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I Introduction

SMT-LIB (up to v2.6)
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e Based on many-sorted first-order logic
e Comes with many theories (e.g. arrays, integer and real arithmetic)
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SMT-LIB (up to v2.6)
e Standard input format for SMT solvers (e.g. z3, cvcs, veriT)

e Based on many-sorted first-order logic
e Comes with many theories (e.g. arrays, integer and real arithmetic)

SMT-LIB v2.7
¢ Brings higher-order constructs through \-abstractions
e Brings higher-order types through arrow type constructor
e Only supported by cvcs yet
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I Overview of the encoding

SETS

S = {el, e2, e3}

(former) first-order encoding

(declare-sort P 1)

(declare-sort C 2)

(declare-fun S () (P Int))
(declare-fun el () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct el e2 e3))
(declare-fun o ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=
(€0 x S)
(or (= x el) (= x e2) (= x e3)))))

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB

8/45



I Overview of the encoding

SETS

S = {el, e2, e3}

(former) first-order encoding

(new) higher-order encoding &

(declare-sort P 1)
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(declare-fun el () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct el e2 e3))
(declare-fun o ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=
(€0 x S)
(or (= x el) (= x e2) (= x e3)))))

(declare-const el Int)
(declare-const e2 Int)
(declare-const e3 Int)
(assert (distinct el e2 e3))
(define-const S (— Int Bool)
(lambda ((x Int))
(or (= x el) (= x e2) (= x e3))))
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I Overview of the encoding

(former) first-order encoding

e FOL

e Specification of sets via €, P
and C

e Only expressions like x € S are
encoded

e Functions are functional
relations

:
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(new) higher-order encoding &

HOL

Definition of sets via
characteristic predicates

Sets alone make sense; x € S is
true by definition

Functions are (sometimes)
functions
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Suppose we have a function f € A + B.

(former) first-order encoding
f is a relation between A and B:

fCAxB
f is functional:

Vxyz, x—yef ANx—zef
=>y=z

(new) higher-order encoding &
f is a total function from A to
BU {x}:

feBUH

(declare-datatype Option
(par (T) ((some (the T)) (none))))
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Suppose we have a function f € A + B. Let 74 and 7 represent the types of A
and B respectively.
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Suppose we have a function f € A + B. Let 74 and 7 represent the types of A
and B respectively.

(former) first-order encoding

(declare-sort P 1)
(declare-sort C 2)
(declare-const f (P (C 73 78)))
(declare-fun

€o (ma 73 (P (C 7 78))) Bool)
(assert

(forall ((x 7a) (y 78) (z 78))

(= (and (g0 x y ) (g0 x z ))
(=vy 2))))
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Suppose we have a function f € A + B. Let 74 and 7 represent the types of A
and B respectively.

(former) first-order encoding (new) higher-order encoding

(declare-sort P 1)
(declare-sort C 2)
(declare-const f (P (C 73 78)))
(declare-fun

€0 (TA TB (P (C TA TB))) BOO-L)
(assert

(forall ((x ma) (y 78) (z 78))

(= (and (g9 x y f) (€0 x z F))
(=vy 2))))

‘(declare-const f (> 74 (Option 7))
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Suppose we have a function f € A + B. Let 74 and 7 represent the types of A

and B respectively.

(former) first-order encoding

(new) higher-order encoding

(declare-sort P 1)
(declare-sort C 2)
(declare-const f (P (C 73 78)))
(declare-fun

co (ra 78 (P (C 74 78))) Bool)
(assert

(forall ((x 74) (y 78) (z 78))

(= (and (g0 x y ) (g0 x z ))
(=vy 2))))

’(declare—const f (> 74 (Option 7)) ‘

+ specification thatdomf CAandranf C B

V. Trélat
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)
feS«a.b
Vx: ,y:int,z:int - x—yefAx—zef=>y=2
S C dom(f)
_inj(f)
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Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)

feS«a.b A
Vx:r,y:int,z:int - x—yefAx—zef=y=2 A
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The expression finite S is defined as follows in B:
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Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)

Vx:m,y:int-x—yef=xeSAa<yAy<b A
Vx:r,y:int,z:int - x—yefAx—zef=y=2 A
A

Vz:7-zeS=dw:int-z—wef
-inj(f)
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S is defined as follows in B:

Va:int-3b: int,f: set (7 x int)

Vx:my:int-x—yef=xeSAna<yAy<b A
Vx:my:int,z:int - x—syefAx—zef=y=z A
A

Vz:7-zeS=3dw:int-z—wef
VX:1,¥:T,2: T X—>ZEfAYy—zef=x=y

1/45
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I How large is the gain?

Let S be a set of elements of type 7.
The expression finite S can be encoded as follows:

aN: int,f: 7 — int.
Vx:ry:7,z:int - f(x) =zAf(y)=z=x=y A
Vx:7-XeS=0<f(x)Af(x) <N
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I Does this work?

MACHINE
M
VARIABLES
s0
INVARIANT
s@ C NAT A
s@ N (Z\N) e FIN(Z)
INITIALISATION
s@ :c P(NAT)
END
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The following proof obligation is generated:

MAPEIZ"""E s0 € P(NAT) = sO C NAT A sO N (Z\ N) € FIN(Z)

VARIABLES

s0
INVARIANT

s@ C NAT A

s@ N (Z\N) e FIN(Z)
INITIALISATION

s@ :c P(NAT) X predicate prover from Atelier B
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VARIABLES
s0
INVARIANT
s@ C NAT A
s@ N (Z\N) e FIN(Z)
INITIALISATION
s@ :c P(NAT)
END

:
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The following proof obligation is generated:
s0 € P(NAT) = s0 C NAT A s N (Z\ N) € FIN(Z)
which boils down to proving:

s0 € P(NAT) = s0O € FIN(Z)

X predicate prover from Atelier B
X CVCs with ppTransSMT

v/ CVCs with 1%
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I Results

In the current state of BP we have:

- unsat sat unknown Total
ppTrans
unsat 14,457 0 431 14,888
sat 1 1 5 7
unknown 236 5 472 713
Total 14,694 6 908 15,608

Benchmark specs:
® 681,285 POs in total
e Apple M2 (10 CPU cores, 24 GB RAM)
e cvcs with incremental mode, MBQI enabled and 3s timeout per query
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@ Syntax of B
e Concrete terms
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I Architecture of &
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write
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I Roadmap

[] Syntax
[1 Type system

[0 Semantics

:
V. Trélat
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Concrete terms

Concrete terms are low-level syntactic constructs used in the implementation of the
encoding.
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Concrete terms

Concrete terms are low-level syntactic constructs used in the implementation of the

encoding.

% inductive Term where

-- arithmetic
[ x +8y | x By | x* y | x <By
-- logic

| x ABy | =B x | x =By | Ve (vs : List String) € D -P
-- set operations

| Z1 B xeBy | PES|SxET|SUT]|SMT] S|
| {Cvs : List String) € D |P}

-- functions

| app (f x : Term) | A -8 B | min (S : Term) | max (S :
| A® (vs : List String) € D | f

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB

| var (v : String) | int (n : Int) | bool (b : Bool) | x w8 y

19/45



I Concrete terms

Example

N°[] €®int2 | var"x" =° (int0 A" B) into+°int1 €* Z
VB["X“, ||yu] EB Z ><B Z .var uXu SB Vaf'"y" | Z |B GB Z

are all syntactically valid terms.’

"Read with usual priorities.
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I Concrete terms

Example

N°[] €®int2 | var"x" =° (int0 A" B) int0+°int1 €® Z
vB[qul7 uyu] 6B Z XB Z .var uXu SB var uyu ‘ Z |B 6B Z

are all syntactically valid terms.’

Some of these terms are type-correct, well-formed, or do not make sense.

"Read with usual priorities.
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Abstract terms

We define abstract terms as a layer of abstraction over concrete terms.

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 21/45



I Abstract terms

We define abstract terms as a layer of abstraction over concrete terms.
e ease formal reasoning about the language via higher-level constructs
e bridge the gap between a deeply embedded language and Lean

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 21/45
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We define abstract terms as a layer of abstraction over concrete terms.
e ease formal reasoning about the language via higher-level constructs
e bridge the gap between a deeply embedded language and Lean

Example
| InV*['x"] € D - P, P is only a term, not a predicate.
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I Abstract terms

We define abstract terms as a layer of abstraction over concrete terms.
e ease formal reasoning about the language via higher-level constructs
e bridge the gap between a deeply embedded language and Lean

Example
| InV*['x"] € D - P, P is only a term, not a predicate.

Remark
a-renaming and substitutions have to be handled explicitly:

()\B["X"] EB Z | var uxn) # ()\B[uyn] EB Z | var "y")
(WIx') € Z | var'x' +2var'y") ['y" = "x"] = 777
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Abstract terms
PHOAS

Variable management is delegated to the underlying formal system (Lean):

J| bbinder : List String > Term > Term > Term
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Abstract terms
PHOAS

Variable management is delegated to the underlying formal system (Lean):

%l bbinder {n} : Term V > ((Fin n > V) > Term V) > Term V
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Abstract terms
PHOAS

Variable management is delegated to the underlying formal system (Lean):

%l bbinder {n} : Term V > ((Fin n > V) > Term V) > Term V

Example
Concrete term: Abstract term:
% Ve ["x", "y"] € 7 xB 7 - % V8 Z xB Z - fun x y »
var "x" =B var "y" var x =B var y
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Abstract terms
Abstraction function

Abstraction function: maps concrete terms to abstract terms under a renaming context

e [ntuition: almost an identity function
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Abstract terms
Abstraction function

Abstraction function: maps concrete terms to abstract terms under a renaming context
e [ntuition: almost an identity function
e Implementation: a little more complex

Notation

For any concrete term t and renaming context A: String — Option V, the
abstraction of t under A is denoted by (| t | a.
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Abstraction function

I Abstract terms

Example

LetY € Vand A := {"y" — Y}. Consider the concrete term
V°['x"] €® Z - var "x" = var"y".

(] VB[IIXII] EB Z .var "X“ _8B var uyu DA
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Example
LetY € Vand A := {"y" — Y}. Consider the concrete term

V°['x"] €® Z - var "x" = var"y".
(] VB[IIXII] EB Z .var "X“ _8B var uyu DA
=V(Z)a- (X (var'x" =var'y" \apxisy)
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I Abstract terms

Abstraction function

Example
LetY € Vand A := {"y" — Y}. Consider the concrete term

V°['x"] €® Z - var "x" = var"y".
(] VB[IIXII] EB Z .var "X“ _8B var uyu DA
=V(Z)a- (X (var'x" =var'y" \apxisy)
=V"Z- (X~ varX =®varY)
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I Abstract terms

Abstraction function

Example
LetY € Vand A := {"y" — Y}. Consider the concrete term

V°['x"] €® Z - var "x" = var"y".
(] VB[IIXII] €B Z .var "X“ _8B var uyu DA
=V(Z)a- (X (var'x" =var'y" \apxisy)
=V"Z- (X~ varX =®varY)

Remark
In the actual implementation, A is required to contain all free variables of the
term t being abstracted: dom(A) D fv(t)
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© Typing B
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Type system

We introduce a basic type system for B, based on the following types:

% inductive BType where
| int | bool | set : BType > BType | _x®_ : BType > BType > BType

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 27/45



Type system

We introduce a basic type system for B, based on the following types:

% inductive BType where

| int | bool | set : BType > BType | _x®_ : BType > BType > BType

which can be transformed into terms:

% def BType.toTerm : BType > Term
| int =7
| bool =B
| set a = P° a.toTerm
| o x® B = a.toTerm x® B.toTerm
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Typing rules

Type contexts are defined as follows:

% abbrev TypeContext := % abbrev PHOAS.TypeContext V :=
AList fun _ : String » BType V > Option BType
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Typing rules

Type contexts are defined as follows:

% abbrev TypeContext := % abbrev PHOAS.TypeContext V :=
AList fun _ : String » BType V > Option BType

together with an abstraction function:

% noncomputable def TypeContext.abstract {V}
(A : String > Option V) I : PHOAS.TypeContext V := fun x : V »
if h:3veTrl, Av =some x then I'.lookup (choose h)
else none
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Typing rules

Inductive typing predicate I' - t : 7 for both concrete and abstract terms:
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Typing rules

Inductive typing predicate I' - t : 7 for both concrete and abstract terms:

I'.lookup v = some 7 I'(v) =some 7

I'Fvarv : 7 I'Fvarv : 7
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Typing rules

Inductive typing predicate I' - t : 7 for both concrete and abstract terms:

I'.lookup v = some 7 I'(v) =some 7
var vary
I'Fvarv : 7 I'Fvarv : 7

F'kEx:« I'kty:p
F'Ex—=ty:ax"3

maplet;
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I Typing rules

Inductive typing predicate I' - t : 7 for both concrete and abstract terms:

I'.lookup v = some 7 I'(v) =some 7
var vary
I'Fvarv : 7 I'Fvarv : 7

F'kEx:« I'kty:p
F'Ex—=ty:ax"3

maplet;

I'EX:« 'S :seta
'-xe®S : bool

memy
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Typing rules

Inductive typing predicate I' - t : 7 for both concrete and abstract terms:

I'.lookup v = some 7 I'(v) =some 7
var vary
I'Fvarv : 7 I'Fvarv : 7

F'kEx:« I'kty:p
F'Ex—=ty:ax"3

maplet;

I'EX:« 'S :seta
'-xe®S : bool

memy

Similarly: add;, muly, suby, ley, noty, eq;, Z, B, memy, pow,, cprod,, uniony, intery, card,
ming, maxi.

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB

29/45



I Typing rules

Concrete lambda typing rule

Let n € N*, T" a concrete type context, (v;)i-, concrete variables, (o)., and &
B types, (D;)i<n, and f concrete terms. Assume the following:

Vi<n,vigl; Vi<n TkD;:setaj; TVi=ajicntf:¢&
Then, the following typing judgment holds:

TEXv, .,V €Dy xB...x®D,-f :set (ag x®... xBay x5)

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 30/45



I Typing rules

Abstract lambda typing rule

Let n € N*, I" an abstract type context, («;)i-, and £ B types, (D;);, abstract
terms and f an abstract motive. Assume the following:

Vi<n T'EDj:seta;; Y(Vi)icn, IVi = ailicn = f ((Vi)i<n) : €
Then, the following typing judgment holds:

T'EADy x®...x®BDy-f :set (g x®... xPay x5¢)
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Auxiliary theorems
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I Auxiliary theorems

Theorem (Weakening)
Assume that I' =t : 7. Let v be a variable such that v ¢ I. Then,

Va,T[vi=a]kt: T
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I Auxiliary theorems

Theorem (Weakening)
Assume that I' =t : 7. Let v be a variable such that v ¢ I. Then,

Va,T[vi=a]kt: T

Theorem (Strengthening)
Assume that I'lv := o]+t : 7, and v is not a free variable in t. Then,

I'kt:7
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I Auxiliary theorems

Theorem (Weakening)
Assume that I' =t : 7. Let v be a variable such that v ¢ I. Then,

Va,T[vi=a]kt: T

Theorem (Strengthening)
Assume that I'lv := o]+t : 7, and v is not a free variable in t. Then,

I'kt:7

Theorem (Determinism)
I 'kt:7—>T'kFt:o—-T17=0
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@ Denotational semantics of B
e Definitions

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 34/45



I Denotational semantics of B
ZFC

Interpreting the B syntax in ZFC set theory:
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I Denotational semantics of B
ZFC

Interpreting the B syntax in ZFC set theory: Lean provides a lacunary model of ZFC in
Mathlib that we first had to extend.

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 35/45



I Denotational semantics of B
ZFC

Interpreting the B syntax in ZFC set theory: Lean provides a lacunary model of ZFC in
Mathlib that we first had to extend.

e ZFSet

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 35/45
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Interpreting the B syntax in ZFC set theory: Lean provides a lacunary model of ZFC in
Mathlib that we first had to extend.

e ZFSet

e naturals, N, ZFNat and arithmetics
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I Denotational semantics of B
ZFC

Interpreting the B syntax in ZFC set theory: Lean provides a lacunary model of ZFC in
Mathlib that we first had to extend.

e /FSet
e naturals, N, ZFNat and arithmetics

e integers, Z, ZFInt and arithmetics
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I Denotational semantics of B
ZFC

Interpreting the B syntax in ZFC set theory: Lean provides a lacunary model of ZFC in
Mathlib that we first had to extend.

e /FSet

e naturals, N, ZFNat and arithmetics
e integers, Z, ZFInt and arithmetics
e rationals, Q, ZFRat
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I Denotational semantics of B

We define a denotation function for abstract B terms:

I[P : Termy —V
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I Denotational semantics of B

We define a denotation function for abstract B terms:

[[]° : TermZFSet — ZFSet
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I Denotational semantics of B

We define a denotation function for abstract B terms:

[ : TermDom — Dom
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I Denotational semantics of B

We define a denotation function for abstract B terms:

[ : TermDom — Dom

where
Dom = "x €[]’
X, T
[int]® =77
[bool]* =B
[set o] = P*([o])
[a =28 = [a]® x* 8]
| V. Trélat Safely Encoding B Proof Obligations in SMT-LIB

36/45



I Denotational semantics of B

The whole purpose of the PHOAS is to pour semantics into the syntax:
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The whole purpose of the PHOAS is to pour semantics into the syntax:

[var v]® :=v
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I Denotational semantics of B

The whole purpose of the PHOAS is to pour semantics into the syntax:

[var (v, 7, pf))l° = (V, 7, pf) where pfy: V € [7]°
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I Denotational semantics of B

The whole purpose of the PHOAS is to pour semantics into the syntax:
[var (v, 7,pf)]° = (V,7,pf}) where pfy: Ve [7]°

[int n]® = (ofInt n,int,pf,) where pf,: ofIntn € 72
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I Denotational semantics of B

The whole purpose of the PHOAS is to pour semantics into the syntax:
[var (v, 7,pf)]° = (V,7,pf}) where pfy: Ve [7]°
[int n]® = (ofInt n,int,pf,) where pf,: ofIntn € 72

[bool b]® := (ofBool b, bool,pf,) where pf,: ofBool b € B?
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Denotational semantics of B
Simple cases

Let's consider —*® only; other binary cases are similar.
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Denotational semantics of B
Simple cases

Let's consider —® only; other binary cases are similar. Let x and y be two abstract terms
such that:

[X]° = (X, 0, pfx) and [y]® = (Y, 5, pf,)
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Denotational semantics of B
Simple cases

Let's consider —® only; other binary cases are similar. Let x and y be two abstract terms
such that:

[xI° = (X,0,pfx) and [y]° = (Y, 3,pfy)
The denotation is then constructed as follows:

[x =° yI° = (0 Y) 0 "5, pf 2
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Denotational semantics of B
Simple cases

Let's consider —® only; other binary cases are similar. Let x and y be two abstract terms
such that:

[xI° = (X,0,pfx) and [y]° = (Y, 3,pfy)
The denotation is then constructed as follows:
._ B/ axBg
[[X '_>B y]]B T <(X’ Y)Z 3 pf(x Y >

where
o X '} B/
Pl vy © X Y) € Jax "B
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Denotational semantics of B
Simple cases

Let's consider —® only; other binary cases are similar. Let x and y be two abstract terms
such that:

[xI° = (X,0,pfx) and [y]° = (Y, 3,pfy)
The denotation is then constructed as follows:
._ B/ axBg
[[X '_>B y]]B T <(X’ Y)Z 3 pf(x Y >

where
o X 'f §
pf(x vy ( ,Y)Z c [[Q,]]Z N [[“d]]z
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Denotational semantics of B
Simple cases

Let's consider —® only; other binary cases are similar. Let x and y be two abstract terms
such that:

[xI° = (X,0,pfx) and [y]° = (Y, 3,pfy)
The denotation is then constructed as follows:
._ B/ axBg
[[X '_>B y]]B T <(X’ Y)Z 3 pf(x Y >

where
o X 'i
pf(X V)2 AXe[a]* AY €[]
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Denotational semantics of B
Simple cases

Let's consider —® only; other binary cases are similar. Let x and y be two abstract terms
such that:

XI° = (X,o,pfx) and [y]° = (Y, 5, pfy)
The denotation is then constructed as follows:
B B, B a X"
[[X — y]] T <(X7 Y>Z 3 pf(xy >
where
Py, Y)j AXe[af AY € [3]
——— —

piy pf,

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 38/45



Denotational semantics of B
Forall quantifier

Binders are a little more tedious.
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Denotational semantics of B
Forall quantifier

Binders are a little more tedious. Consider D := {ey,...,en}. Intuition:

[°D-P]° =[Pei]® A*... A [P en]®
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Denotational semantics of B
Forall quantifier

Binders are a little more tedious. Consider D := {ey,...,en}. Intuition:

[D-P]°=[Pei]° A*... N [Pen]’ = /n\z[[P e/l
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Denotational semantics of B
Forall quantifier

Binders are a little more tedious. Consider D := {ey,...,en}. Intuition:

[D-P]°=[Pei]° A*... N [Pen]’ = /n\z[[P e/l

= NP A"

xeb
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Denotational semantics of B
Forall quantifier

Let D: Term Domand P: (Fin n — Dom) — Term Dom.

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 40/45



Denotational semantics of B
Forall quantifier

Let D: Term Domand P: (Fin n — Dom) — Term Dom. Assume that

[D]* = (D, set , pis' ™) and 7=r1 ... x°7,
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Denotational semantics of B
Forall quantifier

Let D: Term Domand P: (Fin n — Dom) — Term Dom. Assume that
[D]* = (D, set , pis' ™) and 7=r1 ... x°7,
We define the following function, for any ZFC set z:
Z=(X1,...,Xn)* Az €[]

2 if 3(x; i<ns _ B
P e T IKhsicn {[[P (var %, 7i, B ycicn] = (Pes— =)
1?2 otherwise
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Denotational semantics of B
Forall quantifier

Let D: Term Domand P: (Fin n — Dom) — Term Dom. Assume that
[D]* = (D, set , pis' ™) and 7=r1 ... x°7,
We define the following function, for any ZFC set z:

P, if 30x) Z=(X1,...,Xn)* Az € [r]*
if 3(x)1<i<n, B
y(z) = ’ s [[P (Var <Xi7 Tis pfx;>)1g,'§n:|:| = <PZ7 ) _>
1?2 otherwise

At last, we define the following denotation:

[¥*D-P]* = ( \*2 x, bool, pfs% ) where pfe% .. A2 x e [booll’

xe€D xeD
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Denotational semantics of B
Forall quantifier

We are not done yet!
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Denotational semantics of B
Forall quantifier

We are not done yet! The following facts remain to be proved:

phepe: \2 x € [booll?

X€D
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Denotational semantics of B
Forall quantifier

We are not done yet! The following facts remain to be proved:

pfoes p: (/\Z {Px,xe D}) € [bool]*
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Denotational semantics of B
Forall quantifier

We are not done yet! The following facts remain to be proved:

picds,: (N{#x xeD})eB
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Denotational semantics of B
Forall quantifier

We are not done yet! The following facts remain to be proved:

TTE (/\WyeﬂﬂﬂxeD,y:ﬂx}) €B
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Denotational semantics of B
Forall quantifier

We are not done yet! The following facts remain to be proved:

TTE (/\Wye[ﬂﬂﬂxeD,y:ﬂx}) €B

Vz e [7]%, 3Xi)1<i<ns 2= (X1,. .., Xn)" = Vi, x; € [7]* ()
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Denotational semantics of B
Forall quantifier

We are not done yet! The following facts remain to be proved:

TTE (/\Wye[ﬂﬂﬂxeD,y:ﬂx}) €B

Vz e [7]%, 3Xi)1<i<ns 2= (X1,. .., Xn)" = Vi, x; € [7]* ()

(easy proof)
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@ Denotational semantics of B

e Reasoning about B terms
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I Denotational semantics of B

We can now state properties about B terms!
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I Denotational semantics of B

We can now state properties about B terms!

Theorem (Type correctness of the denotation)
Assume that 't : 7. Then,

[t]° = (T,0,pf7) 2o =7
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I Denotational semantics of B

We can now state properties about B terms!

Theorem (Type correctness of the denotation)
Assume that 't : 7. Then,

[t]° =(T,0,pf7) 20 =7
Theorem (Partial correctness of the simplifier)

Assume that ' =t : 7. Let A be a renaming context. Then,

[0t Dal® = (T, 7, pf) — [( simplifier(t) )a]® = (T, 7, pi7)
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I Denotational semantics of B

We can now state properties about B terms!

Theorem (Type correctness of the denotation)
Assume that 't : 7. Then,

[t]° =(T,0,pf7) 20 =7
Theorem (Partial correctness of the simplifier)

Assume that ' =t : 7. Let A be a renaming context. Then,

[0t Dal® = (T, 7, pf) — [( simplifier(t) )a]® = (T, 7, pi7)

Remark
I Total correctness does not hold.
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I Conclusion

Contributions:
¢ Higher-order encoding leveraging recent advances in SMT solvers
¢ Formal semantics for subsets of B proof obligations and SMT-LIB

Current/future work:
e Correctness of the encoding
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