
Dedukti



Logical frameworks

Build proof-checkers (proof processing systems...)
not specific to one theory (the Calculus of constructions, Set theory...)
but where you can define your own theory

▶ Define your theory
▶ Check proofs expressed in this theory



What for?

▶ Re-checking proofs developed in other systems
▶ Interoperability
▶ Sustainability of libraries



Dedukti

is a language to express statements and proofs (a proof format)
implemented in several systems: Dkcheck, Lambdapi, Kocheck...

All proofs welcome (built with resolution-based systems, tableaux-based ones,
interactive ones...)
No such thing as a Coq proof, a PVS proof...
But proofs in a theory T or U ...
A natural formalism: neutral deduction



Why not use Predicate logic instead?

In Dedukti
▶ Function symbols can bind variables (like in λ-Prolog, Isabelle, The Edinburgh

logical framework)
▶ Proofs are terms (like in The Edinburgh logical framework)
▶ Deduction and computation are mixed (like in Deduction modulo theory)
▶ Both constructive and classical proofs can be expressed (like in Ecumenical logic)

Reaps the benefits of several previous logical frameworks: λ-Prolog, Isabelle, The
Edinburgh logical framework, Pure type systems, Deduction modulo theory, Ecumenical
logic



The two features of Dedukti

Dedukti is a typed λ-calculus with
▶ Dependent types
▶ Computation rules

No typing rules today, but illustration of these features with examples



What is a theory?

In Predicate logic: a language (sorts, function symbols, and predicate symbols), and a set
of axioms

In Dedukti: a set of symbols (replaces sorts, function symbols, predicate symbols, and
axioms), and a set of computation rules



Predicate logic as a theory in Dedukti

Predicate logic is a sophisticated framework with notions of sort, function symbol,
predicate symbol, arity, variable, term, proposition, proof...

A typed λ-calculus is much more primitive

These notions must be constructed



Terms and propositions: a first attempt

I : TYPE
function symbols: I → ... → I → I

Prop : TYPE
predicate symbols: I → ... → I → Prop
⇒ : Prop → Prop → Prop
∀ : (I → Prop) → Prop

▶ Symbol declarations only (no computation rules yet)
▶ Simply typed λ-calculus (no dependent types yet)
▶ Types are terms of type TYPE
▶ ∀ binds (higher-order abstract syntax: ∀x A expressed as ∀ λx A)



Works if we want one sort

But if we want several (like in geometry: points, lines, circles...)
I1 : TYPE
I2 : TYPE
I3 : TYPE

Several (an infinite number of?) symbols and several (an infinite number of?) quantifiers
∀1 : (I1 → Prop) → Prop
∀2 : (I2 → Prop) → Prop
∀3 : (I3 → Prop) → Prop



Making the universal quantifier generic

Something like
∀ : ΠX : TYPE, ((X → Prop) → Prop)

But does not work for two reasons
▶ (a minor one) no dependent products on TYPE
▶ (a major one) many things in TYPE beyond I1, I2, and I3 (e.g. Prop)



Making the universal quantifier generic

I : TYPE I1 : TYPE, I2 : TYPE, I3 : TYPE
Set : TYPE
ι : Set ι1 : Set, ι2 : Set, ι3 : Set
El : Set → TYPE
El ι −→ I El ι1 −→ I1, El ι2 −→ I2, El ι3 −→ I3
Prop : TYPE
⇒ : Prop → Prop → Prop
∀ : Πx : Set, (El x → Prop) → Prop

Uses dependent types and computation rules
Reminiscent of expression of Simple type theory in Predicate logic, universes à la Tarski...



Proofs

So far: terms and propositions. Now: proofs

Proofs are trees, they can be expressed in Dedukti

Curry-de Bruijn-Howard: P ⇒ P should be the type of its proofs
But not possible here P ⇒ P : Prop : TYPE is not itself a type

Prf : Prop → TYPE
mapping each proposition to the type of its proofs: Prf (P ⇒ P) : TYPE

Not all types are types of proofs (e.g. I, El ι, Prop...)



Proofs

Brouwer-Heyting-Kolmogorov: λx : (Prf P), x should be a proof of P ⇒ P
But has type (Prf P) → (Prf P) and not Prf (P ⇒ P)
Prf (P ⇒ P) and (Prf P) → (Prf P) must be identified

A computation rule
Prf (x ⇒ y) −→ (Prf x) → (Prf y)

In the same way
Prf (∀ x p) −→ Πz : (El x), (Prf (p z))

The function Prf is an injective morphism from propositions to types: it is the Curry-de
Bruijn-Howard isomorphism



Connectives

So far: ⇒ and ∀ only

⊤, ⊥, ¬, ∧, ∨, ∃ defined à la Russell

∧ : Prop → Prop → Prop
Prf (x ∧ y) −→ Πz : Prop, ((Prf x → Prf y → Prf z) → Prf z)



Classical connectives

So far: constructive deduction rules only
What if you want to express classical proofs (a logical framework ought to be neutral)

Ecumenical logic: constructive and classical disjunction are governed by different rules:
they are different symbols (like inclusive and exclusive disjunction): ∨ and ∨c

⇒c , ∧c , ∨c , ∀c , ∃c defined using negative translation as a definition
∧c : Prop → Prop → Prop
∧c −→ λx : Prop, λy : Prop, ((¬¬ x) ∧ (¬¬ y))

Also a symbol Prfc



Translating proofs developed in other systems

Three sets of systems
▶ Those with an internal proof language (Automath-like): Coq, Matita, Agda...

Zenon, Archsat, all those that produce TSTP proofs...
Translation from one language to another

▶ Those with a small kernel with a small number of handles (LCF-like): HOL Light,
Isabelle/HOL... all complex operations eventually lead up to actions on these
handles
Instrumentation of this small kernel

▶ All those that no not fit in the two previous sets: PVS... most theorem provers for
Predicate logic, most SMT solvers...
Instrument the full system?
The proof sketch method



The proof sketch method

Instrument the full system but do not attempt to build a full proof directly

The system will replace A ∧⊤ with A, A ∨ (B ∨ C) with B ∨ (A ∨ C) a hundred times, do
not try to keep up

Instead build a proof sketch: like a proof tree, but where each node is produced with a
deduction rule a small proof from its children

A ∨c (B ∨c C) D ∨c ¬B
(A ∨c C) ∨c D

And transform the proof sketch into a proof tree in a second step (using less powerful
but better instrumented systems)



The rise of re-checking

At the beginning of the project: interoperability
In which theory do we have a proof of the four color theorem?

But re-checking proofs in Predicate logic seems to be an equally important application
domain
▶ proof search systems / SMT solvers are very complex systems where a bug is not

unlikely
▶ these systems are called as bookends by more general systems (B, Coq...) and in the

end we are not sure what has been proved and in which theory


