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Introduction

SMT-LIB (up to v2.6)
• Standard input format for SMT solvers (e.g. z3, cvc5, veriT)
• Based on many-sorted first-order logic
• Comes with many theories (e.g. arrays, integer and real arithmetic)

SMT-LIB v2.7
• Brings higher-order constructs through λ-abstractions
• Brings higher-order types through arrow type constructor
• Only supported by cvc5 yet
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Overview of the encoding

(former) first-order encoding

• FOL
• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

(new) higher-order encoding

• HOL
• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions
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Overview of the encoding

SETS
S = {e1, e2, e3}

(former) first-order encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-fun S () (P Int))

(declare-fun e1 () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct e1 e2 e3))

(declare-fun ∈0 ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=

(∈0 x S)

(or (= x e1) (= x e2) (= x e3)))))

(new) higher-order encoding
(declare-const e1 Int)

(declare-const e2 Int)

(declare-const e3 Int)

(assert (distinct e1 e2 e3))

(define-const S (^-> Int Bool)

(lambda ((x Int))

(or (= x e1) (= x e2) (= x e3))))

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 8/45



Overview of the encoding

SETS
S = {e1, e2, e3}

(former) first-order encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-fun S () (P Int))

(declare-fun e1 () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct e1 e2 e3))

(declare-fun ∈0 ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=

(∈0 x S)

(or (= x e1) (= x e2) (= x e3)))))

(new) higher-order encoding
(declare-const e1 Int)

(declare-const e2 Int)

(declare-const e3 Int)

(assert (distinct e1 e2 e3))

(define-const S (^-> Int Bool)

(lambda ((x Int))

(or (= x e1) (= x e2) (= x e3))))

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 8/45



Overview of the encoding

SETS
S = {e1, e2, e3}

(former) first-order encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-fun S () (P Int))

(declare-fun e1 () Int)

(declare-fun e2 () Int)

(declare-fun e3 () Int)

(assert (distinct e1 e2 e3))

(declare-fun ∈0 ((Int) (P Int)) Bool)

(assert (forall ((x Int)) (=

(∈0 x S)

(or (= x e1) (= x e2) (= x e3)))))

(new) higher-order encoding
(declare-const e1 Int)

(declare-const e2 Int)

(declare-const e3 Int)

(assert (distinct e1 e2 e3))

(define-const S (^-> Int Bool)

(lambda ((x Int))

(or (= x e1) (= x e2) (= x e3))))

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 8/45



Overview of the encoding

(former) first-order encoding
• FOL
• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

(new) higher-order encoding
• HOL
• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 8/45



Overview of the encoding

(former) first-order encoding
• FOL
• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

(new) higher-order encoding
• HOL
• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 8/45



Overview of the encoding

(former) first-order encoding
• FOL
• Specification of sets via ∈, P
and C

• Only expressions like x ∈ S are
encoded

• Functions are functional
relations

(new) higher-order encoding
• HOL
• Definition of sets via
characteristic predicates

• Sets alone make sense; x ∈ S is
true by definition

• Functions are (sometimes)
functions

V. Trélat Safely Encoding B Proof Obligations in SMT-LIB 8/45



Suppose we have a function f ∈ A 7→ B.

(former) first-order encoding
f is a relation between A and B:

f ⊆ A× B

f is functional:

∀ x y z, x 7→ y ∈ f ∧ x 7→ z ∈ f
⇒ y = z

(new) higher-order encoding
f is a total function from A to
B ∪ {?}:

f ∈ (B ∪ {?})A

(declare-datatype Option

(par (T) ((some (the T)) (none))))
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Suppose we have a function f ∈ A 7→ B. Let τA and τB represent the types of A
and B respectively.

(former) first-order encoding
(declare-sort P 1)

(declare-sort C 2)

(declare-const f (P (C τA τB)))
(declare-fun

∈0 (τA τB (P (C τA τB))) Bool)

(assert

(forall ((x τA) (y τB) (z τB))
(^=> (and (∈0 x y f) (∈0 x z f))

(= y z))))

(new) higher-order encoding
(declare-const f (^-> τA (Option τB)))

+ specification that dom f ⊆ A and ran f ⊆ B
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How large is the gain?

Let S be a set of elements of type τ .
The expression finite S is defined as follows in B:
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How large is the gain?

Let S be a set of elements of type τ .
The expression finite S can be encoded as follows:

∃N : int, f : τ → int·
∀ x : τ, y : τ, z : int · f (x) = z ∧ f (y) = z ⇒ x = y ∧
∀ x : τ · x ∈ S⇒ 0 ≤ f (x) ∧ f (x) < N
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Does this work?

MACHINE
M

VARIABLES
s0

INVARIANT
s0 ⊆ NAT ∧
s0 ∩ (Z \ N) ∈ FIN(Z)

INITIALISATION
s0 :∈ P(NAT)

END

The following proof obligation is generated:

s0 ∈ P(NAT) ⇒ s0 ⊆ NAT ∧ s0 ∩ (Z \ N) ∈ FIN(Z)

which boils down to proving:

s0 ∈ P(NAT) ⇒ s0 ∈ FIN(Z)

7 predicate prover from Atelier B
7 CVC5 with ppTransSMT

3 CVC5 with
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Results

In the current state of we have:

ppTrans
unsat sat unknown Total

unsat 14,457 0 431 14,888
sat 1 1 5 7
unknown 236 5 472 713
Total 14,694 6 908 15,608

Benchmark specs:
• 681,285 POs in total
• Apple M2 (10 CPU cores, 24 GB RAM)
• cvc5 with incremental mode, MBQI enabled and 3s timeout per query
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Architecture of

B SMT
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Concrete terms

Concrete terms are low-level syntactic constructs used in the implementation of the
encoding.

inductive Term where

| var (v : String) | int (n : Int) | bool (b : Bool) | x ↦B y

^-- arithmetic

| x +B y | x -B y | x *B y | x ^<=B y

^-- logic

| x ∧B y | ¬B x | x =B y | ∀B (vs : List String) ∈B D ·P

^-- set operations

| ℤ | 𝔹 | x ∈B y | PB S | S ×B T | S ∪B T | S ∩B T | |S|B

| {(vs : List String) ∈B D ∣P}

^-- functions

| app (f x : Term) | A →| B B | min (S : Term) | max (S : Term)

| λB (vs : List String) ∈B D ∣ f
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Concrete terms

Example

λ
B
[] ∈B int 2 | var "x" =B (int 0 ∧B B) int 0 +B int 1 ∈B Z

∀B
["x", "y"] ∈B Z×B Z · var "x" ≤B var "y" | Z |B ∈B Z

are all syntactically valid terms.1

Some of these terms are type-correct,

well-formed, or do not make sense.

1Read with usual priorities.
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Abstract terms

We define abstract terms as a layer of abstraction over concrete terms.

• ease formal reasoning about the language via higher-level constructs
• bridge the gap between a deeply embedded language and Lean

Example
In ∀B

["x"] ∈B D · P, P is only a term, not a predicate.

Remark
α-renaming and substitutions have to be handled explicitly:(

λ
B
["x"] ∈B Z | var "x"

)
6=

(
λ
B
["y"] ∈B Z | var "y"

)(
λ
B
["x"] ∈B Z | var "x" +B var "y"

)
["y" := "x"] = ???
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Abstract terms
PHOAS

Variable management is delegated to the underlying formal system (Lean):

bbinder : List String → Term → Term → Term

Example
Concrete term:

∀B ["x", "y"] ∈B ℤ ×B ℤ ·

var "x" =B var "y"

Abstract term:

∀B ℤ ×B ℤ · fun x y ↦

var x =B var y
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Abstract terms
Abstraction function

Abstraction function: maps concrete terms to abstract terms under a renaming context
• Intuition: almost an identity function

• Implementation: a little more complex

Notation
For any concrete term t and renaming context ∆: String → Option V , the
abstraction of t under ∆ is denoted by (| t |)∆.
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Abstract terms
Abstraction function

Example
Let Y ∈ V and ∆ := {"y" 7→ Y}. Consider the concrete term
∀B
["x"] ∈B Z · var "x" =B var "y".

(| ∀B
["x"] ∈B Z · var "x" =B var "y" |)∆

=∀B
(| Z |)∆ ·

(
X 7→ (| var "x" =B var "y" |)∆["x"7→X]

)
=∀B Z · (X 7→ var X =B var Y)

Remark
In the actual implementation, ∆ is required to contain all free variables of the
term t being abstracted: dom(∆) ⊇ fv(t)
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Type system

We introduce a basic type system for B, based on the following types:

inductive BType where

| int | bool | set : BType → BType | × B : BType → BType → BType

which can be transformed into terms:

def BType.toTerm : BType → Term

| int ^=> Z
| bool ^=> B
| set α ^=> PB α.toTerm

| α × B β ^=> α.toTerm ×B β.toTerm
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Typing rules

Type contexts are defined as follows:

abbrev TypeContext ^:=

AList fun _ : String ↦ BType

abbrev PHOAS.TypeContext V ^:=

V → Option BType

together with an abstraction function:

noncomputable def TypeContext.abstract {V}
(Δ : String → Option V) Γ : PHOAS.TypeContext V ^:= fun x : V ↦

if h : ∃ v ∈ Γ, Δ v = some x then Γ.lookup (choose h)

else none
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Typing rules

Inductive typing predicate Γ ` t : τ for both concrete and abstract terms:

Γ.lookup v = some τ varI
Γ ` var v : τ

Γ(v) = some τ varI
Γ ` var v : τ

Γ ` x : α Γ ` y : β
mapletI

Γ ` x 7→B y : α × Bβ

Γ ` x : α Γ ` S : setα memI
Γ ` x ∈B S : bool

Similarly: addI, mulI, subI, leI, notI, eqI, ZI, BI, memI, powI, cprodI, unionI, interI, cardI,
minI, maxI.
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Typing rules

Concrete lambda typing rule
Let n ∈ N∗, Γ a concrete type context, (vi)i<n concrete variables, (αi)i<n and ξ
B types, (Di)i<n and f concrete terms. Assume the following:

∀ i < n, vi 6∈ Γ ; ∀ i < n, Γ ` Di : set αi ; Γ[vi := αi]i<n ` f : ξ

Then, the following typing judgment holds:

Γ ` λ
B v1, . . . , vn ∈B D1 ×B . . .×B Dn · f : set (α1 × B . . . × Bαn × Bξ)
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Typing rules

Abstract lambda typing rule
Let n ∈ N∗, Γ an abstract type context, (αi)i<n and ξ B types, (Di)i<n abstract
terms and f an abstract motive. Assume the following:

∀ i < n, Γ ` Di : set αi ; ∀(vi)i<n, Γ[vi := αi]i<n ` f ((vi)i<n) : ξ

Then, the following typing judgment holds:

Γ ` λ
B D1 ×B . . .×B Dn · f : set (α1 × B . . . × Bαn × Bξ)
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Auxiliary theorems

Theorem (Weakening)
Assume that Γ ` t : τ . Let v be a variable such that v 6∈ Γ. Then,

∀α, Γ[v := α] ` t : τ

Theorem (Strengthening)
Assume that Γ[v := α] ` t : τ , and v is not a free variable in t. Then,

Γ ` t : τ

Theorem (Determinism)
Γ ` t : τ → Γ ` t : σ → τ = σ
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Denotational semantics of B
ZFC

Interpreting the B syntax in ZFC set theory:

Lean provides a lacunary model of ZFC in
Mathlib that we first had to extend.

• ZFSet

• naturals, N, ZFNat and arithmetics
• integers, Z, ZFInt and arithmetics
• rationals, Q, ZFRat and arithmetics
• reals, R, ZFReal and arithmetics
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Denotational semantics of B

We define a denotation function for abstract B terms:

J·KB : Term V → V

where
Dom :=

∑
x,τ

x ∈ JτKZ


JintKZ := ZZ

JboolKZ := BZ

Jset αKZ := P Z(JαKZ)
Jα × BβKZ := JαKZ ×Z JβKZ
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Denotational semantics of B

The whole purpose of the PHOAS is to pour semantics into the syntax:

Jint nKB := 〈ofInt n, int, pfn〉 where pfn : ofInt n ∈ ZZ

Jbool bKB := 〈ofBool b,bool, pfb〉 where pfb : ofBool b ∈ BZ
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Denotational semantics of B
Simple cases

Let’s consider 7→B only; other binary cases are similar.

Let x and y be two abstract terms
such that:

JxKB = 〈X, α, pfαX 〉 and JyKB = 〈Y, β, pfβY 〉

The denotation is then constructed as follows:

Jx 7→B yKB := 〈(X, Y)Z , α × Bβ, pfα
× Bβ

(X,Y)Z 〉

where
pfα

× Bβ

(X,Y)Z
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Denotational semantics of B
Forall quantifier

Binders are a little more tedious.

Consider D := {e1, . . . , en}. Intuition:

q
∀B D · P

yB
= JP e1KB ∧Z

. . . ∧Z JP enKB

=

n∧
i=1

ZJP eiK
B

=
∧
x∈D

ZJP xKB
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Denotational semantics of B
Forall quantifier

Let D : Term Dom and P : (Fin n→ Dom) → Term Dom.

Assume that

JDKB = 〈D, set τ , pfset τD 〉 and τ = τ1 × B . . . × Bτn

We define the following function, for any ZFC set z:

P(z) :=


Pz if ∃(xi)1≤i≤n,

z = (x1, . . . , xn)Z ∧ z ∈ JτKZr
P

(
var 〈xi, τi, pfτixi 〉

)
1≤i≤n

zB

= 〈Pz,−,−〉

⊥Z otherwise

At last, we define the following denotation:
q
∀B D · P

yB
:= 〈

∧
x∈D

ZP x, bool, pfbool∀B D·P〉 where pfbool∀B D·P :
∧
x∈D

ZP x ∈ JboolKZ
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Denotational semantics of B
Forall quantifier

We are not done yet!

The following facts remain to be proved:

pfbool∀B D·P :

∀ z ∈ JτKZ, ∃(xi)1≤i≤n, z = (x1, . . . , xn)Z → ∀ i, xi ∈ JτiK
Z (pfτixi )

(easy proof)
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�3 Type system

� Semantics
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Denotational semantics of B

We can now state properties about B terms!

Theorem (Type correctness of the denotation)
Assume that Γ ` t : τ . Then,

JtKB = 〈T, σ, pfσT 〉 → σ = τ

Theorem (Partial correctness of the simplifier)
Assume that Γ ` t : τ . Let ∆ be a renaming context. Then,

J(| t |)∆KB = 〈T, τ , pfτT 〉 → J(| simplifier(t) |)∆KB = 〈T, τ , pfτT 〉

Remark
Total correctness does not hold.
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Conclusion

Contributions:
• Higher-order encoding leveraging recent advances in SMT solvers
• Formal semantics for subsets of B proof obligations and SMT-LIB

Current/future work:
• Correctness of the encoding
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