
1/44

Reconstructing SMT Proofs in Lambdapi

Alessio Coltellacci

Univ. Lorraine, CNRS, Inria, Loria

September 10, 2025

2/44

On the Correctness of SMT solvers

3/44

Can we trust SMT solvers?

▶ SMT solvers are widely used in proof assistants and program verification, but
their large codebases make bugs hard to catch.

▶ Even major solvers show correctness issues.
▶ Every year SMT-COMP uncovers disagreements between solvers results.

Can we trust their results?

4/44

Why certifying solvers is impractical?

▶ A natural idea is to certify the solver itself.

▶ Their extensive and complex codebases complicate certification.

▶ Simplifying them for certification would sacrifice performance.

▶ In addition, once certified, a system becomes essentially frozen, which hinders
the integration of new features and improvements.

5/44

SMT proofs

▶ Instead, the SMT solver can produce a proof (proof logging).

▶ An SMT proof is a certificate of the solver results, that formally justifies the
logical reasoning it used to find a solution.

▶ Proofs can be checked independently, decoupling the confidence in the solver’s
results from the solver’s implementation.

▶ Checking should be quicker than solving.

6/44

The Alethe format

i . Γ ▷ l1 . . . ln (R p1 . . . pm) [a1 . . . ar] (1)

index context

clause

rule premises arguments

▶ Many-Sorted First-Order Logic of SMT-LIB
▶ The proof forms a directed acyclic graph
▶ Proof rules R include theory lemmas

7/44

Example of an Alethe SMT Proof
1 (declare-sort U 0)
2 (declare-fun a () U)
3 (declare-fun b () U)
4 (declare-fun p (U) Bool)
5 (assert (p a))
6 (assert (= a b))
7 (assert (not (p b)))
8 (get-proof)

1 (assume a0 (p a))
2 (assume a1 (= a b))
3 (assume a2 (not (p b)))
4 (step t1 (cl (not (= (p a) (p b))) (not (p a)) (p b))
5 :rule equiv_pos2)
6 (step t2 (cl (= (p a) (p b))) :rule cong :premises (a1))
7 (step t3 (cl (p b)) :rule resolution :premises (t1 t2 a0))
8 (step t4 (cl) :rule resolution :premises (a2 t3))

8/44

Supported logics

Alethe support the SMT-LIB logics:
▶ Uninterpreted Function (UF)
▶ Linear Real Arithmetic (LRA)
▶ Linear Integer Arithmetic (LIA)
▶ Bitvectors1 (BV)
▶ + Quantifier free formulas (QF)

1Work in progress

9/44

Classification of Alethe Rules

1. Special rules
* ▷ φ (asssume)

* ▷ φ (hole; p1 . . . pn)[a1 . . . an]
* φ1 . . . φn, ψ ▷ ¬φ1 . . .¬φnψ

(subproof; p1 . . . pn)

2. Resolution rules
* th_resolution,resolution

* contraction, reordering

3. Introducing tautologies
* ▷ ¬(¬¬φ), φ (not_not)

* ▷ ¬(φ1 ≈ φ2), ¬φ1, φ2 (equiv_pos2)

* ▷ ¬(φ1 ∧ ⋅ ⋅ ⋅ ∧φn), φk (and_pos)

4. Linear arithmetic
* lia_generic,la_generic
* ▷ t1 ≤ t2 ∨ t2 ≤ t1(la_totality)

5. Quantifier handling
* ▷ (¬∀x̄, φ) ∨ (φ[t̄]) forall_inst
* sko_ex
* sko_forall

6. Simplification rules
* and_simplify
* bool_simplify
* eq_simplify
* sum_simplify

10/44

Challenges in validating Alethe proofs

▶ The ordering of clauses l1, . . . , ln is unspecified, which affects proof
interpretation.

▶ Solvers may implicitly reorder equalities, introducing nondeterminism in proof
structure.

▶ Proofs are often coarse-grained, lacking detailed justification for individual
steps.

▶ Key information is sometimes omitted, especially for reasoning over linear
integer arithmetic (LIA).

11/44

Carcara

▶ Carcara is an efficient and independent proof checker and elaborator for Alethe
proofs.

▶ Carcara is written in Rust, a high performance language,
▶ implements elaboration procedures for a few important rules (ex: inferring

pivots),
▶ it removes implicit transformations (ex: reordering clause).

12/44

Elaborated proof with Carcara

Make pivot and resolution order explicit:

1 (assume a0 (p a))
2 (assume a1 (= a b))
3 (assume a2 (not (p b)))
4 (step t1 (cl (not (= (p a) (p b))) (not (p a)) (p b)) :rule equiv_pos2)
5 (step t2 (cl (= (p a) (p b))) :rule cong :premises (a1))
6 (step t3 (cl (p b)) :rule resolution :premises (t1 t2 a0)
7 :args ((= (p a) (p b)) false (p a) false))
8 (step t4 (cl) :rule resolution :premises (a2 t3)
9 :args ((p b) false))

13/44

Automated reconstruction of SMT proofs

14/44

Verifying SMT proofs in Lambdapi

Lambdapi
Dedukti

Coq

Lean

SMT

Isabelle

Agda

K-framework Matita HOL

PVS Zenon and ArchSAT

C
arcara

lean2dk isa
bel

le_
dk

agda2dk

hol2dk

K
ra

jo
no

KaM
eLo

vodk

15/44

Complete verification pipeline for Alethe proof

cvc5 Check + Elaboration Translation Lambdapi

Carcara

16/44

Lambdapi syntax

Based on the Edinburgh Logical Framework (LF):

Universes u ∶∶= TYPE ∣ KIND
Terms t, v, A,B,C ∶∶= c ∣ x ∣ u ∣ Πx ∶ A, B ∣ λx ∶ A, t ∣ t v
Contexts Γ ∶∶= ⟨⟩ ∣ Γ, x ∶ A
Signatures Σ ∶∶= ⟨⟩ ∣ Σ, c ∶ C ∣ Σ, c ∶= t ∶ C ∣ Σ, t ↪ v

▶ Rewriting rules must be confluent and preserve typing (subject reduction).
▶ Confluence is not guaranteed and must be proved separately.
▶ Supports higher-order rewriting.
▶ Lacks meta-programming features such as type classes and records.
▶ Simple set of tactic i.e. no automatic solvers and programmable tactics

17/44

Lambdapi typing rules
Similar to Edinburgh Logical Framework (LF) but it uses ≡βΣ.

(Empty)
⊢Σ ⟨ ⟩

⊢Σ Γ Γ ⊢Σ A ∶ s
(Decl) x ∉ Γ

⊢Σ Γ, x ∶ A

⊢Σ Γ Γ ⊢Σ A ∶ s
(Const)

Γ ⊢Σ c ∶ A

⊢Σ Γ
(Sort)

Γ ⊢Σ TYPE ∶ KIND

⊢Σ Γ
(Var) x ∶ A ∈ Σ

Γ ⊢Σ x ∶ A

Γ,⊢Σ A ∶ TYPE Γ, x ∶ A ⊢Σ B ∶ s Γ, x ∶ A ⊢Σ t ∶ B
(Abs)

Γ ⊢Σ λx ∶ A, t ∶ Πx ∶ A,B

Γ ⊢Σ A ∶ TYPE Γ, x ∶ A ⊢Σ B ∶ s
(Prod)

Γ ⊢Σ Πx ∶ A,B ∶ s

Γ ⊢ t ∶ Πx ∶ A,B Γ ⊢ u ∶ A
(App)

Γ ⊢Σ t u ∶ B[u ← x]
Γ,⊢Σ B ∶ u Γ ⊢Σ t ∶ A A≡βΣB

(Conv)
Γ ⊢Σ t ∶ B

18/44

Lambdapi prelude encoding example

Set ∶ TYPE Prop ∶ TYPE

El ∶ Set → TYPE Prf ∶ Prop → TYPE

; ∶ Set → Set → Set o ∶ Set

El (x ; y) ↪ Elx → El y El o ↪ Prop

= ∶ Π[a ∶ Set], El a → El a → Prop

Clause ∶ TYPE ++ ∶ Clause → Clause → Clause

■ ∶ Clause ■++x ↪ x

⟇ ∶ Prop → Clause → Clause (x ⟇ y)++ z ↪ x ⟇ (y++ z)
Prf• ∶ Clause → TYPE

19/44

Constructive operators, quantifiers and classical axioms
Operators and quantifiers:

⊤,⊥ ∶ Prop (1)
∧,∨,⇒∶ Prop → Prop → Prop (written infix) (2)
Prf (a ⇒ b) ↪ Prf a → Prf b (3)
¬ a ≔ a ⇒ ⊥ (4)
∀ ∶ Π[a ∶ Set], (El a → Prop) → Prop (5)
Prf(∀ p) ↪ Πx, Prf(p x) (6)
∃ ∶ Π [a ∶ Set], (El a → Prop) → Prop (7)

Classical axioms:

em ∶ Π p, Prf(p ∨ ¬p) (8)
prop_eq ∶ Π p q, Prf(p ⇔ q) → Prf(p = q) (9)

20/44

Encoding Alethe rules in Lambdapi

Alethe rule Lambdapi encoding
R = equiv_pos2
i. Γ ▷ ¬(a ≈ b),¬a, b (R)[] i ∶ Prf•(¬(a = b) ⟇ ¬a ⟇ b ⟇■)

R = resolution

i1. ▷ l
1
1, . . . , l

1
k1 (. . .)

in. ▷ l
n
1 , . . . , l

n
kn (. . .)

⋮
j. ▷ l

r1
s1 , . . . , l

rm
sm (R i1 . . . in)[]

resolution (ps qs ∶ Clause) (i j ∶ N)
(hps ∶ Prf•ps)
(hqs ∶ Prf•qs)
(hi ∶ Prf(i < size ps))
(hj ∶ Prf(j < size qs))
(hij ∶ Prf((nth ps i) = ¬(nth qs j)))
∶ Prf•(remove ps i ++ remove qs j)

21/44

Translation of the input problem
1 (declare-sort U 0)
2 (declare-fun a () U)
3 (declare-fun b () U)
4 (declare-fun p (U) Bool)
5 (assert (p a))
6 (assert (= a b))
7 (assert (not (p b)))
8 (get-proof)

1 symbol U : Set;
2 symbol a : El U;
3 symbol b : El U;
4 symbol p : El (U ↝ o);
5 symbol a0 : Prf• (p_5 ⟇ ■);
6 symbol a1 : Prf• ((a = b) ⟇ ■);
7 symbol a2 : Prf• ((¬ ((p b))) ⟇ ■);
8 symbol p_2 ≔ (p b);
9 symbol p4 ≔ ((p a) = (p b));

22/44

Reminder: proof of the guiding example

1 (assume a0 (p a))
2 (assume a1 (= a b))
3 (assume a2 (not (p b)))
4 (step t1 (cl (not (= (p a) (p b))) (not (p a)) (p b))
5 :rule equiv_pos2)
6 (step t2 (cl (= (p a) (p b))) :rule cong :premises (a1))
7 (step t3 (cl (p b)) :rule resolution :premises (t1 t2 a0))
8 (step t4 (cl) :rule resolution :premises (a2 t3))

23/44

Automated translation of the proof into Lambdapi via our tool

1 opaque symbol t0 : Prf• ((¬ ((p_5 = p_2))) ⟇ (¬ (p_5)) ⟇ p_2 ⟇ ■) ≔

2 begin apply equiv_pos2; end;
3
4 opaque symbol t1 : Prf• (p_4 ⟇ ■) ≔

5 begin apply ∨i 1 ; apply feq (p) (Prf• l a1) end;
6
7 opaque symbol t2 : Prf• (p_2 ⟇ ■) ≔

8 begin
9 have t0_t1 : Prf• ((¬ (p_5)) ⟇ p_2 ⟇ ■) {

10 apply resolution 0 0 t0 t1 ⊤i ⊤i (eq_refl _)
11 };
12 have t0_t1_a0 : Prf• (p_2 ⟇ ■) {
13 apply resolution 0 0 t0_t1 a0 ⊤i ⊤i (eq_refl _)
14 }; refine t0_t1_a0;
15 end;
16
17 opaque symbol t3 : Prf• ■ ≔

18 begin
19 apply resolution 0 0 a2 t2 ⊤i ⊤i (eq_refl _);
20 end;

24/44

Focus: reconstructing arithmetic proofs

25/44

An example in LIA logic
1 (set-logic LIA)
2 (declare-const x Int)
3 (declare-const y Int)
4 (assert (= x 2))
5 (assert (= 0 y))
6 (assert (or (< (+ x y) 1) (< 3 x)))
7 (check-sat)
8 (get-proof)

1 (assume a0 (or (< (+ x y) 1) (< 3 x)))
2 (assume a2 (= 0 y))
3 (assume a1 (= x 2))
4 (step t1 (cl (< (+ x y) 1) (< 3 x)) :rule or :premises (a0))
5 (step t2 (cl (not (< 3 x)) (not (= x 2))) :rule la_generic :args (1/1 -1/1))
6 (step t3 (cl (not (< 3 x))) :rule resolution :premises (a1 t2))
7 (step t4 (cl (< (+ x y) 1)) :rule resolution :premises (t1 t3))
8 (step t5 (cl (not (< (+ x y) 1)) (not (= x 2)) (not (= 0 y)))
9 :rule la_generic :args (1/1 1/1 -1/1))

10 (step t6 (cl) :rule resolution :premises (t5 t4 a1 a2))

26/44

Linear arithmetic rules in Alethe supported in our encoding.
Rule Description
la_generic Tautologous disjunction of linear inequalities
lia_generic Tautologous disjunction of linear integer inequalities
la_disequality t1 ≈ t2 ∨ ¬(t1 ≥ t2) ∨ ¬(t2 ≥ t1)
la_totality t1 ≥ t2 ∨ t2 ≥ t1
la_mult_pos t1 > 0 ∧ (t2 ⋈ t3) → t1 ∗ t2 ⋈ t1 ∗ t3 and ⋈ ∈ {<,>,≥,≤,≈}
la_mult_neg t1 < 0 ∧ (t2 ⋈ t3) → t1 ∗ t2 ⋈inv t1 ∗ t3
la_rw_eq (t ≈ u) ≈ (t ≥ u ∧ u ≥ t)
comp_simplify Simplification of arithmetic comparisons
arith-int-eq-elim (t ≈ s) → t ≥ s ∧ t ≤ s
arith-leq-norm t ≤ s → ¬(t ≥ s + 1)
arith-geq-norm1 t ≥ s → (t − s) ≥ 0
arith-geq-norm2 t ≥ s → −t ≤ −s
arith-geq-tighten ¬(t ≥ s) → s ≥ t + 1
arith-poly-norm polynomial normalization
evaluate evaluate constant terms

27/44

The (refactored) la_generic description
i. ▷ φ1, . . . , φn la_generic [a1, . . . , an]

1. If φi is of the form s1 ≥ s2 or ¬(s1 < s2), then let ψi = s2 > s1. If φi is of the form s1 > s2 or
¬(s1 ≤ s2), then let ψi = s2 ≥ s1. If φi is of the form s1 < s2 or ¬(s1 ≥ s2), then let ψi = s1 ≥ s2. If
φi is of the form s1 ≤ s2 or ¬(s1 > s2), then let ψi = s1 > s2. If φi is of the form ¬(s1 ≈ s2), then let
ψi = s1 ≈ s2. This step produces a positive literal that is equivalent to ¬φi and that only contains
the operators >, ≥, and ≈.

2. Replace ψi = ∑ki
j=0 c

i
j × t

i
j + d

i
1 ⋈ ∑mi

j=ki+1
c
i
j × t

i
j + d

i
2 by the literal

(∑ki
j=0 c

i
j × t

i
j) − (∑mi

j=ki+1
c
i
j × t

i
j) ⋈ di2 − di1.

3. Now ψi has the form s
i
1 ⋈ d

i. If all variables in si1 are integer-sorted then replace si1 > d
i by

s
i
1 ≥ ⌊di⌋ + 1, respectively, replace si1 ≥ d

i by si1 ≥ ⌊di⌋ + 1 if d is not an integer.
4. If all variables of ψi are integer-sorted and the coefficients a1 . . . an are in Q, then

ai ≔ ai × lcd(a1 . . . an) where lcd is the least common denominator of {a1, . . . , an}.
5. If ⋈ is ≈, then replace ψi by ∑mi

j=0 ai × c
i
j × t

i
j = ai × d

i, otherwise replace ψi by
∑mi

j=0 ∣ai∣ × c
i
j × t

i
j ⋈ ∣ai∣ × di.

6. Finally, the sum of the resulting literals is trivially contradictory,

n

∑
i=1

mi

∑
j=1

c
i
j ∗ t

i
j ⋈

n

∑
i=1

d
i

28/44

An example of la_generic

Consider the following la_generic step in the logic QF_UFLIA with the
uninterpreted function symbol (f Int):

1 (step t11 (cl (not (<= f 0)) (<= (+ 1 (* 4 f)) 1))
2 :rule la_generic :args (1/1 1/4))

The algorithm then performs the following steps:

− f ≥ 0, 4 × f > 0 (Steps 1 and 2)
− f ≥ 0, 4 × f ≥ 1 (Step 3)

Replace arguments [1
1
,
1

4
] by [4, 1] due to clearing denominators (Step 4)

∣4∣ × (−f) ≥ ∣4∣ × 0, ∣1∣ × 4 × f ≥ ∣1∣ × 1) (Step 5)
− 4 × f + 4 × f ≥ 1 (Step 6)

Which simplifies to the contradiction 0 ≥ 1.

29/44

A Scheme for proof by reflection - Inner version

⇑ (t1) =G (⇑ (t2) G G [g1] =G [g2]

t1 =Z t2 Z Z ⇓ g1 =Z⇓ g2

[_]

⇓(_)⇑(_)

⟺

with:
▶ G an Algebra to represent integers
▶ ⇑∶ Z → G the reify function
▶ ⇓∶ G → Z the denotation function
▶ [_] ∶ G → G the normalization function
▶ G ∶ G → G → B a (decidable) equivalence relation

30/44

Two methods for normalising terms

1. Inner normalisation of terms performed in the Lambdapi kernel using
associative commutative
Based on: Encoding Type Universes Without Using Matching Modulo
Associativity and Commutativity. Frédéric Blanqui. (FSCD 2022).

2. Outer normalisation function with user-defined rewrite rules and symbolic
execution.

31/44

The G Algebra to represent integers

G ∶ TYPE ⇑∶ Z → G ⇓∶ G → Z
∣ ⊕ ∶ G → G → G ⇑ Z0 ↪ (cst Z0) ⇓ (cst c) ↪ c

∣ var ∶ Z → Z → G ⇑ ZPos c↪ (cst (ZPos c)) ⇓ opp x↪ ∼ (⇓ x)
∣ mul ∶ Z → G → G ⇑ ZNeg c↪ (cst (ZNeg c)) ⇓ mul c x↪ c × (⇓ x)
∣ opp ∶ G → G ⇑ (x + y) ↪ (⇑ x)⊕ (⇑ y) ⇓ x⊕ y ↪ (⇓ x) + (⇓ y)
∣ cst ∶ Z → G ⇑ (∼ x) ↪ opp ⇑ x ⇓ (var c x) ↪ c × x

grp ∶ Set ⇑ ((ZPos c) ∗ x) ↪ mul (ZPos c) (⇑ x)
El grp ↪ G ⇑ ((ZNeg c) ∗ x) ↪ mul (ZNeg c) (⇑ x)

⇑ (x ∗ (ZPos c)) ↪ mul (ZPos c) (⇑ x)
⇑ (x ∗ (ZNeg c)) ↪ mul (ZNeg c) (⇑ x)
⇑ (x ∗ Z0) ↪ (cst 0)
⇑ (Z0 ∗ x) ↪ (cst 0)
⇑ x↪ (var 1 x)

with ⊕ declared associative commutative, and ⇑ sequential.

32/44

Normalisation with associative commutative modifier

Definition
The ≤ builtin total order on G-terms is defined as follows: Terms are ordered such
that cst(c1) ≤ cst(c2) < (var c x) for any constants c1 ≤ c2 and any variable term
(var c x). For variable terms, (var c x) ≤ (var d y) if either x < y, or x = y and
c ≤ d.

Example
Consider the term below not in normal form:

(var c1 x)⊕ (cst k1)⊕ (var c2 y)⊕ (cst km)⊕ (var c3 x)⊕ (var c4 y)

It will be then normalise into:

(cst k1)⊕ (cst k2)⊕ (var c1 x)⊕ (var c3 x)⊕ (var c2 y)⊕ (var c4 y)

33/44

Theory rules for G
Group theory axioms

(var c1 x)⊕ (var c2 x) ↪ (var (c1 + c2) x) (10)
(var c1 x)⊕ ((var c2 x)⊕ y) ↪ (var (c1 + c2) x)⊕ y (11)
(cst c1)⊕ (cst c2) ↪ (cst (c1 + c2)) (12)
(cst c1)⊕ ((cst c2)⊕ y) ↪ (cst (c1 + c2))⊕ y (13)
(cst 0)⊕ x↪ x (14)
x⊕ (cst 0) ↪ x (15)
opp (var c x) ↪ (var (−c) x) (16)
opp (cst c) ↪ (cst (−c)) (17)
opp (opp x) ↪ x (18)
opp (x⊕ y) ↪ (opp x)⊕ (opp y) (19)
opp (mul k x) ↪ mul (−k) x (20)
mul k (var c x) ↪ (var (k ∗ c) x) (21)
mul k (opp x) ↪ mul (−k) x (22)
mul k (x⊕ y) ↪ (mul k x)⊕ (mul k y) (23)
mul k (cst c) ↪ (cst (k ∗ c)) (24)
mul c1 (mul c2 x) ↪ mul (c1 ∗ c2) x (25)

34/44

1 opaque symbol t2: π ((¬ (3 < x) ∨ ¬ (x = 2)) ⟇ ■) {
2 apply ∨i 1 ;
3 rewrite Zinv_lt_eq;
4 rewrite Z_diff_gt_Z0_eq (− 3) (− x);
5 rewrite Z_diff_eq_Z0_eq (x) 2;
6 rewrite Zgt_le_succ_r_eq ((− 3) - (− x)) 0;
7 rewrite Zmult_ge_compat_eq 1 ((− 3) - (− x)) ((0 + 1));
8 rewrite Zmult_eq_compat_eq (− 1) (x - 2) 0;
9 rewrite imp_eq_or; apply ⇒ i ; assume H0; apply ¬i ; assume H1;

10 set H0l ’ ≔ (1 * ((− 3) - (− x))); set H0r ’ ≔ (1 * (0 + 1));
11 set H1l ’ ≔ ((− 1) * (x - 2)); set H1r ’ ≔ ((− 1) * 0);
12 have H1 ’: π (H1l ’ ≥ H1r ’) { refine Z_eq_implies_ge H1 }; remove H1;
13 have contra : π ((⇓ (⇑ (H0l ’ + H1l ’))) ≥ (⇓ (⇑ (H0r ’ + H1r ’)))){
14 rewrite reify_correct; rewrite reify_correct;
15 apply (Zsum_geq_s H0l ’ H0r ’ H1l ’ H1r ’ H0 H1 ’);
16 };
17 apply contra; apply ⊤i ;
18 };

35/44

A Scheme for Proof by Reflection - Outer version

g1 = g2 L grp L grp norm(g1) = norm(g2)

t1 = t2 Z Z ⇓ norm(g1) =⇓ norm(g2)

norm

⇓(_)⇑(_)

⟺

with:
▶ G an Algebra to represent integers
▶ ⇑∶ Z → G × (L int) the reify function
▶ ⇓∶ G × (L int) → Z the denotation function
▶ norm∶ G → G the normalization function

36/44

Normalization: an overview

We redefine the type G and we reify into a L int:

G ∶ TYPE grp ∶ Set

∣ var ∶ N → Z → G El grp ↪ G
∣ cst ∶ Z → G
∣ mul ∶ Z → G → G

We then define the normalization function as follows:

norm (x ∶ L grp) ≔ remove0 (mergesort x) (2)

cancel and removes neutral elements sorts a list of grp

37/44

Current evaluation of the two methods

▶ The inner approach is easier to implement but requires trusting the Lambdapi
kernel.

▶ The outer approach is still slow on large examples and poses major challenges
for further optimisation.

38/44

Evaluation and practical applications

39/44

Evaluation
Logic Bench Samples Check

LIA
tptp 36 28

Ultimate 153 50

QFLIA
SMPT 1568 804
rings 294 7

CAV2009 85 19

UFLIA
sledgeh 1521 713
tokeneer 1732 1482

UF sledgehammer 1403 994

QF_UF
eq_diamond 100 74

2018-Goel-hwbench 229 160
20170829-Rodin 20 16

UFNIA (TLA+)
allocator 38 38
EWD840 19 11

Table: Benchmark results.

40/44

Verifying SMT Proofs in Lambdapi

Lambdapi
Dedukti

Coq

Lean SMT

TLA+

Isabelle

Agda

K-framework Matita HOL

PVS Zenon and ArchSAT

C
arcara

lean2dk isa
bel

le_
dk

agda2dk

hol2dk
K

ra
jo

no
KaM

eLo

vodk

41/44

TLA+ at a glance

▶ Specification language to design
and verify reactive systems

▶ Systems are described as state
machines

V ARIABLE x
CONSTANT N
ASSUME N ∈ Nat

Init
∆
= ∧ x = 0

Next
∆
= ∧ x < N

∧ x
′
= x + 1

Spec
∆
= Init ∧ □[Next]⟨x⟩

42/44

TLAPS proof example

−−−−−−−−−−−−−−MODULE Cantor1−−−−−−−−−−−−−−−−−
theorem cantor ==

∀ S ∶
∀ f ∈ [S → subset S] ∶
∃ A ∈ subset S ∶
∀ x ∈ S ∶
f [x] # A
proof
<1> 1. take S
<1> 2. take f ∈ [S → subset S]
<1> 3. define T == { z ∈ S ∶ z ∉ f[z] }
<1> 4. witness T ∈ subset S
<1> 5. take x ∈ S
<1> 6. qed by x ∈ T ∨ x ∉ T

43/44

TLA pipeline

TLAPS SMT

Carcara CVC5

Lambdapi

1 proof obligations

2 (get-proof) (sat/unsat)

3 proof script6 valid? (y/n)

4 proof5 typecheck? (y/n)

elaborate lia_generic

44/44

Future works

1. Add support for bitvectors (BV).
2. Add support for rationals and reals (LRA).
3. Rocq export with user-defined rewrite rules.

