
TRAINING ENIGMAS, COPS, AND OTHER

THINKING CREATURES

Josef Urban

Czech Technical University in Prague

PAAR 2022
August 11, 2022, Haifa

1 / 58



Leibniz’s/Hilbert’s/Russell’s Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by
reduction to logic/computation

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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How Do We Automate Math, Science, Programming?

� What is mathematical and scientific thinking?
� Pattern-matching, analogy, induction from examples
� Deductive reasoning
� Complicated feedback loops between induction and deduction
� Using a lot of previous knowledge - both for induction and deduction

� We need to develop such methods on computers
� Are there any large corpora suitable for nontrivial deduction?
� Yes! Large libraries of formal proofs and theories
� So let’s develop strong AI on them!
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Intuition vs Formal Reasoning – Poincaré vs Hilbert

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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Induction/Learning vs Reasoning – Henri Poincaré

� Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

� “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

� I believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)
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Learning vs Reasoning – Alan Turing 1950 – AI

� 1950: Computing machinery and intelligence – AI, Turing test
� “We may hope that machines will eventually compete with men in all

purely intellectual fields.” (regardless of his 1936 undecidability result!)
� last section on Learning Machines:
� “But which are the best ones [fields] to start [learning on] with?”
� “... Even this is a difficult decision. Many people think that a very abstract

activity, like the playing of chess, would be best.”
� Why not try with math? It is much more (universally?) expressive ...
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History and Motivation for AI/ML/TP

� Intuition vs Formal Reasoning – Poincaré vs Hilbert, Science & Method
� Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
� Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...
� Denzinger, Schulz, Goller, Fuchs – late 90’s, ATP-focused:
� Learning from Previous Proof Experience
� My MSc (1998): Try ILP to learn explainable rules/heuristics from Mizar
� Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
� ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
� ... hammer-style methods, feedback loops, internal guidance, ...
� More details – AGI’18 keynote: https://bit.ly/3qifhg4
� AI vs DL: Ben Goertzel’s Prague talk: https://youtu.be/Zt2HSTuGBn8
� Big AI visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
� Practical impact: boost today’s large ITP verification projects
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Why Do This Today?

1 Practically Useful for Verification of Complex HW/SW and Math
� Formal Proof of the Kepler Conjecture (2014 – Hales – 20k lemmas)
� Formal Proof of the Feit-Thompson Theorem (2 books, 2012 – Gonthier)
� Verification of several math textbooks and CS algorithms
� Verification of compilers (CompCert)
� Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,
� Verification of cryptographic protocols (Amazon), etc.

2 Blue Sky AI Visions:
� Get strong AI by learning/reasoning over large KBs of human thought?
� Big formal theories: good semantic approximation of such thinking KBs?
� Deep non-contradictory semantics – better than scanning books?
� Gradually try learning math/science
� automate/verify them, include law, etc. (Leibniz, McCarthy, ..)

� What are the components (inductive/deductive thinking)?
� How to combine them together?
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Using Learning to Guide Theorem Proving

� high-level: pre-select lemmas from a large library, give them to ATPs
� high-level: pre-select a good ATP strategy/portfolio for a problem
� high-level: pre-select good hints for a problem, use them to guide ATPs
� low-level: guide every inference step of ATPs (tableau, superposition)
� low-level: guide every kernel step of LCF-style ITPs
� mid-level: guide application of tactics in ITPs
� mid-level: invent suitable ATP strategies for classes of problems
� mid-level: invent suitable conjectures for a problem
� mid-level: invent suitable concepts/models for problems/theories
� proof sketches: explore stronger/related theories to get proof ideas
� theory exploration: develop interesting theories by conjecturing/proving
� feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
� autoformalization: (semi-)automate translation from LATEX to formal
� ...
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AI/TP Examples and Demos
� ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPAn7

(more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.ly/3oGBdRz,

� 3-phase ENIGMA: https://bit.ly/3C0Lwa8,
https://bit.ly/3BWqR6K

� Long trig proof from 1k axioms: https://bit.ly/2YZ0OgX
� Extreme Deepire/AVATAR proof of �0 = !!

!
:
:
:

https://bit.ly/3Ne4WNX
� Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
� TacticToe on HOL4:
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

� Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://coq-tactician.github.io/demo.html

� Inf2formal over HOL Light:
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

� QSynt: AI rediscovers the Fermat primality test:
https://www.youtube.com/watch?v=24oejR9wsXs
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Today’s AI-ATP systems (?-Hammers)

Proof Assistant ?Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

� Mizar / MML – MizAR
� Isabelle (Auth, Jinja) – Sledgehammer
� Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
� HOL4 (Gauthier and Kaliszyk)
� CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

� 40-45% success by 2016, 60% on Mizar as of 2021
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High-level feedback loops – MALARea, ATPBoost
� Machine Learner for Autom. Reasoning (2006) – infinite hammering
� feedback loop interleaving ATP with learning premise selection
� both syntactic and semantic features for characterizing formulas:
� evolving set of finite (counter)models in which formulas evaluated
� winning AI/ATP benchmarks (MPTPChallenge, CASC 08/12/13/18/20)
� ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs
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FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(‘!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[‘f:(real^N->bool)->bool‘; ‘a:(real^N->bool)->real^N‘;
‘b:(real^N->bool)->real‘] THEN

STRIP_TAC THEN
MP_TAC(ISPECL [‘s:real^N->bool‘; ‘f:(real^N->bool)->bool‘;

‘a:(real^N->bool)->real^N‘; ‘b:(real^N->bool)->real‘]
FACE_OF_POLYHEDRON_EXPLICIT) THEN

ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC ‘c:real^N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real^N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real^N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]);;
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FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ c face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX:
Face t of a convex set s is equal to the intersection of s with the affine hull of t .

FACE_OF_STILLCONVEX:
!s t:real^N->bool. convex s ==>
(t face_of s <=>
t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)

POLYHEDRON_IMP_CONVEX:
!s:real^N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!s t:real^N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)

POLYHEDRON_AFFINE_HULL:
!s. polyhedron(affine hull s)
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Low-level: Statistical Guidance of Connection Tableau

� learn guidance of every clausal inference in connection tableau (leanCoP)
� set of first-order clauses, extension and reduction steps
� proof finished when all branches are closed
� a lot of nondeterminism, requires backtracking
� Iterative deepening used in leanCoP to ensure completeness
� good for learning – the tableau compactly represents the proof state

Clauses:

c1 : P(x)

c2 : R(x ; y) _ :P(x) _Q(y)

c3 : S(x) _ :Q(b)

c4 : :S(x) _ :Q(x)

c5 : :Q(x) _ :R(a; x)

c6 : :R(a; x) _Q(x)

Closed Connection Tableau: P(a)

R(a; b)

:R(a; b) Q(b)

:Q(b) :R(a; b)

:P(a) Q(b)

S(b)

:S(b) :Q(b)

:Q(b)
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Statistical Guidance of Connection Tableau

� MaLeCoP (2011): first prototype Machine Learning Connection Prover
� extension rules chosen by naive Bayes trained on good decisions
� training examples: tableau features plus the name of the chosen clause
� initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
� 20-time search shortening on the MPTP Challenge
� second version: 2015, with C. Kaliszyk
� both prover and naive Bayes in OCAML, fast indexing
� Fairly Efficient MaLeCoP = FEMaLeCoP
� 15% improvement over untrained leanCoP on the MPTP2078 problems
� using iterative deepening - enumerate shorter proofs before longer ones
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Statistical Guidance of Connection Tableau – rlCoP

� 2018: stronger learners via C interface to OCAML (boosted trees)
� remove iterative deepening, the prover can go arbitrarily deep
� added Monte-Carlo Tree Search (MCTS)
� MCTS search nodes are sequences of clause application
� a good heuristic to explore new vs exploit good nodes:

wi

ni
+ c � pi �

s
lnN
ni

(UCT - Kocsis, Szepesvari 2006)

� learning both policy (clause selection) and value (state evaluation)
� clauses represented not by names but also by features (generalize!)
� binary learning setting used: | proof state | clause features |
� mostly term walks of length 3 (trigrams), hashed into small integers
� many iterations of proving and learning
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Tree Example

r=0.3489
n=1000

p=0.37
r=0.0218

n=287

p=0.70
r=0.0000

n=166

p=0.13
r=0.0000

n=25

p=0.18
r=0.0000

n=74

p=0.11
r=0.0000

n=6

p=0.12
r=0.0000

n=22

p=0.16
r=0.0000

n=39

p=0.30
r=0.1225

n=121

p=0.19
r=0.0000

n=14

p=0.81
r=0.1330

n=107

0.63
r=0.4805

n=713

�
p=0.31

0.18
r=0.3649

n=385

1.00
r=0.3649

n=385

�
p=0.31

0.14
r=0.3562

n=278

...

...
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Statistical Guidance of Connection Tableau – rlCoP

� On 32k Mizar40 problems using 200k inference limit
� nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

� rlCoP with policy/value after 5 proving/learning iters on the training data
� 1624=1143 = 42:1% improvement over leanCoP on the testing problems

Iteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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More trees

r=0.3099
n=1182

p=0.24
r=0.3501

n=536

p=0.21
r=0.1859

n=28...
p=0.10

r=0.2038
n=9...

p=0.13
r=0.2110

n=14...
p=0.14

r=0.2384
n=21...

p=0.14
r=0.3370

n=181...
p=0.20

r=0.3967
n=279

p=0.30
r=0.1368

n=14...
p=0.15

r=0.0288
n=2...

p=0.56
r=0.4135

n=262

p=0.66
r=0.4217

n=247

36 more MCTS tree levels until proved

p=0.18
r=0.2633

n=8...
p=0.17

r=0.2554
n=6...

p=0.08
r=0.1116

n=3...

p=0.19
r=0.2289

n=58...
p=0.22

r=0.1783
n=40...

p=0.35
r=0.2889

n=548...

# (tableau starting
atom)

RelStr(c1)

upper(c1)

Subset(union(c2),carrier(c1))

Subset(c2,powerset(carrier(c1))
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Recent CoP Mutants: FLoP, GNN, RNN, lazyCoP

� FLoP – Finding Longer Proofs (Zombori et al, 2019)
� Curriculum Learning used for connection tableau over Robinson

Arithmetic
� addition and multiplication learned perfectly from 1 � 1 = 1
� headed towards learning algorithms/decision procedures from math data
� currently black-box, combinations with symbolic methods (ILP) our next

target
� Using RNNs for better tableau encoding, prediction of actions ...
� ... even guessing (decoding) next tableau literals (Piotrowski 2020)
� plCoP (Zombori 20), GNN-CoP (Olsak 20), lazyCoP (Rawson) ...
� Zombori: learning new explainable Prolog actions (tactics) from proofs
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ENIGMA (2017): Guiding the Best ATPs like E Prover

� ENIGMA (Jan Jakubuv, Zar Goertzel, Karel Chvalovsky, others)

� The proof state are two large heaps of clauses processed/unprocessed
� learn on E’s proof search traces, put classifier in E
� positive examples: clauses (lemmas) used in the proof
� negative examples: clauses (lemmas) not used in the proof
� 2021 multi-phase architecture (combination of different methods):

� fast gradient-boosted decision trees (GBDTs) used in 2 ways
� fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
� logic-based subsumption using fast indexing (discrimination trees - Schulz)

� The GNN scores many clauses (context/query) together in a large graph
� Sparse - vastly more efficient than transformers (�100k symbols)
� 2021: leapfrogging and Split&Merge:
� aiming at learning reasoning/algo components
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Feedback prove/learn loop for ENIGMA on Mizar data

� Done on 57880 Mizar problems recently
� Serious ML-guidance breakthrough applied to the best ATPs
� Ultimately a 70% improvement over the original strategy in 2019
� From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)
� Went up to 40k in more iterations and 60s time in 2020
� 75% of the Mizar corpus reached in July 2021 - higher times and many

runs: https://github.com/ai4reason/ATP_Proofs

S S �M0
9 S �M0

9 S �M1
9 S �M1

9 S �M2
9 S �M2

9 S �M3
9 S �M3

9
solved 14933 16574 20366 21564 22839 22413 23467 22910 23753
S% +0% +10.5% +35.8% +43.8% +52.3% +49.4% +56.5% +52.8% +58.4
S+ +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S� -0 -2723 -782 -1143 -508 -927 -430 -845 -454

S �M3
12 S �M3

12 S �M3
16 S �M3

16
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647
S� -535 -295 -309 -183
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ENIGMA Anonymous: Learning from patterns only

� The GNN and GBDTs only learn from formula structure, not symbols
� Not from symbols like + and � as Transformer & Co.
� E.g., learning on additive groups thus transfers to multiplicative groups
� Evaluation of old-Mizar ENIGMA on 242 new Mizar articles
� 13370 new theorems, > 50% of them with new terminology:
� The 3-phase ENIGMA is 58% better on them than unguided E
� While 53.5% on the old Mizar (where this ENIGMA was trained)
� Generalizing, analogizing and transfer abilities unusual in the large

transformer models
� Recently also trained on 300k Isabelle/AFP problems (Sledgehammer)
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3-phase Anonymous ENIGMA
The 3-phase ENIGMA (single strategy) solves in 30s 56.4% of Mizar (bushy)

12

Given Clause Loop in E + ML Guidance

Parental Guidance Filter:

Fast – GBDT        

Clause Selection Models:

2-phase – GBDT + GNN  

3-phase ENIGMA
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Neural Clause Selection in Vampire (M. Suda)

Deepire: Similar to ENIGMA:
� build a classifier for recognizing good clauses
� good are those that appeared in past proofs

Deepire’s contributions:
� Learn from clause derivation trees only

Not looking at what it says, just who its ancestors were.
� Integrate using layered clause queues

A smooth improvement of the base clause selection strategy.
� Tree Neural Networks: constant work per derived clause
� A signature agnostic approach
� Delayed evaluation trick (not all derived need to be evaluated)

Preliminary Evaluation on Mizar “57880”
� Learn from 63595 proofs of 23071 problems (three 30s runs)
� Deepire solves 26217 (i.e. +4054) problems in a single 10s run
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TacticToe: mid-level ITP Guidance (Gauthier’17,18)

� TTT learns from human and its own tactical HOL4 proofs
� No translation or reconstruction needed - native tactical proofs
� Fully integrated with HOL4 and easy to use
� Similar to rlCoP: policy/value learning for applying tactics in a state
� However much more technically challenging - a real breakthrough:

� tactic and goal state recording
� tactic argument abstraction
� absolutization of tactic names
� nontrivial evaluation issues
� these issues have often more impact than adding better learners

� policy: which tactic/parameters to choose for a current goal?
� value: how likely is this proof state succeed?
� 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
� similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)
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Tactician: Tactical Guidance for Coq (Blaauwbroek’20)

� Tactical guidance of Coq proofs
� Technically very challenging to do right - the Coq internals again nontrivial
� 39.3% on the Coq standard library, 56.7% in a union with CoqHammer

(orthogonal)
� Fast approximate hashing for k-NN makes a lot of difference
� Fast re-learning more important than “cooler”/slower learners
� Fully integrated with Coq, should work for any development
� User friendly, installation friendly, integration friendly and maintenance

friendly
� Took several years, but could become a very common tool for Coq

formalizers
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More on Conjecturing in Mathematics

� Targeted: generate intermediate lemmas (cuts) for a harder conjecture
� Unrestricted (theory exploration):
� Creation of interesting conjectures based on the previous theory
� One of the most interesting activities mathematicians do (how?)
� Higher-level AI/reasoning task - can we learn it?
� If so, we have solved math:
� ... just (recursively) divide Fermat into many subtasks ...
� ... and conquer (I mean: hammer) them away
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Conjecturing and Proof Synthesis by Neural Language
models

� Karpathy’15 - RNN experiments with generating fake Math over Stacks
� I have tried to use that for formal math in 2016 but it looked weak
� GPT (-2,3) looks stronger
� Renewed experiments in 2020 on:
� All Mizar articles, stripped of comments and concatenated together (78M)
� Articles with added context/disambiguation (156M) (types, names, thesis)
� TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)
� Just the conjecture and premises needed for the 28271 proofs printed in

prefix notation
� Quite interesting results, server for Mizar authors
� Quickly taken up by others on HOL, Isabelle, MetaMath ...
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Can you find the flaw(s) in this fake GPT-2 proof?

Figure: Fake full declarative GPT-2 “proof” - typechecks!
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A correct conjecture that was too hard to prove

� Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th10: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
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More cuts

� In total 33100 in this experiment
� Ca 9k proved by trained ENIGMA
� Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17

sec is increasing on [0, pi/2)

leads to conjecturing the following:

Every differentiable function is increasing.
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QSynt: Semantics-Aware Synthesis of Math Objects

� Gauthier’19-22
� Synthesize math expressions based on semantic characterizations
� i.e., not just on the syntactic descriptions (e.g. proof situations)
� Tree Neural Nets and RL (MCTS, policy/value), used for:
� Guiding synthesis of a diophantine equation characterizing a given set
� Guiding synthesis of combinators for a given lambda expression
� 2022: invention of programs for OEIS sequences from scratch
� 50k sequences discovered so far:
https://www.youtube.com/watch?v=24oejR9wsXs,
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

� Many conjectures invented: 4 different characterizations of primes
� Non-neural (Turing complete) computing and semantics collaborates with

the statistical learning
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QSynt: synthesizing the programs/expressions

� Inductively defined set P of our programs and subprograms,
� and an auxiliary set F of binary functions (higher-order arguments)
� are the smallest sets such that 0;1;2; x ; y 2 P, and if a;b; c 2 P and

f ;g 2 F then:

a + b;a� b;a� b;a div b;a mod b; cond(a;b; c) 2 P

�(x ; y):a 2 F ; loop(f ;a;b); loop2(f ;g;a;b; c); compr(f ;a) 2 P

� Programs are built in reverse polish notation
� Start from an empty stack
� Use ML to repeatedly choose the next operator to push on top of a stack
� Example: Factorial is loop(�(x ; y): x � y ; x ;1) , built by:

[ ]!x [x ]!y [x ; y ]!� [x � y ]!x [x � y ; x ]

!1 [x � y ; x ;1]!loop [loop(�(x ; y): x � y ; x ;1)]
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QSynt: Training of the Neural Net Guiding the Search
� The triple ((head([x � y ; x ]; [1;1;2;6;24;120 : : :]); !1) is a training

example extracted from the program for factorial loop(�(x ; y): x � y ; x ;1)
� !1 is the action (adding 1 to the stack) required on [x � y ; x ] to progress

towards the construction of loop(�(x ; y): x � y ; x ;1).

x y

�

x � y

::

[x � y ; x ] [1;1;2;6;24;120; : : :]

head

one-hot !1

::

[1;2;6;24;120; : : :]

::

1 [2;6;24;120; : : :]

::

2
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QSynt program search - Monte Carlo search tree

7 iterations of the search loop gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is f1; x ; y ; x � y ; x mod yg.

[ ]

[x ] [y ]

[x ; y ] [y ; x ]

[x � y ][x mod y ]

[x mod y ;1]

1 3

2

64

5

7
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QSynt web interface for program invention

41 / 58



QSynt inventing Fermat pseudoprimes
Positive integers k such that 2k � 2 mod k . (341 = 11 � 31 is the first non-prime)
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Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr(\(x,y).(loop2(\(x,y).x + y, \(x,y).x, x, 1, 2) - 1)

mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci(n+1)+fibonacci(n-1)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes):
? for(n=1,4000,if(b(n)==0,if(isprime(n),0,print(n))))
1
705
2465
2737
3745
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QSynt inventing primes using Wilson’s theorem
n is prime iff (n � 1)! + 1 is divisible by n (i.e.: (n � 1)! � �1 mod n)
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Are two QSynt programs equivalent?

� As with primes, we often find many programs for one OEIS sequence
� It may be quite hard to see that the programs are equivalent
� A simple example for 0;2;4;6;8; ::: with two programs f and g:

� f (0) = 0; f (n) = 2 + f (n � 1) if n > 0
� g(n) = 2 � n
� conjecture: 8n 2 N:g(n) = f (n)

� We can ask mathematicians, but we have thousands of such problems
� Or we can try to ask our ATPs (and thus create a large ATP benchmark)!
� Here is one SMT encoding by Mikolas Janota:

(set-logic UFLIA)
(define-fun-rec f ((x Int)) Int (ite (<= x 0) 0 (+ 2 (f (- x 1)))))
(assert (exists ((c Int)) (and (> c 0) (not (= (f c) (* 2 c))))))
(check-sat)
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Inductive proof by Vampire of the f = g equivalence
% SZS output start Proof for rec2
1. f(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]
2. ? [X0 : $int] : ($greater(X0,0) & ~f(X0) = $product(2,X0)) [input]
[...]
43. ~$less(0,X0) | iG0(X0) = $sum(2,iG0($sum(X0,-1))) [evaluation 40]
44. (! [X0 : $int] : (($product(2,X0) = iG0(X0) & ~$less(X0,0)) => $product(2,$sum(X0,1)) = iG0($sum(X0,1)))

& $product(2,0) = iG0(0)) => ! [X1 : $int] : ($less(0,X1) => $product(2,X1) = iG0(X1)) [induction hypo]
[...]
49. $product(2,0) != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) | ~$less(0,sK1) [resolution 48,41]
50. $product(2,0) != iG0(0) | $product(2,sK3) = iG0(sK3) | ~$less(0,sK1) [resolution 47,41]
51. $product(2,0) != iG0(0) | ~$less(sK3,0) | ~$less(0,sK1) [resolution 46,41]
52. 0 != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) | ~$less(0,sK1) [evaluation 49]
53. 0 != iG0(0) | $product(2,sK3) = iG0(sK3) | ~$less(0,sK1) [evaluation 50]
54. 0 != iG0(0) | ~$less(sK3,0) | ~$less(0,sK1) [evaluation 51]
55. 0 != iG0(0) | ~$less(sK3,0) [subsumption resolution 54,39]
57. 1 <=> $less(sK3,0) [avatar definition]
59. ~$less(sK3,0) <- (~1) [avatar component clause 57]
61. 2 <=> 0 = iG0(0) [avatar definition]
64. ~1 | ~2 [avatar split clause 55,61,57]
65. 0 != iG0(0) | $product(2,sK3) = iG0(sK3) [subsumption resolution 53,39]
67. 3 <=> $product(2,sK3) = iG0(sK3) [avatar definition]
69. $product(2,sK3) = iG0(sK3) <- (3) [avatar component clause 67]
70. 3 | ~2 [avatar split clause 65,61,67]
71. 0 != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) [subsumption resolution 52,39]
72. $product(2,$sum(1,sK3)) != iG0($sum(1,sK3)) | 0 != iG0(0) [forward demodulation 71,5]
74. 4 <=> $product(2,$sum(1,sK3)) = iG0($sum(1,sK3)) [avatar definition]
76. $product(2,$sum(1,sK3)) != iG0($sum(1,sK3)) <- (~4) [avatar component clause 74]
77. ~2 | ~4 [avatar split clause 72,74,61]
82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iG0($sum(X1,1)) = $sum(2,iG0($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]
251. $less(X1,0) | iG0($sum(X1,1)) = $sum(2,iG0(X1)) [evaluation 246]
[...]
1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]
1177. 1 | ~3 | 4 [avatar contradiction clause 1176]
1178. $false [avatar sat refutation 64,70,77,85,1177]
% SZS output end Proof for rec2
% Time elapsed: 0.016 s 46 / 58



Neural Autoformalization (Wang et al., 2018)

� generate ca 1M Latex/Mizar pairs based on Bancerek’s work
� train neural seq-to-seq translation models (Luong – NMT)
� evaluate on about 100k examples
� many architectures tested, some work much better than others
� very important latest invention: attention in the seq-to-seq models
� more data very important for neural training – our biggest bottleneck (you

can help!)
� Recent addition: unsupervised methods (Lample et all 2018) – no need

for aligned data!
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Neural Autoformalization data

Rendered LATEX If X � Y � Z , then X � Z .
Mizar

X c= Y & Y c= Z implies X c= Z;

Tokenized Mizar

X c= Y & Y c= Z implies X c= Z ;

LATEX

If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.

Tokenized LATEX

If $ X \subseteq Y \subseteq Z $ , then $ X \subseteq Z $ .
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Neural Autoformalization results

Parameter Final Test
Perplexity

Final Test
BLEU

Identical
Statements (%)

Identical
No-overlap (%)

Training
Time
(hrs.)

128 Units 3.06 41.1 40121 (38.12%) 6458 (13.43%) 1
256 Units 1.59 64.2 63433 (60.27%) 19685 (40.92%) 3
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%) 5
1024 Units 1.51 61.6 69179 (65.73%) 22978 (47.77%) 11
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%) 31
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Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then lim(s8+s7) = lim s8+ lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $ .

Correct seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

Snapshot-
1000

x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Unsupervised NMT Fun on Short Formulas

len <* a *> = 1 ;
assume i < len q ;
len <* q *> = 1 ;
s = apply ( v2 , v1 ast t ) ;
s . ( i + 1 ) = tt . ( i + 1 )
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
let i be Nat ;
assume v is_applicable_to t ;
let t be type of T ;
a ast t in downarrow t ;
t9 in types a ;
a ast t <= t ;
A is_applicable_to t ;
Carrier ( f ) c= B
u in B or u in { v } ;
F . w in w & F . w in I ;
GG . y in rng HH ;
a * L = Z_ZeroLC ( V ) ;
not u in { v } ;
u <> v ;
v - w = v1 - w1 ;
v + w = v1 + w1 ;
x in A & y in A ;

len <* a *> = 1 ;
i < len q ;
len <* q *> = 1 ;
s = apply ( v2 , v1 ) . t ;
s . ( i + 1 ) = tau1 . ( i + 1 )
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
i is_at_least_length_of p ;
not v is applicable ;
t is_orientedpath_of v1 , v2 , T ;
a *’ in downarrow t ;
t ‘2 in types a ;
a *’ <= t ;
A is applicable ;
support ppf n c= B
u in B or u in { v } ;
F . w in F & F . w in I ;
G0 . y in rng ( H1 ./. y ) ;
a * L = ZeroLC ( V ) ;
u >> v ;
u <> v ;
vw = v1 - w1 ;
v + w = v1 + w1 ;
assume [ x , y ] in A ;
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Future: AITP Challenges/Bets from 2014

� 3 AITP bets from my 2014 talk at Institut Henri Poincare
� In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable

automatically (same hardware, same libraries as in 2014 - about 40% then)
� In 10 years: 60% (DONE already in 2021 - 3 years ahead of schedule)
� In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math

curriculum textbooks will be parsed automatically and with correct formal
semantics (this may be faster than I expected)

� My (conservative?) estimate when we will do Fermat:
� Human-assisted formalization: by 2050
� Fully automated proof (hard to define precisely): by 2070
� See the Foundation of Math thread: https://bit.ly/300k9Pm

� Big challenge: Learn complicated symbolic algorithms (not black box -
motivates also our OEIS research)
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Thanks and Advertisement

� Thanks for your attention!
� AITP – Artificial Intelligence and Theorem Proving
� September 4–9, 2022, Aussois, France, aitp-conference.org
� ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
� Discussion-oriented and experimental
� Grown to 80 people in 2019
� Will be hybrid in 2022 as in 2021 and 2020
� Invited talks by J. Araujo, K. Buzzard, J. Brandstetter, W. Dean and A.

Naibo, M. Rawson, T. Ringer, S. Wolfram
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