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Universes

0 has type Nat, but what is the type of Nat?

Some universe U

In type theory, (small) types can be given the type of a universe

Many flavours: predicative/impredicative, cumulative/non-cumulative, etc

In many proof assistants: Coq, Agda, Lean, Matita

This talk How to define them in Dedukti
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Universe styles in a logical framework

Ty : TYPE (JA typeK := JAK : Ty)
Tm : Ty → TYPE (Jt : AK := JtK : Tm JAK)

Tarski style

U : Ty

El : Tm U → Ty

u : Tm U

El u −→ U

Coquand style

Russell style

U : Ty

Tm U −→ Ty

In the Dedukti literature, we often use Russell style and change names

Ty ⇝ U

Tm ⇝ El

U ⇝ u
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Universe hierarchies

u : U causes inconsistencies

Solution Stratify universes into an hierarchy

Us : TYPE

Els : Us → TYPE for s ∈ S

us : Us′

Els′ us −→ Us for (s, s′) ∈ A

πs,s′ : (A : Us) → (B : Els A → Us′) → Us′′

Els′′ (πs,s′ A B) −→ (x : Els A) → Els′ (B x) for (s, s′, s′′) ∈ R

Finite encoding?
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Universe hierarchies, finitely

S : TYPE

A : S → S
R : S → S → S
...

U : S → TYPE

El : (s : S) → U s → TYPE

u : (s : S) → U (A s)

El (u s) −→ U s

π : (s s′ : S) → (A : U s) → (B : El s A → U s′) → U (R s s′)

El (π s s′ A B) −→ (x : El s A) → El s′ (B x)
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Introduction: Universe Polymorphism
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Universe Polymorphism

Sometimes one wishes to use a definition at multiple universes
(e.g. id Nat but also id U).

Bad solution. Define a new ids for each universe Us

.

Universe polymorphism allows definitions that can be used
at multiple universes

idi : ΠA : Ui.A → A := λA x.x

We have id0 Nat 0 = 0 and id1 U0 Nat = Nat

In Dedukti Level (= sort) quantification can be simulated directly
by framework’s function type

However, often we require levels to satisfy a specific equational theory.
This is the hard part
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Predicative Universe Polymorphism
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Predicative levels

Predicative levels
l, l′ ::= i | 0 | S l | l ⊔ l′

with equality defined by

l ≃ l′ iff ∀σ : V → N. JlKσ = Jl′Kσ

where J−Kσ interprets levels in obvious way.

Problem How to encode ≃ in Dedukti?
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Solutions

Genestier 20 Rewrite system to decide ≃
Based on existence of canonical forms for levels
Requires AC matching and AC equivalence

Blanqui 22 AC matching normalized rewriting

x ⊔ y ⊔ x ≃ x ⊔ x ⊔ y −→ x ⊔ y

Felicissimo 23 Abandon idea of encoding ≃ with rewriting
We have ≃ · −→⊆−→ · ≃, so can postpone ≃ to end of conversion check
AC matching/normalized rewriting syntactic matching + decide ≃
If Dedukti+AC is ok, why not Dedukti+E for arbitrary E?

Takeaway message No way to encode in vanilla Dedukti
Moreover, to show confluence, all 3 options require confinement
or showing SN before confluence (reason: non-left-linear rules)
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Impredicative Universe Normalization
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Introduction

In theorem provers like Lean and Coq, we have an infinite
universe hierarchy starting with the base universe (Sort 0) which is
reserved for propositions.

We must encode universe impredicativity in the context of
polymorphic types deriving from the rule:

Γ ⊢ A : Uℓ Γ, x : A ⊢ B : Uℓ′

Γ ⊢ ∀x : A. B : Ui(ℓ,ℓ′)

where i (i.e. imax, “impredicative max”) has the semantics:

i(ℓ, ℓ′) =

{
0, if ℓ′ = 0

max(ℓ, ℓ′), otherwise.

In total, we have the following grammar for universe terms:

ℓ := 0 | s (ℓ) | m(ℓ, ℓ′) | i(ℓ, ℓ′) | x
where x is from a countable set of variables X .
We denote this set of terms by L.
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Introduction

For a valuation σ : X → N we define the value JℓKσ of a level term ℓ
according to the rules:

J0Kσ = 0 Js (t)Kσ = s (JtKσ) JxKσ = σ(t)

Jm(ℓ, ℓ′)Kσ = max(JℓKσ, Jℓ′Kσ)

Ji(ℓ, ℓ′)Kσ =

{
0, if Jℓ′Kσ = 0

max(JℓKσ, Jℓ′Kσ), otherwise.

We define semantic relations between universe terms:

ℓ =JK ℓ
′ ⇐⇒ for all σ : X → N, JℓKσ = Jℓ′Kσ

ℓ ≤JK ℓ
′ ⇐⇒ for all σ : X → N, JℓKσ ≤ Jℓ′Kσ
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A predicative normal form

We can take some inspiration from the normal form introduced by
Genestier1 for the predicative (no i) case. Here, we consider
“subterms” of the form n+ x or n where n ∈ N and x ∈ X .
We proceed by “pushing in” s’s (i.e. constant additions) and
eliminating “dominated” subterms until we arrive at the form:

maxS(n1 + x1, . . . , nk + xk, n),

with all subterms incomparable.
For example:

1 + m(1 + x, m(m(5, x), y))

becomes

1 + m(1 + x, m(m(5, x), y))

1Guillaume Genestier. Encoding Agda Programs Using Rewriting,
https://drops.dagstuhl.de/opus/volltexte/2020/12353
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Impredicative normal form: goals

We also want a normal form like maxS(u1, . . . , un), where the ui are
“minimal” subterms picked from a grammar and semantic such that:

1 (existence) they completely characterize all universe terms,
that is, for all t there exists {u1, . . . , un} such that
t = maxS(u1, . . . , un).

2 (uniqueness) they uniquely identify a normal form, such that:

maxS(u1, . . . , un) =JK maxS(v1, . . . , vm) ⇐⇒ {u1, . . . , un} = {v1, . . . , vm}

when {u1, . . . , un} and {v1, . . . , vm} are incomparable.
3 (attainability) they are easily comparable via rewrite rules, so

we can reduce maxS(u, v) into maxS(u) when v ≤JK u, implying that
a normal form can be practically attained.
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Pulling out m/Pushing in s

We plan to produce a normal form consisting of the maximum of a
set of subterms. To this end, we must “pull out” the m operators until
they are no longer nested within any other operator.

We immediately have s (m(x, y)) = m(s (x) , s (y)). For the i case we
derive the equalities:

i(m(x, y), z) = m(i(x, z), i(y, z))

L → S−−
nf

i(x, m(y, z)) = m(i(x, y), i(x, z))

To restrict s to variables, we can push it into the i terms according
to the equality:

s (i(x, y)) = m(s (y) , i(s (x) , y)) L → S−−
nf
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Simplifying i subterms: RHS

We wish to simplify the righthand-side of the i operators in our
normal form. We can do so by observing the equalities:

i(u, i(v, w)) = m(i(u,w), i(v, w))

L → S−−
nf

i(u, s (v)) = m(u, s (v))

i(u, 0) = 0

which serve to restrict the RHS to variables.

As there are no rules to further simplify the lefthand-side of i, we
accept the s, i, and 0 in the LHS of i as part of our subterms.
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A pseudo-pseudo-normal form

This leads us to a normal form that looks like maxS(u1, . . . , un),
where the subterms ui are constructed from the grammar:

u := sn(0) | sn(x) | i(u, x).

We denote this set of subterms by S−−
nf .

However, this normal form is not enough! It does not guarantee
uniqueness of the representation.

For example, we have the equality:

maxS(i(x, y), i(y, x)) =JK maxS(x, y).
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Deconstructing i(x, y)

This issue suggests that i(x, y) can be considered the maximum of
simpler component subterms. We can observe that:

y is always considered as part of the maximum, and so should be its
own subterm.
x is only considered when y ̸= 0, so this conditioning should be
reflected in its subterm.

So, we can think of a new subterm of the form A({y}, x) with the
semantic:

JA(S, x)Kσ =

{
0, if ∃y ∈ S, σ(y) = 0

σ(x), otherwise.

With this idea, the previous counterexample is resolved:
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Establishing normal form subterms

However, recall our grammar:

u := sn(0) | sn(x) | i(u, x).

Note that i’s can be nested, and within an innermost i, the LHS can
be of the form sn(0) or sn(x).

So, we generalize our subterms to the forms A(S, x, n) and B(S, n)
where

JA(S, x, n)Kσ =

{
0, if ∃y ∈ S, σ(y) = 0

σ(x) + n, otherwise.

JB(S, x)Kσ =

{
0, if ∃x ∈ S, σ(x) = 0

n, otherwise.

We also refer to these new subterms as “sublevels”

.
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Establishing normal form subterms

We can equate terms of the form:

i(i(· · · i(i(sn(y), x1), x2) · · · , xn−1), xn)

with:

maxS(

A({x1,...,xn},y,n),A({x2,...,xn},x1,0),...,A({xn},xn−1,0),A({},xn,0)

).

Similarly,

i(i(· · · i(i(sn(0), x1), x2) · · · , xn−1), xn) S−−
nf → S−

nf

becomes:

maxS(B({x1,...,xn},n),A({x2,...,xn},x1,0),...,A({xn},xn−1,0),A({},xn,0))
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A pseudo-normal form

We now have the following subterm grammar:

u := sn(0) | sn(x) | A({x1, . . . , xn}, x, n) | B({x1, . . . , xn}, n)
We denote this set of subterms by S−

nf .

However, this normal form still not sufficient to satisfy
the uniqueness property. We have the equalities:

maxS(sn(0)) =JK maxS(B({}, n)) S−
nf → Snf

maxS(sn(x)) =JK maxS(A({}, x, n)),

and we also have

maxS(B(S, 0)) =JK maxS() S−
nf → Snf

for all sets S (where we interpret maxS() as 0).

These equalities, when applied, allow us to restrict to a
subterm grammar consisting of sublevels alone:

u := A({x1, . . . , xn}, x, n) | B({x1, . . . , xn}, n+ 1).
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The true normal form

However, we still have the following equality:

maxS(A({}, x, 0)) =JK maxS(A({x}, x, 0))

which is an instance of the more general equality:

maxS(A(S, x, n)) =JK maxS(A(S ∪ {x}, x, n), B(S, n)) S−
nf → Snf

when x /∈ S.

Applying this last equality leads us to our final subterm grammar:

u := A({x} ∪ {x1, . . . , xn}, x, n) | B({x1, . . . , xn}, n+ 1).

We denote this set of subterms by Snf.

Thanks to the L → S−−
nf , S−−

nf → S−
nf , and S−

nf → Snf equations

we know that these subterms satisfy the existence property.

However, do they also satisfy uniqueness and attainability?
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Proving uniqueness

Recall the uniqueness property:

maxS(u1, . . . , un) =JK maxS(v1, . . . , vm) ⇐⇒ {u1, . . . , un} = {v1, . . . , vm}

when {u1, . . . , un} and {v1, . . . , vm} are incomparable.

In fact, our normal form is now sufficient to prove this!

We use the following lemma:

Lemma (Independence)

Let u ∈ Snf and t = maxS(v1, . . . , vn) with {v1, . . . , vn} incomparable.
Then, u ≤JK t if and only if there exists an i such that u ≤JK vi.

Proof sketch: consider the u = A(S, x, n), u = B(S, x) cases in turn
and proceed by contradiction, assuming u ≰JK vi for all i and
prove u ≰JK v, i.e. construct a σ such that JuKσ > JviKσ for all i.
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Proving uniqueness

We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable {u1, . . . , un} and {v1, . . . , vm} in Snf,

maxS(u1, . . . , un) =JK maxS(v1, . . . , vm) ⇐⇒ {u1, . . . , un} = {v1, . . . , vn}.

Proof.

WTS that for any i, there exists a j such that ui = vj (and vice versa).

For any ui, we know that ui ≤JK u ≤JK v, so by the independence lemma
ui ≤JK vj for some j. Similarly, vj ≤JK uk for some k, so ui ≤JK uk.

Because the u1, . . . , un are incomparable, we know that i = k, which
implies vj =JK ui, and (by another lemma) this implies vj = ui.

The proof starting from vj is identical.
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Comparing subterms

We have the following simple tests for semantic inequality on Snf:

A(S, x, n) ≤JK A(T, y,m) ⇐⇒ S ⊆ T ∧ x = y ∧ n ≤ m

B(S, n) ≤JK B(T,m) ⇐⇒ S ⊆ T ∧ n ≤ m

B(S, n) ≤JK A(T, x,m) ⇐⇒ (S ⊆ T ∧ n ≤ m+ 1) ∨ n = 0,

all of which are easily implementable with a confluent rewrite system.

Note also that A(T, x,m) ≰JK B(S, n), so this covers all possible cases
of u ≤JK v, and we thus achieve attainability of the normal form.
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Handling Universe Cumulativity
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Cumulativity

A subtyping relation.

Implicit in Coq.

Implicit (but optional) in Agda.

N ∈ U0 ⊂ U1 · · · ⊂ Ui · · ·

Broke type uniqueness!
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Make it explicit

Assaf 2014 System with explictit subtyping

A lift function ↑i : Ui → Ui+1.

Eli+1(↑iA) −→ EliA

Equivalent to implicit system.

But...

Confluence?

Compatibility with universe polymorphism?
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The main problem

Γ ⊢ A : Typei Γ, x : A ⊢ A : Typej

Γ ⊢ Πx : A ·B : Typei(i,j)

Many way to write the same term!

↑1(N → N) ≡ ↑1N → ↑1N ≡ ↑1N → N ≡ N → ↑1N
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Coq example

Definition cast (A: Type) := A.

Definition prod (A B: Type) := A -> B.

(* nat -> nat as Type instead of Set *)

Goal (prod nat nat) = (nat -> (cast nat)).

Proof.

now cbv.

Qed.
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My proposal

Choose a representative for each types.

Restrict the syntax.

Cast of minimal/main types as representative.

↑1(N → N) is the representative of the previous type.
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The syntax

Minimal types M := x | ui | πi,j M M | UnboxiC
Usable types C :=BoxiM | ↑kiC
Terms N := x | NN | λx : T ·N | C

Types T := Ui | U′
i | EliC | El′iM | Πx : T · T

Elk
(
↑kiC

)
−→ EliC

Eli
(
BoxiM

)
−→ El′iM
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Translate the creation of a product

Translate f : (A : Typei) := A → A ?

JAK is a usable type. Then, the procedure is the following.

Unbox the translation.

Create the product with the minimal type.

Box the result.

Lift it.

Unboxi JAK

A way to get the sort of the minimal type!
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