
Carcara: A proof checker, elaborator and translator for Alethe

Bruno Andreotti

EuroProofNet Symposium at Orsay, France, 11 Sep 2025
Universidade Federal de Minas Gerais (UFMG)

Introduction

SMT solvers and trust

• SMT solvers are crucial tools in many formal methods applications, like proof assistants
and program verification

• However, these solvers often have large and complex codebases, which makes detecting
bugs difficult

‣ Correctness bugs are often found in widely used SMT solvers

2 / 39

SMT solvers and trust

• SMT solvers are crucial tools in many formal methods applications, like proof assistants
and program verification

• However, these solvers often have large and complex codebases, which makes detecting
bugs difficult

‣ Correctness bugs are often found in widely used SMT solvers

• Then, how can we trust the correctness of their results?

2 / 39

SMT proofs

• We can instrument the SMT solver to produce a proof

• An SMT proof is a certificate of the solver results, that formally justifies the logical
reasoning it used to find a solution

3 / 39

SMT proofs

• We can instrument the SMT solver to produce a proof

• An SMT proof is a certificate of the solver results, that formally justifies the logical
reasoning it used to find a solution

• Proofs can be checked independently, decoupling the confidence in the solver’s results
from the solver’s implementation

• Checking is usually simpler and quicker than solving

3 / 39

Alethe format

• Alethe is a well established SMT proof format that aims to be usable by many different
solvers

‣ It is currently supported by the SMT solvers veriT and cvc5

• Alethe’s syntax is very similar to that of SMT-LIB, the standard input language for SMT
solvers

4 / 39

Alethe format

• Alethe is a well established SMT proof format that aims to be usable by many different
solvers

‣ It is currently supported by the SMT solvers veriT and cvc5

• Alethe’s syntax is very similar to that of SMT-LIB, the standard input language for SMT
solvers

• The format allows proofs with varying levels of granularity

• This allows solvers to rely on powerful checkers and produce coarse-grained proofs, or
take the effort to produce more fine-grained proofs

4 / 39

Example of an Alethe proof

(set-logic LIA)
(declare-fun p (Int) Bool)
(assert (forall ((x Int)) (p x)))
(assert (not (forall ((y Int)) (p y))))
(check-sat)

(assume h1 (forall ((x Int)) (p x)))
(assume h2 (not (forall ((y Int)) (p y))))
(anchor :step t3 :args ((y Int) (:= x y)))
(step t3.t1 (cl (= x y)) :rule refl)
(step t3.t2 (cl (= (p x) (p y))) :rule cong :premises (t3.t1))
(step t3 (cl (= (forall ((x Int)) (p x)) (forall ((y Int)) (p y)))) :rule bind)
(step t4 (cl (not (forall ((x Int)) (p x))) (forall ((y Int)) (p y)))
 :rule equiv1 :premises (t3))
(step t5 (cl) :rule resolution :premises (t4 h1 h2))

5 / 39

Checking Alethe proofs

• One way to check that an Alethe proof is valid is by reconstructing it in a proof assistant

• This approach allows a lot of trust in the correctness of the result, but has some drawbacks
‣ performance, usability

6 / 39

Checking Alethe proofs

• One way to check that an Alethe proof is valid is by reconstructing it in a proof assistant

• This approach allows a lot of trust in the correctness of the result, but has some drawbacks
‣ performance, usability

• Also, some coarse-grained steps might be very hard or slow to check, resulting in
reconstruction failures

6 / 39

Checking Alethe proofs

• One way to check that an Alethe proof is valid is by reconstructing it in a proof assistant

• This approach allows a lot of trust in the correctness of the result, but has some drawbacks
‣ performance, usability

• Also, some coarse-grained steps might be very hard or slow to check, resulting in
reconstruction failures

• Instead, one might prefer a stand-alone checker, focused on efficiency and usability

6 / 39

Introducing Carcara

• Carcara is an efficient and independent proof checker for
Alethe proofs, developed in Rust

• Available at https://github.com/ufmg-smite/carcara

Caracara plancus

7 / 39

https://github.com/ufmg-smite/carcara

Checking

Checking Alethe proofs

• The validity of each step depends on the rule used

• A checking procedure had to be implemented for each of the over 100 rules currently in
the Alethe format

9 / 39

Checking Alethe proofs

• The validity of each step depends on the rule used

• A checking procedure had to be implemented for each of the over 100 rules currently in
the Alethe format

• As we’ll see, the flexibility of the Alethe format means some steps can be tricky to check

9 / 39

Checking assume commands

• An assume command introduces a premise of the proof, and they each must correspond to
an assert in the original problem

• During parsing, the problem’s assumptions are stored in a hash set

10 / 39

Checking assume commands

• An assume command introduces a premise of the proof, and they each must correspond to
an assert in the original problem

• During parsing, the problem’s assumptions are stored in a hash set

• Generally, checking assume commands ammounts to simply accessing that set

10 / 39

Checking assume commands

• However, the solver may implicitly reorder equalities
when producing a proof

• This means an assume command may reference a
problem premise while implicitly reordering an
equality inside it

(set-logic QF_UF)
(declare-const a Bool)
(declare-const b Bool)
(assert (= a b))
(assert (not (= b a)))
(check-sat)

(assume h1 (= a b))
(assume h2 (not (= a b)))
(step t3 (cl)
 :rule resolution
 :premises (h1 h2))

11 / 39

Checking assume commands

• In this case, the checker must iterate through all the
premises and see if they are equal to the assume term,
modulo the reordering of equalities

• This requires traversing the terms, possibly up to
their depth

• We call this equality check a Polyequal check

(set-logic QF_UF)
(declare-const a Bool)
(declare-const b Bool)
(assert (= a b))
(assert (not (= b a)))
(check-sat)

(assume h1 (= a b))
(assume h2 (not (= a b)))
(step t3 (cl)
 :rule resolution
 :premises (h1 h2))

11 / 39

Implicit reordering of equalities

• This reordering of equalities can happen not only in assume commands, but anywhere in a
proof!

(step t1 (cl (= (= a b) (= b a))) :rule refl)

(step t1 (cl (= t u)) :rule ...)
(step t2 (cl (= (= a t) (= u a))) :rule cong :premises (t1))

(step t1 (cl
 (or (not (forall ((x Real) (y Real)) (= x y))) (= b a))
) :rule forall_inst :args (a b))

12 / 39

Checking resolution steps

• SMT proofs usually make heavy use of the resolution inference rule

• In Alethe, this is modeled by the rule resolution

𝐴 ∨ 𝑝1 𝐵 ∨ ¬𝑝1 ∨ 𝑝2 𝐶 ∨ ¬𝑝2 ∨ 𝑝3 𝐷 ∨ ¬𝑝3 resolution; 𝑝1, 𝑝2, 𝑝3𝐴 ∨ 𝐵 ∨ 𝐶 ∨ 𝐷

• Here, 𝑝1, 𝑝2 and 𝑝3 are the pivots of the resolution step

13 / 39

Checking resolution steps

• In general, the pivots used in a resolution step are not provided in the Alethe proof

• The checker must then infer which pivot was used for each binary resolution step

• To do this, Carcara uses a greedy algorithm that looks at the conclusion clause to guess
which terms are pivots and which terms should be kept

14 / 39

Checking resolution steps: inferring the pivots

𝑎 ∨ 𝑏 ∨ 𝑐 ¬𝑎 ∨ 𝑑 ¬𝑐 ∨ 𝑒 ∨ ¬𝑓 𝑓
resolution; ???

𝑏 ∨ 𝑑 ∨ 𝑒

15 / 39

Checking resolution steps: inferring the pivots

𝑎 ∨ 𝑏 ∨ 𝑐 ¬𝑎 ∨ 𝑑 ¬𝑐 ∨ 𝑒 ∨ ¬𝑓 𝑓
resolution; 𝑎, …

𝑏 ∨ 𝑑 ∨ 𝑒

16 / 39

Checking resolution steps: inferring the pivots

𝑎 ∨ 𝑏 ∨ 𝑐 ¬𝑎 ∨ 𝑑 ¬𝑐 ∨ 𝑒 ∨ ¬𝑓 𝑓
resolution; 𝑎, 𝑐, …

𝑏 ∨ 𝑑 ∨ 𝑒

17 / 39

Checking resolution steps: inferring the pivots

𝑎 ∨ 𝑏 ∨ 𝑐 ¬𝑎 ∨ 𝑑 ¬𝑐 ∨ 𝑒 ∨ ¬𝑓 𝑓
resolution; 𝑎, 𝑐, 𝑓

𝑏 ∨ 𝑑 ∨ 𝑒

18 / 39

Checking resolution steps: inferring the pivots

• This greedy algorithm is relatively efficient, but incomplete—some valid resolution steps
will be rejected by it

• Carcara also uses a more complex algorithm based on Reverse Unit Propagation (that is
complete) as a fallback

19 / 39

Checking resolution steps: inferring the pivots

• This greedy algorithm is relatively efficient, but incomplete—some valid resolution steps
will be rejected by it

• Carcara also uses a more complex algorithm based on Reverse Unit Propagation (that is
complete) as a fallback

• If the pivots were provided, of course, checking would be both easy and complete!

19 / 39

Elaboration

Proof elaboration

• There are many rules in Alethe which allow very coarse-grained steps

• By breaking them down into smaller, finer-grained steps, we can produce a proof that is
easier to check and contains less holes

21 / 39

Proof elaboration

• There are many rules in Alethe which allow very coarse-grained steps

• By breaking them down into smaller, finer-grained steps, we can produce a proof that is
easier to check and contains less holes

• Besides proof checking, Carcara is also able to do this proccess, called proof elaboration

21 / 39

Proof elaboration

• While it doesn’t make sense to elaborate a proof to check it with Carcara, it might be
useful as a “post-processing” step before passing it to a different tool

22 / 39

Proof elaboration

• While it doesn’t make sense to elaborate a proof to check it with Carcara, it might be
useful as a “post-processing” step before passing it to a different tool

• Notably, if you want to reconstruct the proof in a proof assistant, or translate the proof to
a different format, elaboration can be very helpful

𝜑 𝜋 : 𝜑 → ⊥ 𝜋elab. : 𝜑 → ⊥
SMT solver

Carcara
🦅

Proof assistant,
translator,

etc.
…

22 / 39

Removing the implicit reordering of equalities

• Recall that SMT solvers may implicitly reorder equalities when producing Alethe proofs

• This makes checking more complicated and less efficient

23 / 39

Removing the implicit reordering of equalities

• Recall that SMT solvers may implicitly reorder equalities when producing Alethe proofs

• This makes checking more complicated and less efficient

• An elaboration procedure was developed to remove this implicit transformation

23 / 39

Removing the implicit reordering of equalities

• The proof would be simpler to check if h2 was instead
(assume h2 (not (= b a)))

(set-logic QF_UF)
(declare-const a Bool)
(declare-const b Bool)
(assert (= a b))
(assert (not (= b a)))
(check-sat)

(assume h1 (= a b))
(assume h2 (not (= a b)))
(step t3 (cl) :rule resolution
 :premises (h1 h2))

24 / 39

Removing the implicit reordering of equalities

• The proof would be simpler to check if h2 was instead
(assume h2 (not (= b a)))

• However, step t3 uses h2 as a premise, so we can’t just
change the assumed term

• Instead, we need to add steps that reconstruct the
original term

(set-logic QF_UF)
(declare-const a Bool)
(declare-const b Bool)
(assert (= a b))
(assert (not (= b a)))
(check-sat)

(assume h1 (= a b))
(assume h2 (not (= a b)))
(step t3 (cl) :rule resolution
 :premises (h1 h2))

24 / 39

Removing the implicit reordering of equalities

• This is the correct elaboration of the proof:

(set-logic QF_UF)
(declare-const a Bool)
(declare-const b Bool)
(assert (= a b))
(assert (not (= b a)))
(check-sat)

(assume h1 (= a b))
(assume h2 (not (= b a)))
(step h2.t1 (cl (not (= a b)))
 :rule not_symm :premises (h2))
(step t3 (cl) :rule resolution
 :premises (h1 h2.t1))

25 / 39

Removing the implicit reordering of equalities

• This is the correct elaboration of the proof:

• Now h2 refers to the premise as it appeared in the
original problem, and the added step reconstructs
the original h2 term

• The step t3, that used to reference h2, now
references h2.t1

(set-logic QF_UF)
(declare-const a Bool)
(declare-const b Bool)
(assert (= a b))
(assert (not (= b a)))
(check-sat)

(assume h1 (= a b))
(assume h2 (not (= b a)))
(step h2.t1 (cl (not (= a b)))
 :rule not_symm :premises (h2))
(step t3 (cl) :rule resolution
 :premises (h1 h2.t1))

25 / 39

Removing the implicit reordering of equalities

• A similar procedure is done for all rules that are affected by this implicit reordering of
equalities

• Thus, checking an elaborated proof can be done without the use of polyequality checks

26 / 39

Removing reordering steps

• The reordering rule takes a single clause as a premise and produces a permutation of that
clause:

𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑 reordering
𝑐 ∨ 𝑏 ∨ 𝑑 ∨ 𝑎

• While not particularly difficult to check in Carcara, it is challenging to formalize in tools
like proof assistants

27 / 39

Removing reordering steps

• The reordering rule takes a single clause as a premise and produces a permutation of that
clause:

𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑 reordering
𝑐 ∨ 𝑏 ∨ 𝑑 ∨ 𝑎

• While not particularly difficult to check in Carcara, it is challenging to formalize in tools
like proof assistants

• To facilitate in translation to different proof formats, Carcara can also remove all
reordering steps in a proof

27 / 39

Removing reordering steps

• To do this, we
1. Remove all reordering steps, replacing them with their premise
2. Recompute every step that uses one of the modified steps as a premise
3. Repeat, until the end of the proof

28 / 39

Removing reordering steps

• To do this, we
1. Remove all reordering steps, replacing them with their premise
2. Recompute every step that uses one of the modified steps as a premise
3. Repeat, until the end of the proof

• In Alethe, most rules only accept premises with unary clauses, with the only exceptions
being the rules weakening, contraction and resolution

‣ so we only need to recompute those!

28 / 39

Removing reordering steps

…
𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑 reordering
𝑐 ∨ 𝑏 ∨ 𝑑 ∨ 𝑎

…
¬𝑏 resolution

𝑐 ∨ 𝑑 ∨ 𝑎

29 / 39

Removing reordering steps

…
𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑 reordering
𝑐 ∨ 𝑏 ∨ 𝑑 ∨ 𝑎

…
¬𝑏 resolution

𝑐 ∨ 𝑑 ∨ 𝑎

30 / 39

Removing reordering steps

…
𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑

…
¬𝑏 resolution

𝑐 ∨ 𝑑 ∨ 𝑎

31 / 39

Removing reordering steps

…
𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑

…
¬𝑏 resolution

𝑎 ∨ 𝑐 ∨ 𝑑

32 / 39

Other elaboration procedures

• Simplifying some transitivity steps
‣ this can make steps that take 𝑂(𝑛2) time to check be checkable in 𝑂(𝑛)

33 / 39

Other elaboration procedures

• Simplifying some transitivity steps
‣ this can make steps that take 𝑂(𝑛2) time to check be checkable in 𝑂(𝑛)

• Finding resolution pivots, and performing “uncrowding”
‣ normally, resolution can include the implicit reordering of clauses and the implicit

removal of duplicates

33 / 39

Other elaboration procedures

• Simplifying some transitivity steps
‣ this can make steps that take 𝑂(𝑛2) time to check be checkable in 𝑂(𝑛)

• Finding resolution pivots, and performing “uncrowding”
‣ normally, resolution can include the implicit reordering of clauses and the implicit

removal of duplicates

• Filling in “holes” using external tools
‣ e.g., call the cvc5 SMT solver to elaborate hard-to-check lia_generic steps

33 / 39

Ongoing and future work

Proof translation

• We are working on adding support for translating Alethe proofs into different formats
‣ Lambdapi/Dedukti
‣ Eunoia

35 / 39

Proof translation

• We are working on adding support for translating Alethe proofs into different formats
‣ Lambdapi/Dedukti
‣ Eunoia

• This effort will help the integration of SMT solvers, and SMT proofs, into many more tools

35 / 39

Proof translation

• We are working on adding support for translating Alethe proofs into different formats
‣ Lambdapi/Dedukti
‣ Eunoia

• This effort will help the integration of SMT solvers, and SMT proofs, into many more tools

• Elaborating the proof before translation makes this a lot easier

35 / 39

And many other things!

• Expanding support for other theories
‣ bitvectors
‣ strings
‣ datatypes

36 / 39

And many other things!

• Expanding support for other theories
‣ bitvectors
‣ strings
‣ datatypes

• Proof compression

36 / 39

And many other things!

• Expanding support for other theories
‣ bitvectors
‣ strings
‣ datatypes

• Proof compression

• Improving proof slicing
‣ extracting a specific step of interest from a large proof

36 / 39

Conclusion

Conclusion

• Carcara is currently used by developers of SMT solvers and other tools who want to
support the Alethe format

38 / 39

Conclusion

• Carcara is currently used by developers of SMT solvers and other tools who want to
support the Alethe format

• The tool has served as testing grounds for changes in Alethe, and has uncovered
inconsistencies that have since been fixed

38 / 39

Conclusion

• Carcara is currently used by developers of SMT solvers and other tools who want to
support the Alethe format

• The tool has served as testing grounds for changes in Alethe, and has uncovered
inconsistencies that have since been fixed

• More than just a proof checker, Carcara is a becoming a multi-purpose tool to work with
Alethe proofs

38 / 39

Conclusion

Thank you to Átila Augusto, Haniel Barbosa, Bernardo Borges, Vinícius Braga, Tiago Campos,
Alessio Coltellacci, Vinicius Gomes, Jibiana Jakpor, Hanna Lachnitt, Guilherme Luiz, José Neto,

Hans-Jörg Schurr and Mallku Soldevila, who have worked and/or are working on Carcara.

And thank you for listening!

39 / 39

	Introduction
	SMT solvers and trust
	SMT proofs
	Alethe format
	Example of an Alethe proof
	Checking Alethe proofs
	Introducing Carcara

	Checking
	Checking Alethe proofs
	Checking assume commands
	Implicit reordering of equalities
	Checking resolution steps
	Checking resolution steps: inferring the pivots

	Elaboration
	Proof elaboration
	Removing the implicit reordering of equalities
	Removing reordering steps
	Other elaboration procedures

	Ongoing and future work
	Ongoing and future work
	Proof translation
	And many other things!

	Conclusion
	Conclusion

