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The Problem — Scheduling in SAT solvers

CDCL with inprocessing (CNF formula F)

1 (res,F) = preprocess (F,a) // where o is some estimated effort limit
2 while res = UNKOWN

3 propagate all newly assigned literals

4 if conflicting then res = analyze conflict continue

// either learn and propagate or return UNSAT
if satisfied then res = SAT, continue
if restarting then restart, continue
if unlearning then unlearn, continue
if switching then switch mode, continue
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if inprocessing then (res, F) = inprocess (F,d), continue
// where 9 is some effort limit relative to the time spent in propagation

10 decide next unassigned variable
11 return res



Stable and unstable mode switching [SAT 15]

® portfolio motivated by differences of SAT/UNSAT
® switching between different heuristics

® decision heuristics

® restart frequency

® more aggressive in unstable mode

® generally slower conflict frequency

® high variance with conflict based schedule

® time based schedule instead



Reproducibility vs. Precision

= Reproducibility for debugging and robustness

= Deterministic counts instead of hardware or operating based solutions



The Approach — Ticks

®  widely used metrics are conflicts and propagations

® count cache line accesses in hotspots

= similar to Knuth’'s mems

® (hopefully) better abstraction (takes cache lines into account)

® propagation and clause learning are biggest hotspots



Pseudocode — Propagation with ticks

propagate (newly assigned literal /) // assuming current assignment is cached

—h

using watchlist W of —/¢

2 let ticks = 1 + cachelines (W) // assuming 128 byie cachelines

3 for all watchesw e W

4 if blocking literal of w is satisfied continue

5 dereference w’s clause C, ticks +=1 // main hotspot

6 other watched literal ¢}, € C|0 : 1]

7 find non-falsified replacement literal ¢’ € C[2 : n]

8 if valid replacement ¢’ exists

9 move watch from ¢ to ¢/, ticks +=1 // “random” watchlist
10 else if /., unassigned // no replacement, clause is propagating
11 assign ¢, ;n.r, ticks +=1 // update reason
12 else break // clause is conflicting
13 get current mode € {stable,unstable}
14 increment global ticks[mode] by ticks



Stable vs. unstable
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Anniversary Track 2022: Unstable/Stable Mode Balance
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Is it good though?
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Inprocessing

= do not get “stuck” at inprocessing

® correlate inprocessing time with soving time
= fixed usefullness fraction

® bounded variable elimination

® vivification

® hyper binary resolution



Integrating ticks — Profiling

B add ticks to presumed hotspots of algorithms
® check precision by running benchmarks with profiling
® target relative time vs. actual times

® refine by looking at code



Conclusion

= more precise then conflicts/resolutions
m disregards benchmark characteristics
= manual effort (bug prone)

® |ots of profiling (CPU time)

= “good enough” solution

® does not work for up-front effort (preprocessing)
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