Deterministic Scheduling
Florian Pollitt

universitatfreiburg

WG2: Workshop on Automated
Reasoning and Proof Logging

September 11.-13., 2025, Orsay, France

supported by DFG Intel

The Problem — Scheduling in SAT solvers

CDCL with inprocessing (CNF formula F)

1 (res,F) = preprocess (F,a) // where o is some estimated effort limit
2 while res = UNKOWN

3 propagate all newly assigned literals

4 if conflicting then res = analyze conflict continue

// either learn and propagate or return UNSAT
if satisfied then res = SAT, continue
if restarting then restart, continue
if unlearning then unlearn, continue
if switching then switch mode, continue

© 0O N O O

if inprocessing then (res, F) = inprocess (F,d), continue
// where 9 is some effort limit relative to the time spent in propagation

10 decide next unassigned variable
11 return res

Stable and unstable mode switching [SAT 15]

® portfolio motivated by differences of SAT/UNSAT
® switching between different heuristics

® decision heuristics

® restart frequency

® more aggressive in unstable mode

® generally slower conflict frequency

® high variance with conflict based schedule

® time based schedule instead

Reproducibility vs. Precision

= Reproducibility for debugging and robustness

= Deterministic counts instead of hardware or operating based solutions

The Approach — Ticks

® widely used metrics are conflicts and propagations

® count cache line accesses in hotspots

= similar to Knuth’'s mems

® (hopefully) better abstraction (takes cache lines into account)

® propagation and clause learning are biggest hotspots

Pseudocode — Propagation with ticks

propagate (newly assigned literal /) // assuming current assignment is cached

—h

using watchlist W of —/¢

2 let ticks = 1 + cachelines (W) // assuming 128 byie cachelines

3 for all watchesw e W

4 if blocking literal of w is satisfied continue

5 dereference w’s clause C, ticks +=1 // main hotspot

6 other watched literal ¢}, € C|0 : 1]

7 find non-falsified replacement literal ¢’ € C[2 : n]

8 if valid replacement ¢’ exists

9 move watch from ¢ to ¢/, ticks +=1 // “random” watchlist
10 else if /., unassigned // no replacement, clause is propagating
11 assign ¢, ;n.r, ticks +=1 // update reason
12 else break // clause is conflicting
13 get current mode € {stable,unstable}
14 increment global ticks[mode] by ticks

Stable vs. unstable

Unstable Mode Ratio

100%

90%
80%
70%
60%
569

i
50%

40%

30%

20%

10%

0%

Anniversary Track 2022: Unstable/Stable Mode Balance

T o® ®06 ©
® °0° o CADICAL CONFLICTS
° CADICAL Ticks

Perfect Balance

(o]
(°]
(°]
) o °
000 00 90" 00 X P o
e® o

e 6 fo, T
O S O o oo ¥ L » b
"-;ZI.L,..(".J-«'JJ:

-

500 1000 1500
Total Time [s]

2000

2500

Is it good though?

3400 3600 3800 4000

3200

0 3955 cadical-conflicts
A 3891 cadical-ticks

3000
I

I I I I I I
0 500 1000 1500 2000 2500

Inprocessing

= do not get “stuck” at inprocessing

® correlate inprocessing time with soving time
= fixed usefullness fraction

® bounded variable elimination

® vivification

® hyper binary resolution

Integrating ticks — Profiling

B add ticks to presumed hotspots of algorithms
® check precision by running benchmarks with profiling
® target relative time vs. actual times

® refine by looking at code

Conclusion

= more precise then conflicts/resolutions
m disregards benchmark characteristics
= manual effort (bug prone)

® |ots of profiling (CPU time)

= “good enough” solution

® does not work for up-front effort (preprocessing)

Bibliography

[2011] Donald Knuth.
“The Art of Computer Programming, Volume 4A”

[SAT’15] Chanseok Oh.
“Between SAT and UNSAT: the fundamental difference in CDCL SAT”

