}\right) \rightarrow \mathrm{U}_{s^{\prime \prime}} & \\
\mathrm{El}_{s^{\prime \prime}}\left(\pi_{s, s^{\prime}} A B\right) \longrightarrow\left(x: \mathrm{El}_{s} A\right) \rightarrow \mathrm{El}_{s^{\prime}}(B x) & \text { for }\left(s, s^{\prime}, s^{\prime \prime}\right) \in \mathcal{R}
\end{array}
$$

Universe hierarchies

$\mathrm{u}: \mathrm{U}$ causes inconsistencies
Solution Stratify universes into an hierarchy

$$
\begin{array}{ll}
\mathrm{U}_{s}: \text { TYPE } & \text { for } s \in \mathcal{S} \\
\mathrm{EI}_{s}: \mathrm{U}_{s} \rightarrow \text { TYPE } & \\
\mathrm{u}_{s}: \mathrm{U}_{s^{\prime}} & \text { for }\left(s, s^{\prime}\right) \in \mathcal{A} \\
\mathrm{EI}_{s^{\prime}} \mathrm{u}_{s} \longrightarrow \mathrm{U}_{s} & \\
\pi_{s, s^{\prime}}:\left(A: \mathrm{U}_{s}\right) \rightarrow\left(B: \mathrm{El}_{s} A \rightarrow \mathrm{U}_{s^{\prime}}\right) \rightarrow \mathrm{U}_{s^{\prime \prime}} & \\
\mathrm{El}_{s^{\prime \prime}}\left(\pi_{s, s^{\prime}} A B\right) \longrightarrow\left(x: \mathrm{El}_{s} A\right) \rightarrow \mathrm{El}_{s^{\prime}}(B x) & \text { for }\left(s, s^{\prime}, s^{\prime \prime}\right) \in \mathcal{R}
\end{array}
$$

Finite encoding?

Universe hierarchies, finitely

$$
\begin{aligned}
& \mathcal{S}: \text { TYPE } \\
& \mathcal{A}: \mathcal{S} \rightarrow \mathcal{S} \\
& \mathcal{R}: \mathcal{S} \rightarrow \mathcal{S} \rightarrow \mathcal{S}
\end{aligned}
$$

Universe hierarchies, finitely

$$
\begin{aligned}
& \mathcal{S}: \text { TYPE } \\
& \mathcal{A}: \mathcal{S} \rightarrow \mathcal{S} \\
& \mathcal{R}: \mathcal{S} \rightarrow \mathcal{S} \rightarrow \mathcal{S} \\
& \ldots \\
& \mathrm{U}: \mathcal{S} \rightarrow \text { TYPE } \\
& \mathrm{El}:(s: \mathcal{S}) \rightarrow \mathrm{U} s \rightarrow \text { TYPE } \\
& \mathrm{u}:(s: \mathcal{S}) \rightarrow \mathrm{U}(\mathcal{A} s) \\
& \mathrm{El}_{-}(\mathrm{u} s) \longrightarrow \mathrm{U} s \\
& \pi:\left(s s^{\prime}: \mathcal{S}\right) \rightarrow(A: \mathrm{U} s) \rightarrow\left(B: \mathrm{El} s A \rightarrow \mathrm{U} s^{\prime}\right) \rightarrow \mathrm{U}\left(\mathcal{R} s s^{\prime}\right) \\
& \mathrm{El}_{-}\left(\pi s s^{\prime} A B\right) \longrightarrow(x: \text { El } s A) \rightarrow \mathrm{El} s^{\prime}(B x)
\end{aligned}
$$

Introduction: Universe Polymorphism

Universe Polymorphism

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Universe Polymorphism

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_{s} for each universe U_{s}.

Universe Polymorphism

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_{s} for each universe U_{s}.

Universe polymorphism allows definitions that can be used at multiple universes

$$
\mathrm{id}_{i}: \Pi A: \mathrm{U}_{i} \cdot A \rightarrow A:=\lambda A x \cdot x
$$

Universe Polymorphism

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_{s} for each universe U_{s}.

Universe polymorphism allows definitions that can be used at multiple universes

$$
\mathrm{id}_{i}: \Pi A: \mathrm{U}_{i} \cdot A \rightarrow A:=\lambda A x \cdot x
$$

We have id_{0} Nat $0=0$ and $\operatorname{id}_{1} \mathrm{U}_{0}$ Nat $=$ Nat

Universe Polymorphism

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_{s} for each universe U_{s}.

Universe polymorphism allows definitions that can be used at multiple universes

$$
\mathrm{id}_{i}: \Pi A: \mathrm{U}_{i} \cdot A \rightarrow A:=\lambda A x \cdot x
$$

We have id_{0} Nat $0=0$ and $\mathrm{id}_{1} \mathrm{U}_{0}$ Nat $=\mathrm{Nat}$

In Dedukti Level (= sort) quantification can be simulated directly by framework's function type

Universe Polymorphism

Sometimes one wishes to use a definition at multiple universes (e.g. id Nat but also id U).

Bad solution. Define a new id_{s} for each universe U_{s}.

Universe polymorphism allows definitions that can be used at multiple universes

$$
\mathrm{id}_{i}: \Pi A: \mathrm{U}_{i} . A \rightarrow A:=\lambda A x . x
$$

We have id_{0} Nat $0=0$ and $\mathrm{id}_{1} \mathrm{U}_{0}$ Nat $=\mathrm{Nat}$

In Dedukti Level (= sort) quantification can be simulated directly by framework's function type

However, often we require levels to satisfy a specific equational theory. This is the hard part

Predicative Universe Polymorphism

Predicative levels

Predicative levels

$$
l, l^{\prime}::=i|0| \mathrm{S} l \mid l \sqcup l^{\prime}
$$

with equality defined by

$$
l \simeq l^{\prime} \quad \text { iff } \quad \forall \sigma: \mathcal{V} \rightarrow \mathbb{N} . \llbracket l \rrbracket_{\sigma}=\llbracket l^{\prime} \rrbracket_{\sigma}
$$

where $\llbracket-\rrbracket_{\sigma}$ interprets levels in obvious way.

Predicative levels

Predicative levels

$$
l, l^{\prime}::=i|0| \mathrm{S} l \mid l \sqcup l^{\prime}
$$

with equality defined by

$$
l \simeq l^{\prime} \quad \text { iff } \quad \forall \sigma: \mathcal{V} \rightarrow \mathbb{N} . \llbracket l \rrbracket_{\sigma}=\llbracket l^{l^{\prime}} \rrbracket_{\sigma}
$$

where $\llbracket-\rrbracket_{\sigma}$ interprets levels in obvious way.
Problem How to encode \simeq in Dedukti?

Solutions

Genestier 20 Rewrite system to decide \simeq Based on existence of canonical forms for levels Requires $A C$ matching and $A C$ equivalence

Solutions

Genestier 20 Rewrite system to decide \simeq Based on existence of canonical forms for levels Requires $A C$ matching and $A C$ equivalence

Blanqui 22 AC matching normalized rewriting

$$
x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y
$$

Solutions

Genestier 20 Rewrite system to decide \simeq
Based on existence of canonical forms for levels Requires $A C$ matching and $A C$ equivalence

Blanqui 22 AC matching normalized rewriting

$$
x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y
$$

Felicissimo 23 Abandon idea of encoding \simeq with rewriting We have $\simeq \cdot \longrightarrow \subseteq \longrightarrow \cdot \simeq$, so can postpone \simeq to end of conversion check AC matching/normalized rewriting syntactic matching + decide \simeq

Solutions

Genestier 20 Rewrite system to decide \simeq
Based on existence of canonical forms for levels Requires $A C$ matching and $A C$ equivalence

Blanqui 22 AC matching normalized rewriting

$$
x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y
$$

Felicissimo 23 Abandon idea of encoding \simeq with rewriting We have $\simeq \cdot \longrightarrow \subseteq \longrightarrow \cdot \simeq$, so can postpone \simeq to end of conversion check AC matching/normalized rewriting syntactic matching + decide \simeq If Dedukti+AC is ok, why not Dedukti+E for arbitrary E?

Solutions

Genestier 20 Rewrite system to decide \simeq
Based on existence of canonical forms for levels Requires $A C$ matching and $A C$ equivalence

Blanqui 22 AC matching normalized rewriting

$$
x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y
$$

Felicissimo 23 Abandon idea of encoding \simeq with rewriting We have $\simeq \cdot \longrightarrow \subseteq \longrightarrow \cdot \simeq$, so can postpone \simeq to end of conversion check AC matching/normalized rewriting syntactic matching + decide \simeq If Dedukti+AC is ok, why not Dedukti+E for arbitrary E?

Takeaway message No way to encode in vanilla Dedukti

Solutions

Genestier 20 Rewrite system to decide \simeq
Based on existence of canonical forms for levels Requires $A C$ matching and $A C$ equivalence

Blanqui 22 AC matching normalized rewriting

$$
x \sqcup y \sqcup x \simeq x \sqcup x \sqcup y \longrightarrow x \sqcup y
$$

Felicissimo 23 Abandon idea of encoding \simeq with rewriting We have $\simeq \cdot \longrightarrow \subseteq \longrightarrow \cdot \simeq$, so can postpone \simeq to end of conversion check AC matching/normalized rewriting syntactic matching + decide \simeq If Dedukti+AC is ok, why not Dedukti+E for arbitrary E?

Takeaway message No way to encode in vanilla Dedukti Moreover, to show confluence, all 3 options require confinement or showing SN before confluence (reason: non-left-linear rules)

Impredicative Universe Normalization

Introduction

- In theorem provers like Lean and Coq, we have an infinite universe hierarchy starting with the base universe (Sort 0) which is reserved for propositions.

Introduction

- In theorem provers like Lean and Coq, we have an infinite universe hierarchy starting with the base universe (Sort 0) which is reserved for propositions.
- We must encode universe impredicativity in the context of polymorphic types deriving from the rule:

$$
\frac{\Gamma \vdash A: \mathrm{U}_{\ell} \quad \Gamma, x: A \vdash B: \mathrm{U}_{\ell^{\prime}}}{\Gamma \vdash \forall x: A . B: \mathrm{U}_{\mathrm{i}\left(\ell, \ell^{\prime}\right)}}
$$

Introduction

- In theorem provers like Lean and Coq, we have an infinite universe hierarchy starting with the base universe (Sort 0) which is reserved for propositions.
- We must encode universe impredicativity in the context of polymorphic types deriving from the rule:

$$
\frac{\Gamma \vdash A: \mathrm{U}_{\ell} \quad \Gamma, x: A \vdash B: \mathrm{U}_{\ell^{\prime}}}{\Gamma \vdash \forall x: A . B: \mathrm{U}_{\mathrm{i}\left(\ell, \ell^{\prime}\right)}}
$$

where i (i.e. imax, "impredicative max") has the semantics:

$$
i\left(\ell, \ell^{\prime}\right)= \begin{cases}0, & \text { if } \ell^{\prime}=0 \\ \max \left(\ell, \ell^{\prime}\right), & \text { otherwise }\end{cases}
$$

Introduction

- In theorem provers like Lean and Coq, we have an infinite universe hierarchy starting with the base universe (Sort 0) which is reserved for propositions.
- We must encode universe impredicativity in the context of polymorphic types deriving from the rule:

$$
\frac{\Gamma \vdash A: \mathrm{U}_{\ell} \quad \Gamma, x: A \vdash B: \mathrm{U}_{\ell^{\prime}}}{\Gamma \vdash \forall x: A . B: \mathrm{U}_{\mathbf{i}\left(\ell, \ell^{\prime}\right)}}
$$

where i (i.e. imax, "impredicative max") has the semantics:

$$
\mathrm{i}\left(\ell, \ell^{\prime}\right)= \begin{cases}0, & \text { if } \ell^{\prime}=0 \\ \max \left(\ell, \ell^{\prime}\right), & \text { otherwise }\end{cases}
$$

- In total, we have the following grammar for universe terms:

$$
\ell:=0|\mathrm{~s}(\ell)| \mathrm{m}\left(\ell, \ell^{\prime}\right)\left|\mathrm{i}\left(\ell, \ell^{\prime}\right)\right| x
$$

where x is from a countable set of variables \mathcal{X}.
We denote this set of terms by \mathcal{L}.

Introduction

- For a valuation $\sigma: \mathcal{X} \rightarrow \mathbb{N}$ we define the value $\llbracket \ell \rrbracket_{\sigma}$ of a level term ℓ according to the rules:

$$
\begin{gathered}
\llbracket 0 \rrbracket_{\sigma}=0 \quad \llbracket \mathrm{~s}(t) \rrbracket_{\sigma}=\mathrm{s}\left(\llbracket t \rrbracket_{\sigma}\right) \quad \llbracket x \rrbracket_{\sigma}=\sigma(t) \\
\llbracket \mathrm{m}\left(\ell, \ell^{\prime}\right) \rrbracket_{\sigma}=\max \left(\llbracket \ell \rrbracket_{\sigma}, \llbracket \ell^{\prime} \rrbracket_{\sigma}\right) \\
\llbracket \mathrm{i}\left(\ell, \ell^{\prime}\right) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \llbracket \ell^{\prime} \rrbracket_{\sigma}=0 \\
\max \left(\llbracket \ell \rrbracket_{\sigma}, \llbracket \ell^{\prime} \rrbracket_{\sigma}\right), & \text { otherwise. }\end{cases}
\end{gathered}
$$

Introduction

- For a valuation $\sigma: \mathcal{X} \rightarrow \mathbb{N}$ we define the value $\llbracket \ell \rrbracket_{\sigma}$ of a level term ℓ according to the rules:

$$
\begin{aligned}
& \llbracket 0 \rrbracket_{\sigma}=0 \quad \llbracket \mathrm{~s}(t) \rrbracket_{\sigma}=\mathrm{s}\left(\llbracket t \rrbracket_{\sigma}\right) \quad \llbracket x \rrbracket_{\sigma}=\sigma(t) \\
& \llbracket \mathrm{m}\left(\ell, \ell^{\prime}\right) \rrbracket_{\sigma}=\max \left(\llbracket \ell \rrbracket_{\sigma}, \llbracket \ell^{\prime} \rrbracket_{\sigma}\right) \\
& \llbracket \mathrm{i}\left(\ell, \ell^{\prime}\right) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \llbracket \ell^{\prime} \rrbracket_{\sigma}=0 \\
\max \left(\llbracket \ell \rrbracket_{\sigma}, \llbracket \ell^{\prime} \rrbracket_{\sigma}\right), & \text { otherwise. }\end{cases}
\end{aligned}
$$

- We define semantic relations between universe terms:

$$
\begin{aligned}
& \ell=\llbracket \ell_{\mathbb{1}} \Longleftrightarrow \text { for all } \sigma: \mathcal{X} \rightarrow \mathbb{N}, \llbracket \ell \rrbracket_{\sigma}=\llbracket \ell^{\prime} \rrbracket_{\sigma} \\
& \ell \leq_{\llbracket \mathbb{I}} \ell^{\prime} \Longleftrightarrow \text { for all } \sigma: \mathcal{X} \rightarrow \mathbb{N}, \llbracket \ell \rrbracket_{\sigma} \leq \llbracket \ell^{\prime} \rrbracket_{\sigma}
\end{aligned}
$$

A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

[^0]
A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
\mathrm{m}(2+x, 1+\mathrm{m}(\mathrm{~m}(5, x), y))
$$

[^1]
A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
\mathrm{m}(2+x, 1+\mathrm{m}(\mathrm{~m}(5, x), y))
$$

[^2]
A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
\mathrm{m}(2+x, \mathrm{~m}(1+\mathrm{m}(5, x), 1+y))
$$

[^3]
A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
\mathrm{m}(2+x, \mathrm{~m}(1+\mathrm{m}(5, x), 1+y))
$$

[^4]
A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
\mathrm{m}(2+x, \mathrm{~m}(\mathrm{~m}(6,1+x), 1+y))
$$

[^5]
A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
\mathrm{m}(2+x, \mathrm{~m}(\mathrm{~m}(6,1+x), 1+y))
$$

[^6]
A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
\operatorname{maxS}(2+x, 1+x, 1+y, 6)
$$

[^7]
A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
\operatorname{maxS}(2+x, 1+x, 1+y, 6)
$$

${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

A predicative normal form

- We can take some inspiration from the normal form introduced by Genestier 1 for the predicative (no i) case. Here, we consider "subterms" of the form $n+x$ or n where $n \in \mathbb{N}$ and $x \in \mathcal{X}$.
- We proceed by "pushing in" s's (i.e. constant additions) and eliminating "dominated" subterms until we arrive at the form:

$$
\operatorname{maxS}\left(n_{1}+x_{1}, \ldots, n_{k}+x_{k}, n\right)
$$

with all subterms incomparable.

- For example:

$$
1+\mathrm{m}(1+x, \mathrm{~m}(\mathrm{~m}(5, x), y))
$$

becomes

$$
\operatorname{maxS}(2+x, 1+y, 6)
$$

[^8]
Impredicative normal form: goals

- We also want a normal form like $\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)$, where the u_{i} are "minimal" subterms picked from a grammar and semantic such that:

Impredicative normal form: goals

- We also want a normal form like $\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)$, where the u_{i} are "minimal" subterms picked from a grammar and semantic such that:
(1) (existence) they completely characterize all universe terms, that is, for all t there exists $\left\{u_{1}, \ldots, u_{n}\right\}$ such that $t=\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)$.

Impredicative normal form: goals

- We also want a normal form like $\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)$, where the u_{i} are "minimal" subterms picked from a grammar and semantic such that:
(1) (existence) they completely characterize all universe terms, that is, for all t there exists $\left\{u_{1}, \ldots, u_{n}\right\}$ such that $t=\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)$.
(2) (uniqueness) they uniquely identify a normal form, such that:

$$
\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)==_{\text {II }} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{m}\right\}
$$

when $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ are incomparable.

Impredicative normal form: goals

- We also want a normal form like $\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)$, where the u_{i} are "minimal" subterms picked from a grammar and semantic such that:
(1) (existence) they completely characterize all universe terms, that is, for all t there exists $\left\{u_{1}, \ldots, u_{n}\right\}$ such that $t=\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)$.
(2) (uniqueness) they uniquely identify a normal form, such that:

$$
\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)=_{\llbracket \mathbb{1}} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{m}\right\}
$$

when $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ are incomparable.
(3) (attainability) they are easily comparable via rewrite rules, so we can reduce $\operatorname{maxS}(u, v)$ into $\operatorname{maxS}(u)$ when $v \leq_{\llbracket 1} u$, implying that a normal form can be practically attained.

Pulling out $\mathrm{m} /$ Pushing in s

- We plan to produce a normal form consisting of the maximum of a set of subterms. To this end, we must "pull out" the m operators until they are no longer nested within any other operator.

Pulling out $\mathrm{m} /$ Pushing in s

- We plan to produce a normal form consisting of the maximum of a set of subterms. To this end, we must "pull out" the m operators until they are no longer nested within any other operator.
- We immediately have $\mathrm{s}(\mathrm{m}(x, y))=\mathrm{m}(\mathrm{s}(x), \mathrm{s}(y))$. For the i case we derive the equalities:

$$
\mathrm{i}(\mathrm{~m}(x, y), z)=\mathrm{m}(\mathrm{i}(x, z), \mathrm{i}(y, z))
$$

Pulling out $\mathrm{m} /$ Pushing in s

- We plan to produce a normal form consisting of the maximum of a set of subterms. To this end, we must "pull out" the m operators until they are no longer nested within any other operator.
- We immediately have $\mathrm{s}(\mathrm{m}(x, y))=\mathrm{m}(\mathrm{s}(x), \mathrm{s}(y))$. For the i case we derive the equalities:

$$
\begin{aligned}
& \mathrm{i}(\mathrm{~m}(x, y), z)=\mathrm{m}(\mathrm{i}(x, z), \mathrm{i}(y, z)) \\
& \mathrm{i}(x, \mathrm{~m}(y, z))=\mathrm{m}(\mathrm{i}(x, y), \mathrm{i}(x, z))
\end{aligned}
$$

Pulling out $\mathrm{m} /$ Pushing in s

- We plan to produce a normal form consisting of the maximum of a set of subterms. To this end, we must "pull out" the m operators until they are no longer nested within any other operator.
- We immediately have $\mathrm{s}(\mathrm{m}(x, y))=\mathrm{m}(\mathrm{s}(x), \mathrm{s}(y))$. For the i case we derive the equalities:

$$
\begin{aligned}
& \mathrm{i}(\mathrm{~m}(x, y), z)=\mathrm{m}(\mathrm{i}(x, z), \mathbf{i}(y, z)) \\
& \mathrm{i}(x, \mathrm{~m}(y, z))=\mathrm{m}(\mathrm{i}(x, y), \mathrm{i}(x, z))
\end{aligned}
$$

- To restrict s to variables, we can push it into the i terms according to the equality:

$$
\mathrm{s}(\mathrm{i}(x, y))=\mathrm{m}(\mathrm{~s}(y), \mathrm{i}(\mathrm{~s}(x), y))
$$

$$
\mathcal{L} \rightarrow \mathcal{S}_{\mathrm{nf}}^{--}
$$

Simplifying i subterms: RHS

- We wish to simplify the righthand-side of the i operators in our normal form. We can do so by observing the equalities:

Simplifying i subterms: RHS

- We wish to simplify the righthand-side of the i operators in our normal form. We can do so by observing the equalities:

$$
\begin{equation*}
\mathrm{i}(u, \mathrm{i}(v, w))=\mathrm{m}(\mathrm{i}(u, w), \mathrm{i}(v, w)) \tag{nf}
\end{equation*}
$$

which serve to restrict the RHS to variables.

Simplifying i subterms: RHS

- We wish to simplify the righthand-side of the i operators in our normal form. We can do so by observing the equalities:

$$
\begin{aligned}
\mathrm{i}(u, \mathrm{i}(v, w)) & =\mathrm{m}(\mathrm{i}(u, w), \mathrm{i}(v, w)) \\
\mathrm{i}(u, \mathrm{~s}(v)) & =\mathrm{m}(u, \mathrm{~s}(v))
\end{aligned}
$$

$$
\mathcal{L} \rightarrow \mathcal{S}_{\mathrm{nf}}^{--}
$$

which serve to restrict the RHS to variables.

Simplifying i subterms: RHS

- We wish to simplify the righthand-side of the i operators in our normal form. We can do so by observing the equalities:

$$
\begin{aligned}
\mathrm{i}(u, \mathrm{i}(v, w)) & =\mathrm{m}(\mathrm{i}(u, w), \mathrm{i}(v, w)) \\
\mathrm{i}(u, \mathrm{~s}(v)) & =\mathrm{m}(u, \mathrm{~s}(v)) \\
\mathrm{i}(u, 0) & =0
\end{aligned}
$$

which serve to restrict the RHS to variables.

Simplifying i subterms: RHS

- We wish to simplify the righthand-side of the i operators in our normal form. We can do so by observing the equalities:

$$
\begin{aligned}
\mathrm{i}(u, \mathrm{i}(v, w)) & =\mathrm{m}(\mathrm{i}(u, w), \mathrm{i}(v, w)) \\
\mathrm{i}(u, \mathrm{~s}(v)) & =\mathrm{m}(u, \mathrm{~s}(v)) \\
\mathrm{i}(u, 0) & =0
\end{aligned}
$$

which serve to restrict the RHS to variables.

- As there are no rules to further simplify the lefthand-side of i, we accept the s, i, and 0 in the LHS of i as part of our subterms.

A pseudo-pseudo-normal form

- This leads us to a normal form that looks like $\max \mathrm{S}\left(u_{1}, \ldots, u_{n}\right)$, where the subterms u_{i} are constructed from the grammar:

$$
u:=\mathbf{s}^{n}(0)\left|\mathbf{s}^{n}(x)\right| \mathrm{i}(u, x)
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}^{--}$.

A pseudo-pseudo-normal form

- This leads us to a normal form that looks like $\max \mathrm{S}\left(u_{1}, \ldots, u_{n}\right)$, where the subterms u_{i} are constructed from the grammar:

$$
u:=\mathrm{s}^{n}(0)\left|\mathrm{s}^{n}(x)\right| \mathrm{i}(u, x)
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}^{--}$.

- However, this normal form is not enough! It does not guarantee uniqueness of the representation.

A pseudo-pseudo-normal form

- This leads us to a normal form that looks like $\max \mathrm{S}\left(u_{1}, \ldots, u_{n}\right)$, where the subterms u_{i} are constructed from the grammar:

$$
u:=\mathrm{s}^{n}(0)\left|\mathrm{s}^{n}(x)\right| \mathrm{i}(u, x)
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}^{--}$.

- However, this normal form is not enough! It does not guarantee uniqueness of the representation.
- For example, we have the equality:

$$
\operatorname{maxS}(\mathbf{i}(x, y), \mathbf{i}(y, x))=_{\mathbb{\rrbracket}} \operatorname{maxS}(x, y)
$$

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathrm{A}(\{y\}, x)$ with the semantic:

$$
\llbracket \mathrm{A}(S, x) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x), & \text { otherwise }\end{cases}
$$

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathrm{A}(\{y\}, x)$ with the semantic:

$$
\llbracket \mathrm{A}(S, x) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x), & \text { otherwise }\end{cases}
$$

- With this idea, the previous counterexample is resolved:

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathrm{A}(\{y\}, x)$ with the semantic:

$$
\llbracket \mathrm{A}(S, x) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x), & \text { otherwise }\end{cases}
$$

- With this idea, the previous counterexample is resolved:

$$
\operatorname{maxS}(\mathrm{i}(x, y), \mathrm{i}(y, x))
$$

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathrm{A}(\{y\}, x)$ with the semantic:

$$
\llbracket \mathrm{A}(S, x) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x), & \text { otherwise }\end{cases}
$$

- With this idea, the previous counterexample is resolved:

$$
\operatorname{maxS}(\mathrm{i}(x, y), \mathrm{i}(y, x))
$$

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathrm{A}(\{y\}, x)$ with the semantic:

$$
\llbracket \mathrm{A}(S, x) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x), & \text { otherwise }\end{cases}
$$

- With this idea, the previous counterexample is resolved:

$$
\operatorname{maxS}(\mathrm{A}(\{y\}, x), \mathrm{A}(\{ \}, y), \mathrm{A}(\{x\}, y), \mathrm{A}(\{ \}, x))
$$

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathrm{A}(\{y\}, x)$ with the semantic:

$$
\llbracket \mathrm{A}(S, x) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x), & \text { otherwise }\end{cases}
$$

- With this idea, the previous counterexample is resolved:

$$
\underset{\leq_{\mathbb{1}}}{\operatorname{maxS}(\mathrm{A}(\{y\}, x), \mathrm{A}(\{ \}, y), \mathrm{A}(\{x\}, y), \mathrm{A}(\{ \}, x))}
$$

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathrm{A}(\{y\}, x)$ with the semantic:

$$
\llbracket \mathrm{A}(S, x) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x), & \text { otherwise }\end{cases}
$$

- With this idea, the previous counterexample is resolved:

$$
\operatorname{maxS}(\mathrm{A}(\}, x), \mathrm{A}(\{ \}, y), \mathrm{A}(\{x\}, y))
$$

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathrm{A}(\{y\}, x)$ with the semantic:

$$
\llbracket \mathrm{A}(S, x) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x), & \text { otherwise }\end{cases}
$$

- With this idea, the previous counterexample is resolved:

$$
\frac{\operatorname{maxS}(\mathrm{A}(\}, x), \mathrm{A}(\{ \}, y), \mathrm{A}(\{x\}, y))}{\geq_{\mathbb{\square}}}
$$

Deconstructing i (x, y)

- This issue suggests that $\mathrm{i}(x, y)$ can be considered the maximum of simpler component subterms. We can observe that:
- y is always considered as part of the maximum, and so should be its own subterm.
- x is only considered when $\mathbf{y} \neq \mathbf{0}$, so this conditioning should be reflected in its subterm.
- So, we can think of a new subterm of the form $\mathrm{A}(\{y\}, x)$ with the semantic:

$$
\llbracket \mathrm{A}(S, x) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x), & \text { otherwise }\end{cases}
$$

- With this idea, the previous counterexample is resolved:

$$
\operatorname{maxS}(\mathrm{A}(\}, x), \mathrm{A}(\{ \}, y))
$$

Establishing normal form subterms

- However, recall our grammar:

$$
u:=\mathbf{s}^{n}(0)\left|\mathbf{s}^{n}(x)\right| \mathrm{i}(u, x) .
$$

Establishing normal form subterms

- However, recall our grammar:

$$
u:=\mathbf{s}^{n}(0)\left|\mathbf{s}^{n}(x)\right| \mathrm{i}(u, x) .
$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $\mathbf{s}^{n}(0)$ or $\mathbf{s}^{n}(x)$.

Establishing normal form subterms

- However, recall our grammar:

$$
u:=\mathbf{s}^{n}(0)\left|\mathbf{s}^{n}(x)\right| \mathrm{i}(u, x) .
$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $\mathbf{s}^{n}(0)$ or $\mathbf{s}^{n}(x)$.

- So, we generalize our subterms to the forms $\mathrm{A}(S, x, n)$ and $\mathrm{B}(S, n)$ where

Establishing normal form subterms

- However, recall our grammar:

$$
u:=\mathbf{s}^{n}(0)\left|\mathbf{s}^{n}(x)\right| \mathbf{i}(u, x) .
$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $\mathrm{s}^{n}(0)$ or $\mathrm{s}^{n}(x)$.

- So, we generalize our subterms to the forms $\mathrm{A}(S, x, n)$ and $\mathrm{B}(S, n)$ where

$$
\llbracket \mathrm{A}(S, x, n) \rrbracket_{\sigma}= \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\ \sigma(x)+n, & \text { otherwise. }\end{cases}
$$

Establishing normal form subterms

- However, recall our grammar:

$$
u:=\mathbf{s}^{n}(0)\left|\mathbf{s}^{n}(x)\right| \mathrm{i}(u, x) .
$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $\mathrm{s}^{n}(0)$ or $\mathrm{s}^{n}(x)$.

- So, we generalize our subterms to the forms $\mathrm{A}(S, x, n)$ and $\mathrm{B}(S, n)$ where

$$
\begin{aligned}
\llbracket \mathrm{A}(S, x, n) \rrbracket_{\sigma} & = \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\
\sigma(x)+n, & \text { otherwise. }\end{cases} \\
\llbracket \mathrm{B}(S, x) \rrbracket_{\sigma} & = \begin{cases}0, & \text { if } \exists x \in S, \sigma(x)=0 \\
n, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Establishing normal form subterms

- However, recall our grammar:

$$
u:=\mathbf{s}^{n}(0)\left|\mathbf{s}^{n}(x)\right| \mathrm{i}(u, x) .
$$

Note that i's can be nested, and within an innermost i, the LHS can be of the form $\mathbf{s}^{n}(0)$ or $\mathbf{s}^{n}(x)$.

- So, we generalize our subterms to the forms $\mathrm{A}(S, x, n)$ and $\mathrm{B}(S, n)$ where

$$
\begin{aligned}
\llbracket \mathrm{A}(S, x, n) \rrbracket_{\sigma} & = \begin{cases}0, & \text { if } \exists y \in S, \sigma(y)=0 \\
\sigma(x)+n, & \text { otherwise. }\end{cases} \\
\llbracket \mathrm{B}(S, x) \rrbracket_{\sigma} & = \begin{cases}0, & \text { if } \exists x \in S, \sigma(x)=0 \\
n, & \text { otherwise. }\end{cases}
\end{aligned}
$$

We also refer to these new subterms as "sublevels".

Establishing normal form subterms

- We can equate terms of the form:

$$
\mathrm{i}\left(\mathrm{i}\left(\cdots \mathrm{i}\left(\mathrm{i}\left(s^{n}(y), x_{1}\right), x_{2}\right) \cdots, x_{n-1}\right), x_{n}\right)
$$

with:
$\operatorname{maxS}($

Establishing normal form subterms

- We can equate terms of the form:

$$
\mathrm{i}\left(\mathrm{i}\left(\cdots \mathrm{i}\left(\mathrm{i}\left(s^{n}(y), x_{1}\right), x_{2}\right) \cdots, x_{n-1}\right), x_{n}\right) \underbrace{}_{\left.\mathrm{A}\left(\{ \}, x_{n}, 0\right)\right)}
$$

Establishing normal form subterms

- We can equate terms of the form:

Establishing normal form subterms

- We can equate terms of the form:
with:

$$
\operatorname{maxS}(
$$

$$
\begin{aligned}
\mathbf{i}\left(i\left(\cdots \mathbf{i}\left(\mathbf{i}\left(s^{n}(y), x_{1}\right), x_{2}\right) \cdots, x_{n-1}\right), x_{n}\right) \\
\\
\underset{\left.\mathrm{A}\left(\left\{x_{2}, \ldots, x_{n}\right\}, x_{1}, 0\right), \ldots, \mathrm{A}\left(\left\{x_{n}\right\}, x_{n-1}, 0\right), \mathrm{A}\left(\{ \}, x_{n}, 0\right)\right) .}{\text { guarded by all of } x_{2}, \ldots, x_{n}}
\end{aligned}
$$

Establishing normal form subterms

- We can equate terms of the form:
with:

$$
\mathrm{i}\left(\mathrm{i}\left(\cdots \mathrm{i}\left(\mathrm{i}\left(s^{n}(y), x_{1}\right), x_{2}\right) \cdots, x_{n-1}\right), x_{n}\right)
$$

Establishing normal form subterms

- We can equate terms of the form:

$$
\mathrm{i}\left(\mathrm{i}\left(\cdots \mathrm{i}\left(\mathrm{i}\left(s^{n}(y), x_{1}\right), x_{2}\right) \cdots, x_{n-1}\right), x_{n}\right)
$$

with:

$$
\operatorname{maxS}\left(\mathrm{A}\left(\left\{x_{1}, \ldots, x_{n}\right\}, y, n\right), \mathrm{A}\left(\left\{x_{2}, \ldots, x_{n}\right\}, x_{1}, 0\right), \ldots, \mathrm{A}\left(\left\{x_{n}\right\}, x_{n-1}, 0\right), \mathrm{A}\left(\{ \}, x_{n}, 0\right)\right) .
$$

- Similarly,

$$
\mathrm{i}\left(\mathrm{i}\left(\cdots \mathrm{i}\left(\mathrm{i}\left(s^{n}(0), x_{1}\right), x_{2}\right) \cdots, x_{n-1}\right), x_{n}\right)
$$

becomes:

$$
\operatorname{maxS}\left(\mathrm{B}\left(\left\{x_{1}, \ldots, x_{n}\right\}, n\right), \mathrm{A}\left(\left\{x_{2}, \ldots, x_{n}\right\}, x_{1}, 0\right), \ldots, \mathrm{A}\left(\left\{x_{n}\right\}, x_{n-1}, 0\right), \mathrm{A}\left(\{ \}, x_{n}, 0\right)\right)
$$

A pseudo-normal form

- We now have the following subterm grammar:

$$
u:=\mathrm{s}^{n}(0)\left|\mathrm{s}^{n}(x)\right| \mathrm{A}\left(\left\{x_{1}, \ldots, x_{n}\right\}, x, n\right) \mid \mathrm{B}\left(\left\{x_{1}, \ldots, x_{n}\right\}, n\right)
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}^{-}$.

A pseudo-normal form

- We now have the following subterm grammar:

$$
u:=\mathrm{s}^{n}(0)\left|\mathrm{s}^{n}(x)\right| \mathrm{A}\left(\left\{x_{1}, \ldots, x_{n}\right\}, x, n\right) \mid \mathrm{B}\left(\left\{x_{1}, \ldots, x_{n}\right\}, n\right)
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}^{-}$.

- However, this normal form still not sufficient to satisfy the uniqueness property. We have the equalities:

$$
\begin{aligned}
& \operatorname{maxS}\left(\mathrm{s}^{n}(0)\right)==_{\mathbb{I}} \operatorname{maxS}(\mathrm{B}(\{ \}, n)) \\
& \operatorname{maxS}\left(\mathrm{s}^{n}(x)\right)=_{\mathbb{I}} \operatorname{maxS}(\mathrm{A}(\{ \}, x, n)),
\end{aligned}
$$

A pseudo-normal form

- We now have the following subterm grammar:

$$
u:=\mathrm{s}^{n}(0)\left|\mathrm{s}^{n}(x)\right| \mathrm{A}\left(\left\{x_{1}, \ldots, x_{n}\right\}, x, n\right) \mid \mathrm{B}\left(\left\{x_{1}, \ldots, x_{n}\right\}, n\right)
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}^{-}$.

- However, this normal form still not sufficient to satisfy the uniqueness property. We have the equalities:

$$
\begin{aligned}
& \operatorname{maxS}\left(\mathrm{s}^{n}(0)\right)=\mathbb{\mathbb { d }} \operatorname{maxS}(\mathrm{B}(\{ \}, n)) \\
& \operatorname{maxS}\left(\mathrm{s}^{n}(x)\right)=\mathbb{\mathbb { d }} \operatorname{maxS}(\mathrm{A}(\{ \}, x, n)),
\end{aligned}
$$

and we also have

$$
\operatorname{maxS}(\mathrm{B}(S, 0))=\mathbb{\mathbb { d }} \operatorname{maxS}()
$$

$$
\mathcal{S}_{\mathrm{nf}}^{-} \rightarrow \mathcal{S}_{\mathrm{nf}}
$$

for all sets S (where we interpret $\max S()$ as 0).

A pseudo-normal form

- We now have the following subterm grammar:

$$
u:=\mathrm{s}^{n}(0)\left|\mathrm{s}^{n}(x)\right| \mathrm{A}\left(\left\{x_{1}, \ldots, x_{n}\right\}, x, n\right) \mid \mathrm{B}\left(\left\{x_{1}, \ldots, x_{n}\right\}, n\right)
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}^{-}$.

- However, this normal form still not sufficient to satisfy the uniqueness property. We have the equalities:

$$
\begin{aligned}
& \operatorname{maxS}\left(\mathrm{s}^{n}(0)\right)=\mathbb{\mathbb { d }} \operatorname{maxS}(\mathrm{B}(\{ \}, n)) \\
& \operatorname{maxS}\left(\mathrm{s}^{n}(x)\right)=\mathbb{\mathbb { d }} \operatorname{maxS}(\mathrm{A}(\{ \}, x, n))
\end{aligned}
$$

and we also have

$$
\operatorname{maxS}(\mathrm{B}(S, 0))=_{\mathbb{1}} \operatorname{maxS}()
$$

$$
\mathcal{S}_{\mathrm{nf}}^{-} \rightarrow \mathcal{S}_{\mathrm{nf}}
$$

for all sets S (where we interpret $\operatorname{maxS}()$ as 0).

- These equalities, when applied, allow us to restrict to a subterm grammar consisting of sublevels alone:

$$
u:=\mathrm{A}\left(\left\{x_{1}, \ldots, x_{n}\right\}, x, n\right) \mid \mathrm{B}\left(\left\{x_{1}, \ldots, x_{n}\right\}, n+1\right) .
$$

The true normal form

- However, we still have the following equality:

$$
\operatorname{maxS}\left(\mathrm{A}(\}, x, 0))=_{\mathbb{I}} \operatorname{maxS}(\mathrm{A}(\{x\}, x, 0))\right.
$$

The true normal form

- However, we still have the following equality:

$$
\operatorname{maxS}\left(\mathrm{A}(\}, x, 0))=_{\mathbb{I}} \operatorname{maxS}(\mathrm{A}(\{x\}, x, 0))\right.
$$

which is an instance of the more general equality:

$$
\operatorname{maxS}(\mathrm{A}(S, x, n))=_{\mathbb{d}} \operatorname{maxS}(\mathrm{A}(S \cup\{x\}, x, n), \mathrm{B}(S, n)) \quad \mathcal{S}_{\mathrm{nf}}^{-} \rightarrow \mathcal{S}_{\mathrm{nf}}
$$

when $x \notin S$.

The true normal form

- However, we still have the following equality:

$$
\operatorname{maxS}\left(\mathrm{A}(\}, x, 0))=_{\mathbb{\square}} \operatorname{maxS}(\mathrm{A}(\{x\}, x, 0))\right.
$$

which is an instance of the more general equality:

$$
\operatorname{maxS}(\mathrm{A}(S, x, n))=_{\mathbb{1}} \operatorname{maxS}(\mathrm{A}(S \cup\{x\}, x, n), \mathrm{B}(S, n)) \quad \mathcal{S}_{\mathrm{nf}}^{-} \rightarrow \mathcal{S}_{\mathrm{nf}}
$$

when $x \notin S$.

- Applying this last equality leads us to our final subterm grammar:

$$
u:=\mathrm{A}\left(\{x\} \cup\left\{x_{1}, \ldots, x_{n}\right\}, x, n\right) \mid \mathrm{B}\left(\left\{x_{1}, \ldots, x_{n}\right\}, n+1\right) .
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}$.

The true normal form

- However, we still have the following equality:

$$
\operatorname{maxS}\left(\mathrm{A}(\}, x, 0))=_{\mathbb{\square}} \operatorname{maxS}(\mathrm{A}(\{x\}, x, 0))\right.
$$

which is an instance of the more general equality:

$$
\operatorname{maxS}(\mathrm{A}(S, x, n))=_{\mathbb{1}} \operatorname{maxS}(\mathrm{A}(S \cup\{x\}, x, n), \mathrm{B}(S, n)) \quad \mathcal{S}_{\mathrm{nf}}^{-} \rightarrow \mathcal{S}_{\mathrm{nf}}
$$

when $x \notin S$.

- Applying this last equality leads us to our final subterm grammar:

$$
u:=\mathrm{A}\left(\{x\} \cup\left\{x_{1}, \ldots, x_{n}\right\}, x, n\right) \mid \mathrm{B}\left(\left\{x_{1}, \ldots, x_{n}\right\}, n+1\right) .
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}$.

- Thanks to the $\mathcal{L} \rightarrow \mathcal{S}_{\mathrm{nf}}^{--}, \mathcal{S}_{\mathrm{nf}}^{--} \rightarrow \mathcal{S}_{\mathrm{nf}}^{-}$, and $\mathcal{S}_{\mathrm{nf}}^{-} \rightarrow \mathcal{S}_{\mathrm{nf}}$ equations we know that these subterms satisfy the existence property.

The true normal form

- However, we still have the following equality:

$$
\operatorname{maxS}\left(\mathrm{A}(\}, x, 0))=_{\mathbb{\rrbracket}} \operatorname{maxS}(\mathrm{A}(\{x\}, x, 0))\right.
$$

which is an instance of the more general equality:

$$
\operatorname{maxS}(\mathrm{A}(S, x, n))=\mathbb{\llbracket} \operatorname{maxS}(\mathrm{A}(S \cup\{x\}, x, n), \mathrm{B}(S, n)) \quad \mathcal{S}_{\mathrm{nf}}^{-} \rightarrow \mathcal{S}_{\mathrm{nf}}
$$

when $x \notin S$.

- Applying this last equality leads us to our final subterm grammar:

$$
u:=\mathrm{A}\left(\{x\} \cup\left\{x_{1}, \ldots, x_{n}\right\}, x, n\right) \mid \mathrm{B}\left(\left\{x_{1}, \ldots, x_{n}\right\}, n+1\right) .
$$

We denote this set of subterms by $\mathcal{S}_{\mathrm{nf}}$.

- Thanks to the $\mathcal{L} \rightarrow \mathcal{S}_{\mathrm{nf}}^{--}, \mathcal{S}_{\mathrm{nf}}^{--} \rightarrow \mathcal{S}_{\mathrm{nf}}^{-}$, and $\mathcal{S}_{\mathrm{nf}}^{-} \rightarrow \mathcal{S}_{\mathrm{nf}}$ equations we know that these subterms satisfy the existence property.
- However, do they also satisfy uniqueness and attainability?

Proving uniqueness

- Recall the uniqueness property:

$$
\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)=\mathbb{\mathbb { 1 }} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{m}\right\}
$$

when $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ are incomparable.

Proving uniqueness

- Recall the uniqueness property:

$$
\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)=_{\mathbb{1}} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{m}\right\}
$$

when $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ are incomparable.

- In fact, our normal form is now sufficient to prove this!

Proving uniqueness

- Recall the uniqueness property:

$$
\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)=_{\mathbb{\|} \mathbb{I}} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{m}\right\}
$$

when $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ are incomparable.

- In fact, our normal form is now sufficient to prove this!
- We use the following lemma:

Lemma (Independence)

Let $u \in \mathcal{S}_{n f}$ and $t=\operatorname{maxS}\left(v_{1}, \ldots, v_{n}\right)$ with $\left\{v_{1}, \ldots, v_{n}\right\}$ incomparable. Then, $u \leq_{\mathbb{1}} t$ if and only if there exists an i such that $u \leq_{\mathbb{1}} v_{i}$.

Proving uniqueness

- Recall the uniqueness property:

$$
\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)=_{\mathbb{I}} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{m}\right\}
$$

when $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ are incomparable.

- In fact, our normal form is now sufficient to prove this!
- We use the following lemma:

Lemma (Independence)

Let $u \in \mathcal{S}_{n f}$ and $t=\operatorname{maxS}\left(v_{1}, \ldots, v_{n}\right)$ with $\left\{v_{1}, \ldots, v_{n}\right\}$ incomparable. Then, $u \leq_{\mathbb{1}} t$ if and only if there exists an i such that $u \leq_{\mathbb{\square}} v_{i}$.

Proof sketch: consider the $u=\mathrm{A}(S, x, n), u=\mathrm{B}(S, x)$ cases in turn and proceed by contradiction, assuming $u \not \mathbb{Z}_{\mathbb{1}} v_{i}$ for all i and prove $u \not \not_{\llbracket \rrbracket} v$, i.e. construct a σ such that $\llbracket u \rrbracket_{\sigma}>\llbracket v_{i} \rrbracket_{\sigma}$ for all i.

Proving uniqueness

- We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ in $\mathcal{S}_{n f}$,

$$
\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)=_{\mathbb{I} \mathbb{I}} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{n}\right\} .
$$

Proving uniqueness

- We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ in $\mathcal{S}_{n f}$,

$$
\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)=_{[\mathbb{I I}} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{n}\right\} .
$$

Proof.

- WTS that for any i, there exists a j such that $u_{i}=v_{j}$ (and vice versa).

Proving uniqueness

- We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ in $\mathcal{S}_{n f}$, $\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)=_{\mathbb{I I}} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{n}\right\}$.

Proof.

- WTS that for any i, there exists a j such that $u_{i}=v_{j}$ (and vice versa).
- For any u_{i}, we know that $u_{i} \leq_{\mathbb{I}} u \leq_{\mathbb{1}} v$, so by the independence lemma $u_{i} \leq_{\text {II }} v_{j}$ for some j. Similarly, $v_{j} \leq_{\text {II }} u_{k}$ for some k, so $u_{i} \leq_{\text {II }} u_{k}$.

Proving uniqueness

- We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ in $\mathcal{S}_{n f}$,

$$
\operatorname{maxS}\left(u_{1}, \ldots, u_{n}\right)=_{\mathbb{I} \mathbb{I}} \operatorname{maxS}\left(v_{1}, \ldots, v_{m}\right) \Longleftrightarrow\left\{u_{1}, \ldots, u_{n}\right\}=\left\{v_{1}, \ldots, v_{n}\right\} .
$$

Proof.

- WTS that for any i, there exists a j such that $u_{i}=v_{j}$ (and vice versa).
- For any u_{i}, we know that $u_{i} \leq_{\mathbb{I}} u \leq_{\mathbb{\pi}} v$, so by the independence lemma $u_{i} \leq_{\text {II }} v_{j}$ for some j. Similarly, $v_{j} \leq_{\text {【I }} u_{k}$ for some k, so $u_{i} \leq_{\llbracket I} u_{k}$.
- Because the u_{1}, \ldots, u_{n} are incomparable, we know that $i=k$, which implies $v_{j}={ }_{\llbracket 1} u_{i}$, and (by another lemma) this implies $v_{j}=u_{i}$.
- The proof starting from v_{j} is identical.

Comparing subterms

- We have the following simple tests for semantic inequality on $\mathcal{S}_{\mathrm{nf}}$:

$$
\begin{aligned}
\mathrm{A}(S, x, n) \leq_{\mathbb{1}} \mathrm{A}(T, y, m) & \Longleftrightarrow S \subseteq T \wedge x=y \wedge n \leq m \\
\mathrm{~B}(S, n) \leq_{\mathbb{1}} \mathrm{B}(T, m) & \Longleftrightarrow S \subseteq T \wedge n \leq m \\
\mathrm{~B}(S, n) \leq_{\mathbb{d}} \mathrm{A}(T, x, m) & \Longleftrightarrow(S \subseteq T \wedge n \leq m+1) \vee n=0,
\end{aligned}
$$

all of which are easily implementable with a confluent rewrite system.

Comparing subterms

- We have the following simple tests for semantic inequality on $\mathcal{S}_{\text {nf }}$:

$$
\begin{aligned}
\mathrm{A}(S, x, n) \leq_{\mathbb{1}} \mathrm{A}(T, y, m) & \Longleftrightarrow S \subseteq T \wedge x=y \wedge n \leq m \\
\mathrm{~B}(S, n) \leq_{\mathbb{1}} \mathrm{B}(T, m) & \Longleftrightarrow S \subseteq T \wedge n \leq m \\
\mathrm{~B}(S, n) \leq_{\mathbb{d}} \mathrm{A}(T, x, m) & \Longleftrightarrow(S \subseteq T \wedge n \leq m+1) \vee n=0,
\end{aligned}
$$

all of which are easily implementable with a confluent rewrite system.

- Note also that $\mathrm{A}(T, x, m) \not \mathbb{Z}_{\llbracket} \mathrm{B}(S, n)$, so this covers all possible cases of $u \leq_{\mathbb{1}} v$, and we thus achieve attainability of the normal form.

Handling Universe Cumulativity

Cumulativity

- A subtyping relation.
- Implicit in Coq.
- Implicit (but optional) in Agda.

$$
\mathbb{N} \in \mathrm{U}_{0} \subset \mathrm{U}_{1} \cdots \subset \mathrm{U}_{i} \cdots
$$

Cumulativity

- A subtyping relation.
- Implicit in Coq.
- Implicit (but optional) in Agda.

$$
\mathbb{N} \in \mathrm{U}_{0} \subset \mathrm{U}_{1} \cdots \subset \mathrm{U}_{i} \cdots
$$

Broke type uniqueness!

Make it explicit

Assaf 2014 System with explictit subtyping

- A lift function $\uparrow_{i}: \mathrm{U}_{i} \rightarrow \mathrm{U}_{i+1}$.
- $\mathrm{El}_{i+1}\left(\uparrow_{i} A\right) \longrightarrow \mathrm{El}_{i} A$
- Equivalent to implicit system.

But...

- Confluence?
- Compatibility with universe polymorphism?

The main problem

$$
\frac{\Gamma \vdash A: \text { Type }_{i} \quad \Gamma, x: A \vdash A: \text { Type }_{j}}{\Gamma \vdash \Pi x: A \cdot B: \operatorname{Type}_{\mathbf{i}(i, j)}}
$$

Many way to write the same term!

$$
\uparrow_{1}(\mathbb{N} \rightarrow \mathbb{N}) \equiv \uparrow_{1} \mathbb{N} \rightarrow \uparrow_{1} \mathbb{N} \equiv \uparrow_{1} \mathbb{N} \rightarrow \mathbb{N} \equiv \mathbb{N} \rightarrow \uparrow_{1} \mathbb{N}
$$

Coq example

```
Definition cast (A: Type) := A.
Definition prod (A B: Type) := A -> B.
(* nat -> nat as Type instead of Set *)
Goal (prod nat nat) = (nat -> (cast nat)).
Proof.
now cbv.
Qed.
```


My proposal

- Choose a representative for each types.
- Restrict the syntax.

My proposal

- Choose a representative for each types.
- Restrict the syntax.

Cast of minimal/main types as representative.

$\uparrow_{1}(\mathbb{N} \rightarrow \mathbb{N})$ is the representative of the previous type.

The syntax

Minimal types
Usable types
Terms

Types

$$
T:=\mathrm{U}_{i}\left|\mathrm{U}_{i}^{\prime}\right| \mathrm{El}_{i} C\left|\mathrm{El}_{i}^{\prime} M\right| \Pi x: T \cdot T
$$

$$
\begin{gathered}
\mathrm{El}_{k}\left(\uparrow_{i}^{k} C\right) \longrightarrow \mathrm{El}_{i} C \\
\mathrm{El}_{i}\left(\operatorname{Box}_{i} M\right) \longrightarrow \mathrm{El}_{i}^{\prime} M
\end{gathered}
$$

Translate the creation of a product

Translate $f:\left(A: \mathrm{Type}_{i}\right):=A \rightarrow A$?
$\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.

$$
\operatorname{Unbox}_{i} \llbracket A \rrbracket
$$

Translate the creation of a product

Translate $f:\left(A: \mathrm{Type}_{i}\right):=A \rightarrow A$?
$\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.

$$
\pi_{\mathrm{i}(?, ?)} \operatorname{Unbox}_{i} \llbracket A \rrbracket \quad \operatorname{Unbox}_{i} \llbracket A \rrbracket
$$

Translate the creation of a product

Translate $f:\left(A: \mathrm{Type}_{i}\right):=A \rightarrow A$?
$\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.
- Box the result.

$$
\operatorname{Box}_{?}\left(\pi_{\mathbf{i}(?, ?)} \operatorname{Unbox}_{i} \llbracket A \rrbracket \operatorname{Unbox}_{i} \llbracket A \rrbracket\right)
$$

Translate the creation of a product

Translate $f:\left(A:\right.$ Type $\left._{i}\right):=A \rightarrow A$?
$\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.
- Box the result.
- Lift it.

$$
\uparrow_{?}{ }^{i}\left[\operatorname{Box}_{?}\left(\pi_{\mathrm{i}(?, ?)} \operatorname{Unbox}_{i} \llbracket A \rrbracket \operatorname{Unbox}_{i} \llbracket A \rrbracket\right)\right]
$$

Translate the creation of a product

Translate $f:\left(A:\right.$ Type $\left._{i}\right):=A \rightarrow A$?
$\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.
- Box the result.
- Lift it.

$$
\uparrow_{?}{ }^{i}\left[\operatorname{Box}_{?}\left(\pi_{\mathrm{i}(?, ?)} \operatorname{Unbox}_{i} \llbracket A \rrbracket \operatorname{Unbox}_{i} \llbracket A \rrbracket\right)\right]
$$

Translate the creation of a product

Translate $f:\left(A: \mathrm{Type}_{i}\right):=A \rightarrow A$?
$\llbracket A \rrbracket$ is a usable type. Then, the procedure is the following.

- Unbox the translation.
- Create the product with the minimal type.
- Box the result.
- Lift it.

$$
\uparrow_{?}{ }^{i}\left[\operatorname{Box}_{?}\left(\pi_{\mathbf{i}(?, ?)} \operatorname{Unbox}_{i} \llbracket A \rrbracket \operatorname{Unbox}_{i} \llbracket A \rrbracket\right)\right]
$$

A way to get the sort of the minimal type!

[^0]: ${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

[^1]: ${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

[^2]: ${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

[^3]: ${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

[^4]: ${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

[^5]: ${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

[^6]: ${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

[^7]: ${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

[^8]: ${ }^{1}$ Guillaume Genestier. Encoding Agda Programs Using Rewriting, https://drops.dagstuhl.de/opus/volltexte/2020/12353

