
Deterministic Scheduling
Florian Pollitt

WG2: Workshop on Automated
Reasoning and Proof Logging

September 11.-13., 2025, Orsay, France

supported by Intel



The Problem — Scheduling in SAT solvers

CDCL with inprocessing (CNF formula F)
1 (res,F) = preprocess (F,α) // where α is some estimated effort limit
2 while res = UNKOWN
3 propagate all newly assigned literals
4 if conflicting then res = analyze conflict continue

// either learn and propagate or return UNSAT
5 if satisfied then res = SAT, continue
6 if restarting then restart, continue
7 if unlearning then unlearn, continue
8 if switching then switch mode, continue
9 if inprocessing then (res,F) = inprocess (F,δ), continue

// where δ is some effort limit relative to the time spent in propagation
10 decide next unassigned variable
11 return res



Stable and unstable mode switching [SAT’15]

portfolio motivated by differences of SAT/UNSAT

switching between different heuristics

decision heuristics

restart frequency

more aggressive in unstable mode

generally slower conflict frequency

high variance with conflict based schedule

time based schedule instead



Reproducibility vs. Precision

Reproducibility for debugging and robustness

Deterministic counts instead of hardware or operating based solutions



The Approach — Ticks

widely used metrics are conflicts and propagations

count cache line accesses in hotspots

similar to Knuth’s mems

(hopefully) better abstraction (takes cache lines into account)

propagation and clause learning are biggest hotspots



Pseudocode — Propagation with ticks

propagate (newly assigned literal ℓ) // assuming current assignment is cached
1 using watchlist W of ¬ℓ
2 let ticks = 1 + cachelines (W ) // assuming 128 byte cachelines
3 for all watches w ∈W

4 if blocking literal of w is satisfied continue
5 dereference w’s clause C, ticks += 1 // main hotspot
6 other watched literal ℓother ∈C[0 : 1]

7 find non-falsified replacement literal ℓ′ ∈C[2 : n]

8 if valid replacement ℓ′ exists
9 move watch from ℓ to ℓ′, ticks += 1 // “random” watchlist

10 else if ℓother unassigned // no replacement, clause is propagating
11 assign ℓother, ticks += 1 // update reason
12 else break // clause is conflicting
13 get current mode ∈ {stable,unstable}
14 increment global ticks[mode] by ticks



Stable vs. unstable

0 500 1000 1500 2000 2500

Total Time [s]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
n

st
ab

le
M

o
d

e
R

a
ti

o

56% -
53% -

Anniversary Track 2022: Unstable/Stable Mode Balance

CaDiCaL Conflicts

CaDiCaL Ticks

Perfect Balance



Is it good though?

0 500 1000 1500 2000 2500

30
00

32
00

34
00

36
00

38
00

40
00

3955 cadical−conflicts
3891 cadical−ticks



Inprocessing

do not get “stuck” at inprocessing

correlate inprocessing time with soving time

fixed usefullness fraction

bounded variable elimination

vivification

hyper binary resolution

. . .



Integrating ticks — Profiling

add ticks to presumed hotspots of algorithms

check precision by running benchmarks with profiling

target relative time vs. actual times

refine by looking at code



Conclusion

more precise then conflicts/resolutions

disregards benchmark characteristics

manual effort (bug prone)

lots of profiling (CPU time)

“good enough” solution

does not work for up-front effort (preprocessing)



Bibliography

[2011] Donald Knuth.
“The Art of Computer Programming, Volume 4A”

[SAT’15] Chanseok Oh.
“Between SAT and UNSAT: the fundamental difference in CDCL SAT”


