
eo2lp — from Eunoia to LambdaPi
September 11, 2025

CiaránDunne andGuillaumeBurel
ENS Paris-Saclay, INRIA

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.

development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:

○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,
○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
development led by Andrew Reynolds, at University of Iowa.

the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:

○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,
○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.

covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:

○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,
○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.

paired with the Ethos checker.

● Extends SMT-LIB by adding:

○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,
○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:

○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,
○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:

○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,
○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:
○ (dependent) types, parametric polymorphism,

○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,
○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:
○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),

○ inference rule declarations,
○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:
○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,

○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:
○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,
○ commands for building proof scripts.

Background Eunoia LambdaPi Translation Results & Future Work

LambdaPi
● Logical framework based on the λΠ-calculus modulo rewriting.

development led by Frédéric Blanqui, INRIA Paris-Saclay
small code base, trusted foundations.
fast typechecker.
interactive theorem proving via LSP!

● Primarily focused on proof assistant interoperability.

LambdaPi Isabelle

Agda

HOL

PVSK-framework

Matita

RocqLean
lean2dk

isabelle_dk

agda2dk

hol2dk

Krajono

KaMeLo

vodk

Background Eunoia LambdaPi Translation Results & Future Work

LambdaPi
● Logical framework based on the λΠ-calculus modulo rewriting.

development led by Frédéric Blanqui, INRIA Paris-Saclay

small code base, trusted foundations.
fast typechecker.
interactive theorem proving via LSP!

● Primarily focused on proof assistant interoperability.

LambdaPi Isabelle

Agda

HOL

PVSK-framework

Matita

RocqLean
lean2dk

isabelle_dk

agda2dk

hol2dk

Krajono

KaMeLo

vodk

Background Eunoia LambdaPi Translation Results & Future Work

LambdaPi
● Logical framework based on the λΠ-calculus modulo rewriting.

development led by Frédéric Blanqui, INRIA Paris-Saclay
small code base, trusted foundations.

fast typechecker.
interactive theorem proving via LSP!

● Primarily focused on proof assistant interoperability.

LambdaPi Isabelle

Agda

HOL

PVSK-framework

Matita

RocqLean
lean2dk

isabelle_dk

agda2dk

hol2dk

Krajono

KaMeLo

vodk

Background Eunoia LambdaPi Translation Results & Future Work

LambdaPi
● Logical framework based on the λΠ-calculus modulo rewriting.

development led by Frédéric Blanqui, INRIA Paris-Saclay
small code base, trusted foundations.
fast typechecker.

interactive theorem proving via LSP!

● Primarily focused on proof assistant interoperability.

LambdaPi Isabelle

Agda

HOL

PVSK-framework

Matita

RocqLean
lean2dk

isabelle_dk

agda2dk

hol2dk

Krajono

KaMeLo

vodk

Background Eunoia LambdaPi Translation Results & Future Work

LambdaPi
● Logical framework based on the λΠ-calculus modulo rewriting.

development led by Frédéric Blanqui, INRIA Paris-Saclay
small code base, trusted foundations.
fast typechecker.
interactive theorem proving via LSP!

● Primarily focused on proof assistant interoperability.

LambdaPi Isabelle

Agda

HOL

PVSK-framework

Matita

RocqLean
lean2dk

isabelle_dk

agda2dk

hol2dk

Krajono

KaMeLo

vodk

Background Eunoia LambdaPi Translation Results & Future Work

LambdaPi
● Logical framework based on the λΠ-calculus modulo rewriting.

development led by Frédéric Blanqui, INRIA Paris-Saclay
small code base, trusted foundations.
fast typechecker.
interactive theorem proving via LSP!

● Primarily focused on proof assistant interoperability.

LambdaPi Isabelle

Agda

HOL

PVSK-framework

Matita

RocqLean
lean2dk

isabelle_dk

agda2dk

hol2dk

Krajono

KaMeLo

vodk

Background Eunoia LambdaPi Translation Results & Future Work

TheCo-operating Proof Calculus

● The co-operating proof calculus (CPC) is cvc5’s proof system.

formalized as a Eunoia signature ΣCPC.
not small (> 600 inference rules).

some rules take arguments, some have side-conditions.

● Proofs produced by cvc5 are Eunoia proof scripts that
exclusively use the rules from ΣCPC.

Background Eunoia LambdaPi Translation Results & Future Work

TheCo-operating Proof Calculus

● The co-operating proof calculus (CPC) is cvc5’s proof system.
formalized as a Eunoia signature ΣCPC.

not small (> 600 inference rules).

some rules take arguments, some have side-conditions.

● Proofs produced by cvc5 are Eunoia proof scripts that
exclusively use the rules from ΣCPC.

Background Eunoia LambdaPi Translation Results & Future Work

TheCo-operating Proof Calculus

● The co-operating proof calculus (CPC) is cvc5’s proof system.
formalized as a Eunoia signature ΣCPC.
not small (> 600 inference rules).
some rules take arguments, some have side-conditions.

● Proofs produced by cvc5 are Eunoia proof scripts that
exclusively use the rules from ΣCPC.

Background Eunoia LambdaPi Translation Results & Future Work

TheCo-operating Proof Calculus

● The co-operating proof calculus (CPC) is cvc5’s proof system.
formalized as a Eunoia signature ΣCPC.
not small (> 600 inference rules).
some rules take arguments, some have side-conditions.

● Proofs produced by cvc5 are Eunoia proof scripts that
exclusively use the rules from ΣCPC.

Example. A CPC rule for elimination on n-ary conjunctions,
whereϕ1 . . .ϕn are formulas and i ∈N.

(ϕ1 ∧ . . . ∧ϕn) ∣ i
ϕi

(and_elim)

The rule is formalized in Eunoia thus:
1 (declare-rule and_elim ((Fs Bool) (i Int))
2 :premises (Fs)
3 :args (i)
4 :conclusion (eo::list_nth and Fs i)
5)

Example. A CPC rule for elimination on n-ary conjunctions,
whereϕ1 . . .ϕn are formulas and i ∈N.

(ϕ1 ∧ . . . ∧ϕn) ∣ i
ϕi

(and_elim)

The rule is formalized in Eunoia thus:
1 (declare-rule and_elim ((Fs Bool) (i Int))
2 :premises (Fs)
3 :args (i)
4 :conclusion (eo::list_nth and Fs i)
5)

Example.The following problem is unsatisfiable. In this case,
cvc5 can provide a proof demonstrating this.

1 (set-logic QF_UF)
2 (set-option :produce-proofs true)
3 (declare-const p Bool)
4 (assert (and p (not p)))
5 (check-sat)
6 (get-proof)
7 (exit)

1 unsat
2 (declare-fun p () Bool)
3 (assume @p1 (and p (not p)))
4 (step @p2 :rule and_elim :premises (@p1) :args (1))
5 (step @p3 :rule and_elim :premises (@p1) :args (0))
6 (step @p4 false :rule contra :premises (@p3 @p2))

Example.The following problem is unsatisfiable. In this case,
cvc5 can provide a proof demonstrating this.

1 (set-logic QF_UF)
2 (set-option :produce-proofs true)
3 (declare-const p Bool)
4 (assert (and p (not p)))
5 (check-sat)
6 (get-proof)
7 (exit)

1 unsat
2 (declare-fun p () Bool)
3 (assume @p1 (and p (not p)))
4 (step @p2 :rule and_elim :premises (@p1) :args (1))
5 (step @p3 :rule and_elim :premises (@p1) :args (0))
6 (step @p4 false :rule contra :premises (@p3 @p2))

Example.The following problem is unsatisfiable. In this case,
cvc5 can provide a proof demonstrating this.

1 (set-logic QF_UF)
2 (set-option :produce-proofs true)
3 (declare-const p Bool)
4 (assert (and p (not p)))
5 (check-sat)
6 (get-proof)
7 (exit)

1 unsat
2 (declare-fun p () Bool)
3 (assume @p1 (and p (not p)))
4 (step @p2 :rule and_elim :premises (@p1) :args (1))
5 (step @p3 :rule and_elim :premises (@p1) :args (0))
6 (step @p4 false :rule contra :premises (@p3 @p2))

Background Eunoia LambdaPi Translation Results & Future Work

● Goal: Design a translation procedure T such that;

○ if Σ is a Eunoia signature implementing some logic L,
○ then T(Σ) is a LambdaPi signature also implementing L.
● Thus, ifΠ is a valid Eunoia proof script depending on Σ, then
T(Π) should be well-typed wrt. T(Σ).

Background Eunoia LambdaPi Translation Results & Future Work

● Goal: Design a translation procedure T such that;
○ if Σ is a Eunoia signature implementing some logic L,

○ then T(Σ) is a LambdaPi signature also implementing L.
● Thus, ifΠ is a valid Eunoia proof script depending on Σ, then
T(Π) should be well-typed wrt. T(Σ).

Background Eunoia LambdaPi Translation Results & Future Work

● Goal: Design a translation procedure T such that;
○ if Σ is a Eunoia signature implementing some logic L,
○ then T(Σ) is a LambdaPi signature also implementing L.

● Thus, ifΠ is a valid Eunoia proof script depending on Σ, then
T(Π) should be well-typed wrt. T(Σ).

Background Eunoia LambdaPi Translation Results & Future Work

● Goal: Design a translation procedure T such that;
○ if Σ is a Eunoia signature implementing some logic L,
○ then T(Σ) is a LambdaPi signature also implementing L.
● Thus, ifΠ is a valid Eunoia proof script depending on Σ, then
T(Π) should be well-typed wrt. T(Σ).

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia

Background Eunoia LambdaPi Translation Results & Future Work

● Fix a set of symbols S, and let s ∈ S.

● Define eo as the set of Eunoia expressions thus:

e ∈ eo ∶∶= s (symbol)
∣ (s e1 . . . en) (application)

● In general, expressions are either:

○ terms (e.g., true, false)
○ types (e.g., Bool, (-> Bool Bool))
○ kinds (e.g., Type, (-> Type Type))

Background Eunoia LambdaPi Translation Results & Future Work

● Fix a set of symbols S, and let s ∈ S.

● Define eo as the set of Eunoia expressions thus:

e ∈ eo ∶∶= s (symbol)
∣ (s e1 . . . en) (application)

● In general, expressions are either:

○ terms (e.g., true, false)
○ types (e.g., Bool, (-> Bool Bool))
○ kinds (e.g., Type, (-> Type Type))

Background Eunoia LambdaPi Translation Results & Future Work

● Fix a set of symbols S, and let s ∈ S.

● Define eo as the set of Eunoia expressions thus:

e ∈ eo ∶∶= s (symbol)
∣ (s e1 . . . en) (application)

● In general, expressions are either:

○ terms (e.g., true, false)
○ types (e.g., Bool, (-> Bool Bool))
○ kinds (e.g., Type, (-> Type Type))

Background Eunoia LambdaPi Translation Results & Future Work

● Fix a set of symbols S, and let s ∈ S.

● Define eo as the set of Eunoia expressions thus:

e ∈ eo ∶∶= s (symbol)
∣ (s e1 . . . en) (application)

● In general, expressions are either:
○ terms (e.g., true, false)

○ types (e.g., Bool, (-> Bool Bool))
○ kinds (e.g., Type, (-> Type Type))

Background Eunoia LambdaPi Translation Results & Future Work

● Fix a set of symbols S, and let s ∈ S.

● Define eo as the set of Eunoia expressions thus:

e ∈ eo ∶∶= s (symbol)
∣ (s e1 . . . en) (application)

● In general, expressions are either:
○ terms (e.g., true, false)
○ types (e.g., Bool, (-> Bool Bool))

○ kinds (e.g., Type, (-> Type Type))

Background Eunoia LambdaPi Translation Results & Future Work

● Fix a set of symbols S, and let s ∈ S.

● Define eo as the set of Eunoia expressions thus:

e ∈ eo ∶∶= s (symbol)
∣ (s e1 . . . en) (application)

● In general, expressions are either:
○ terms (e.g., true, false)
○ types (e.g., Bool, (-> Bool Bool))
○ kinds (e.g., Type, (-> Type Type))

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia has type declarations.

(declare-type s (e1 . . . en))

Example.The Array symbol declared a (binary) type constructor.
1 (declare-type Array (Type Type))

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia has constant declarations of the form:

(declare-const s e ⟨α⟩?)

where α is a constant attribute. i.e.,

α ∈ attrc ∶∶= :right-assoc ∣ :right-assoc-nil⟨t⟩
∣ :left-assoc ∣ :left-assoc-nil⟨t⟩
∣ :chainable⟨s⟩ ∣ :pairwise⟨s⟩ ∣ :binder⟨s⟩

Example. Declare and right-associative, with nil terminator true.
1 (declare-const and (-> Bool Bool Bool)
2 :right-assoc-nil true
3)

Background Eunoia LambdaPi Translation Results & Future Work

Example. Declare and right-associative, with nil terminator true.
1 (declare-const and (-> Bool Bool Bool)
2 :right-assoc-nil true
3)

The following n-ary application of and is elaborated thus:

(and p q r) Ô⇒ (and p (and q (and r true)))

Background Eunoia LambdaPi Translation Results & Future Work

Example. Declare and right-associative, with nil terminator true.
1 (declare-const and (-> Bool Bool Bool)
2 :right-assoc-nil true
3)

The following n-ary application of and is elaborated thus:

(and p q r) Ô⇒ (and p (and q (and r true)))

Background Eunoia LambdaPi Translation Results & Future Work

We can also declare parameterized constants:

(declare-parameterized-const s (ρ1 . . . ρn) e ⟨α⟩?)

where ρ is a (typed) parameter. i.e.,

ρ ∈ param ∶∶= (s t ⟨ν⟩?)
ν ∈ attrv ∶∶= :implicit ∣ :list

Example. Implicit type parameter and :chainable attribute.
1 (declare-parameterized-const =
2 ((A Type :implicit)) (-> A A Bool)
3 :chainable and
4)

Background Eunoia LambdaPi Translation Results & Future Work

We can also declare parameterized constants:

(declare-parameterized-const s (ρ1 . . . ρn) e ⟨α⟩?)

where ρ is a (typed) parameter. i.e.,

ρ ∈ param ∶∶= (s t ⟨ν⟩?)
ν ∈ attrv ∶∶= :implicit ∣ :list

Example. Implicit type parameter and :chainable attribute.
1 (declare-parameterized-const =
2 ((A Type :implicit)) (-> A A Bool)
3 :chainable and
4)

Background Eunoia LambdaPi Translation Results & Future Work

Example. Implicit type parameter and :chainable attribute.
1 (declare-parameterized-const =
2 ((A Type :implicit)) (-> A A Bool)
3 :chainable and
4)

The following n-ary application of = is elaborated thus:

(= x y z) Ô⇒ (and (= x y) (= y z))

Background Eunoia LambdaPi Translation Results & Future Work

Example. Implicit type parameter and :chainable attribute.
1 (declare-parameterized-const =
2 ((A Type :implicit)) (-> A A Bool)
3 :chainable and
4)

The following n-ary application of = is elaborated thus:

(= x y z) Ô⇒ (and (= x y) (= y z))

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia can define symbols (with an optional type annotation):

(define s (ρ1 . . . ρn) e ⟨:type t⟩?)

Example. Some definition from cpc/rules/Booleans.eo.
1 (define $remove_maybe_self ((l Bool) (C Bool))
2 (eo::ite (eo::eq l C) false (eo::list_erase or C l))
3)

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia has user-defined programs.

⎛
⎜
⎝

program s (ρ1 . . . ρn)
:signature (t1 . . . tm) t′
((e1 e′1) . . . (ek e′k))

⎞
⎟
⎠

Example. Some program from cpc/rules/Booleans.eo.
1 (program $to_clause
2 ((F1 Bool) (F2 Bool :list))
3 :signature (Bool) Bool
4 (
5 (($to_clause (or F1 F2)) (or F1 F2))
6 (($to_clause false) false)
7 (($to_clause F1) (or F1))
8)
9)

Background Eunoia LambdaPi Translation Results & Future Work

Eunoia has rule declarations.

⎛
⎜
⎜
⎜
⎝

declare-rule s (ρ1 . . . ρn)
⟨:premises (ϕ1 . . . ϕm)⟩?
⟨:args (e1 . . . ek)⟩?
:conclusionψ

⎞
⎟
⎟
⎟
⎠

Example. Resolution rule from cpc/rules/Booleans.eo.
1 (declare-rule resolution
2 ((C1 Bool) (C2 Bool) (pol Bool) (L Bool))
3 :premises (C1 C2)
4 :args (pol L)
5 :conclusion ($resolve C1 C2 pol L)
6)

Background Eunoia LambdaPi Translation Results & Future Work

For proof scripts, we have twomain commands:

π ∈ prf ∶∶= (assume sϕ)

∣
⎛
⎜
⎝

step s ⟨ψ⟩? :rule s′
⟨:premises (ϕ1 . . . ϕn)⟩?
⟨:args (e1 . . . em)⟩?

⎞
⎟
⎠

∣ . . .

Example.
1 (assume @p1 (and p (not p)))
2 (step @p2 :rule and_elim :premises (@p1) :args (1))
3 (step @p3 :rule and_elim :premises (@p1) :args (0))
4 (step @p4 false :rule contra :premises (@p3 @p2))

Background Eunoia LambdaPi Translation Results & Future Work

LambdaPi

Background Eunoia LambdaPi Translation Results & Future Work

● LambdaPi terms are those of the λΠ-calculus.

t ∈ termlp ∶∶= x ∣ t1 ⋅ t2 ∣ λ x ∶ t1. t2 ∣ Π x ∶ t1. t2

● Symbols are declared thus:

symbol s ⟨ρ⟩∗ ∶ t;

where ρ ranges over LambdaPi parameters:

ρ ∈ paramlp ∶∶= (x ∶ t) ∣ [x ∶ t]

Background Eunoia LambdaPi Translation Results & Future Work

● LambdaPi terms are those of the λΠ-calculus.

t ∈ termlp ∶∶= x ∣ t1 ⋅ t2 ∣ λ x ∶ t1. t2 ∣ Π x ∶ t1. t2

● Symbols are declared thus:

symbol s ⟨ρ⟩∗ ∶ t;

where ρ ranges over LambdaPi parameters:

ρ ∈ paramlp ∶∶= (x ∶ t) ∣ [x ∶ t]

Background Eunoia LambdaPi Translation Results & Future Work

● Symbols can also be defined:

symbol s ⟨∶ t⟩? ∶= t′;

Note that providing the type of s is optional.

● Rewrite rules are declared as follows:

rule r ⟨with r′⟩∗;

Where r ranges over rw ∶∶= (t ↪ t′).

Background Eunoia LambdaPi Translation Results & Future Work

● Symbols can also be defined:

symbol s ⟨∶ t⟩? ∶= t′;

Note that providing the type of s is optional.

● Rewrite rules are declared as follows:

rule r ⟨with r′⟩∗;

Where r ranges over rw ∶∶= (t ↪ t′).

Background Eunoia LambdaPi Translation Results & Future Work

● Symbols can also be defined:

symbol s ⟨∶ t⟩? ∶= t′;

Note that providing the type of s is optional.

● Rewrite rules are declared as follows:

rule r ⟨with r′⟩∗;

Where r ranges over rw ∶∶= (t ↪ t′).

Background Eunoia LambdaPi Translation Results & Future Work

Type universes a la Tarski; closed under (↝).

Set ∶ TYPE; El ∶ Set→ TYPE;

(↝) ∶ Set→ Set→ Set;

Proofs are encoded similarly:

Prop ∶ TYPE; Prf ∶ Prop→ TYPE;

Example.

symbol (=) [a ∶ Set] ∶ El (a↝ a↝ Bool);
symbol refl [a ∶ Set] [x ∶ El a] ∶ Prf(x = x);

Background Eunoia LambdaPi Translation Results & Future Work

Type universes a la Tarski; closed under (↝).

Set ∶ TYPE; El ∶ Set→ TYPE;

(↝) ∶ Set→ Set→ Set;

Proofs are encoded similarly:

Prop ∶ TYPE; Prf ∶ Prop→ TYPE;

Example.

symbol (=) [a ∶ Set] ∶ El (a↝ a↝ Bool);
symbol refl [a ∶ Set] [x ∶ El a] ∶ Prf(x = x);

Background Eunoia LambdaPi Translation Results & Future Work

Type universes a la Tarski; closed under (↝).

Set ∶ TYPE; El ∶ Set→ TYPE;

(↝) ∶ Set→ Set→ Set;

Proofs are encoded similarly:

Prop ∶ TYPE; Prf ∶ Prop→ TYPE;

Example.

symbol (=) [a ∶ Set] ∶ El (a↝ a↝ Bool);
symbol refl [a ∶ Set] [x ∶ El a] ∶ Prf(x = x);

Background Eunoia LambdaPi Translation Results & Future Work

Translation

Background Eunoia LambdaPi Translation Results & Future Work

Goal: Given a Eunoia signature Σ, generate the corresponding
LambdaPi signature T(Σ).

● Process each command in Σ, updating an environmentΘ as
we go:

TΘ(c ;Σ) = c ;TΘ′(Σ)

● Our translation tool eo2lp is written in OCaml.

● The following is a high-level overview.

Background Eunoia LambdaPi Translation Results & Future Work

Goal: Given a Eunoia signature Σ, generate the corresponding
LambdaPi signature T(Σ).

● Process each command in Σ, updating an environmentΘ as
we go:

TΘ(c ;Σ) = c ;TΘ′(Σ)

● Our translation tool eo2lp is written in OCaml.

● The following is a high-level overview.

Background Eunoia LambdaPi Translation Results & Future Work

Goal: Given a Eunoia signature Σ, generate the corresponding
LambdaPi signature T(Σ).

● Process each command in Σ, updating an environmentΘ as
we go:

TΘ(c ;Σ) = c ;TΘ′(Σ)

● Our translation tool eo2lp is written in OCaml.

● The following is a high-level overview.

Background Eunoia LambdaPi Translation Results & Future Work

Expressions are first elaborated with elabγ ∶ eo→ eo.

γ ∶ S ⇀ (attrc ∪ attrv)

Where γ attributes of symbols during translation.

● Eunoia has a built-in symbol _ for (higher-order) application.

● The default elaboration strategy is to left-fold:

elabγ(s e1 . . . en) = ((s ∗ e1) ∗ . . . ∗ en)
= (_ (. . . (_ s e1) . . .) en)

● In general, strategy depends on attributes, e.g.,

elabγ(and p q r) = and p ∗ (and q ∗ (and r ∗ false))

Background Eunoia LambdaPi Translation Results & Future Work

Expressions are first elaborated with elabγ ∶ eo→ eo.

γ ∶ S ⇀ (attrc ∪ attrv)

Where γ attributes of symbols during translation.

● Eunoia has a built-in symbol _ for (higher-order) application.

● The default elaboration strategy is to left-fold:

elabγ(s e1 . . . en) = ((s ∗ e1) ∗ . . . ∗ en)
= (_ (. . . (_ s e1) . . .) en)

● In general, strategy depends on attributes, e.g.,

elabγ(and p q r) = and p ∗ (and q ∗ (and r ∗ false))

Background Eunoia LambdaPi Translation Results & Future Work

Expressions are first elaborated with elabγ ∶ eo→ eo.

γ ∶ S ⇀ (attrc ∪ attrv)

Where γ attributes of symbols during translation.

● Eunoia has a built-in symbol _ for (higher-order) application.

● The default elaboration strategy is to left-fold:

elabγ(s e1 . . . en) = ((s ∗ e1) ∗ . . . ∗ en)
= (_ (. . . (_ s e1) . . .) en)

● In general, strategy depends on attributes, e.g.,

elabγ(and p q r) = and p ∗ (and q ∗ (and r ∗ false))

Background Eunoia LambdaPi Translation Results & Future Work

Translate kinds into LambdaPi types via J ⋅ Kty ∶ eo→ lp;

JType Kty = Set

J ((->) ∗ e) ∗ e′ Kty = J e Kty → J e′ Kty
J e′ Kty = El J e′ Ktm

Example. Consider translating the following Eunoia kind.

J (-> Int Type) Kty = J (-> ∗ Int) ∗ Type Kty
= JInt Kty → JType Kty
= El JInt Ktm → Set

Background Eunoia LambdaPi Translation Results & Future Work

Translate kinds into LambdaPi types via J ⋅ Kty ∶ eo→ lp;

JType Kty = Set

J ((->) ∗ e) ∗ e′ Kty = J e Kty → J e′ Kty
J e′ Kty = El J e′ Ktm

Example. Consider translating the following Eunoia kind.

J (-> Int Type) Kty = J (-> ∗ Int) ∗ Type Kty
= JInt Kty → JType Kty
= El JInt Ktm → Set

Background Eunoia LambdaPi Translation Results & Future Work

Now, we can easily translate type declarations:

J (declare-type t (e1 . . . en)) K

⇓

symbol {∣ t ∣} ∶ J (-> e1 . . . en Type) Kty;

⇓

symbol {∣ t ∣} ∶ J e1 Kty → . . .→ J en Kty → Set;

Example.
1 (declare-type Array (Type Type))

1 symbol {|Array|} : Set → Set;

Background Eunoia LambdaPi Translation Results & Future Work

Now, we can easily translate type declarations:

J (declare-type t (e1 . . . en)) K

⇓

symbol {∣ t ∣} ∶ J (-> e1 . . . en Type) Kty;

⇓

symbol {∣ t ∣} ∶ J e1 Kty → . . .→ J en Kty → Set;

Example.
1 (declare-type Array (Type Type))

1 symbol {|Array|} : Set → Set;

Background Eunoia LambdaPi Translation Results & Future Work

Use J ⋅ Ktm ∶ eo→ lp to translate terms/types to LambdaPi terms.

J s Ktm = {
(↝) if s = (->),
{∣ s ∣} otherwise

J e ∗ e′ Ktm = J e Ktm ⋅ J e′ Ktm

Example. Consider translating the following type.

J (-> Bool (BitVec 5)) Ktm = J (-> ∗ Bool) ∗ (BitVec ∗ 5) Ktm
= JBool Ktm ↝ JBitVec ∗ 5 Ktm
= {∣Bool ∣} ↝ ({∣BitVec ∣} ⋅ {∣5 ∣})

Background Eunoia LambdaPi Translation Results & Future Work

Use J ⋅ Ktm ∶ eo→ lp to translate terms/types to LambdaPi terms.

J s Ktm = {
(↝) if s = (->),
{∣ s ∣} otherwise

J e ∗ e′ Ktm = J e Ktm ⋅ J e′ Ktm

Example. Consider translating the following type.

J (-> Bool (BitVec 5)) Ktm = J (-> ∗ Bool) ∗ (BitVec ∗ 5) Ktm
= JBool Ktm ↝ JBitVec ∗ 5 Ktm
= {∣Bool ∣} ↝ ({∣BitVec ∣} ⋅ {∣5 ∣})

Background Eunoia LambdaPi Translation Results & Future Work

Now, we can translate constant declarations, e.g.;

(declare-const s (-> e1 . . . en) ⟨α⟩?)

⇓

constant symbol {∣ s ∣} ∶ El J (-> e1 . . . en) Ktm;

⇓

constant symbol {∣ s ∣} ∶ El (J e1 Ktm ↝ . . .↝ J en Ktm);

Also, update the attribute map γwith (s ↦ α).

Background Eunoia LambdaPi Translation Results & Future Work

Now, we can translate constant declarations, e.g.;

(declare-const s (-> e1 . . . en) ⟨α⟩?)

⇓

constant symbol {∣ s ∣} ∶ El J (-> e1 . . . en) Ktm;

⇓

constant symbol {∣ s ∣} ∶ El (J e1 Ktm ↝ . . .↝ J en Ktm);

Also, update the attribute map γwith (s ↦ α).

Background Eunoia LambdaPi Translation Results & Future Work

Translation of (implicit) parameters is easy.

J (s e) Kparam = (J s Ktm ∶ J e Kty)

J (s e :implicit) Kparam = [J s Ktm ∶ J e Kty]

Background Eunoia LambdaPi Translation Results & Future Work

Translate parameterized constant declarations thus:

(declare-parameterized-const s (ρ1 . . . ρn) e)

⇓

constant symbol {∣ s ∣} Jρ1 K . . . Jρn K ∶ El J e Ktm;

Example. Consider translating the following declaration.
1 (declare-parameterized-const =
2 ((A Type :implicit)) (-> A A Bool)
3 :chainable and
4)

1 constant symbol {|=|} [A : Set] : El (A ~> A ~> Bool)

Background Eunoia LambdaPi Translation Results & Future Work

Translate parameterized constant declarations thus:

(declare-parameterized-const s (ρ1 . . . ρn) e)

⇓

constant symbol {∣ s ∣} Jρ1 K . . . Jρn K ∶ El J e Ktm;

Example. Consider translating the following declaration.
1 (declare-parameterized-const =
2 ((A Type :implicit)) (-> A A Bool)
3 :chainable and
4)

1 constant symbol {|=|} [A : Set] : El (A ~> A ~> Bool)

Background Eunoia LambdaPi Translation Results & Future Work

Definitions are translated thus:

(define s (ρ1 . . . ρn) e ⟨:type e′⟩?)

⇓

symbol {∣ s ∣} Jρ1 . . . ρn K ⟨∶ J e′ Ktm⟩? ∶= J e Ktm;

Background Eunoia LambdaPi Translation Results & Future Work

Programs are translated.

Example. Translation of $from_clause.
1 sequential symbol
2 {|$from_clause|} : (El Bool → El Bool);

4 rule {|$from_clause|} (or $F1 $F2) |->
5 {|eo::ite|} [Bool]
6 ({|eo::is_eq|} [Bool] $F2 false)
7 $F1 (or $F1 $F2)

9 with {|$from_clause|} $F1 |-> $F1;

Background Eunoia LambdaPi Translation Results & Future Work

Rule declarations are translated.

Example. Translation of $from_clause.
1 sequential symbol
2 cnf_implies_pos_aux : (El Bool → El Bool);

4 rule cnf_implies_pos_aux (=> $F1 $F2)
5 |-> or (not (=> $F1 $F2))
6 (or (not $F1) (or $F2 false));

8 constant symbol cnf_implies_pos : Π (x0 : El Bool),
9 El (Proof (cnf_implies_pos_aux x0));

Background Eunoia LambdaPi Translation Results & Future Work

Proof scripts are translated:

Example. Translation of $from_clause.
1 constant symbol Z : Set;
2 constant symbol input : El Bool;
3 constant symbol reg : El Bool;
4 constant symbol nf : El Z;
5 constant symbol flash : El Z;
6 constant symbol circuit : El Bool;
7 symbol {|@t1|} : El Bool � not input;
8 symbol {|@t2|} : El Bool � not reg;
9 symbol {|@t3|} : El Bool � and input (and {|@t2|} true);
10 constant symbol {|@p1|} : El (Proof circuit);
11 constant symbol {|@p2|} : El (Proof (= nf flash));
12 constant symbol {|@p3|} : El (Proof (not (or {|@t3|} (or {|@t1|} (or reg false)))));
13 symbol {|@p4|} : El (Proof (not {|@t3|})) � not_or_elim [or {|@t3|} (or {|@t1|} (or reg false))] {|@p3|} {|eo::0|};
14 symbol {|@p5|} : El (Proof {|@t2|}) � not_or_elim [or {|@t3|} (or {|@t1|} (or reg false))] {|@p3|} ({|eo::succ|} ({|eo::succ|} {|eo::0|}));
15 symbol {|@p6|} : El (Proof (not {|@t1|})) � not_or_elim [or {|@t3|} (or {|@t1|} (or reg false))] {|@p3|} ({|eo::succ|} {|eo::0|});
16 symbol {|@p7|} : El (Proof input) � not_not_elim [input] {|@p6|};
17 symbol {|@p8_aux|} : El (Proof (and input (and {|@t2|} true))) � and_cons {|@p7|} (and_cons {|@p5|} trueI);
18 symbol {|@p8|} : El (Proof {|@t3|}) � and_intro [and input (and {|@t2|} true)] {|@p8_aux|};
19 symbol {|@p9|} : El (Proof false) � contra [{|@t3|}] {|@p8|} {|@p4|};

Background Eunoia LambdaPi Translation Results & Future Work

Results & FutureWork

Background Eunoia LambdaPi Translation Results & Future Work

Carve out the portion of CPC supporting QFUF.

● Rodin SMT-LIB benchmark, 30 unsat problems.

● Run cvc5with --proof-format=cpc, dump proofs.

● Check which CPC rules were used, calculate dependencies.

● Make someminor modifications, call this fork CPC-mini.

Background Eunoia LambdaPi Translation Results & Future Work

Carve out the portion of CPC supporting QFUF.

● Rodin SMT-LIB benchmark, 30 unsat problems.

● Run cvc5with --proof-format=cpc, dump proofs.

● Check which CPC rules were used, calculate dependencies.

● Make someminor modifications, call this fork CPC-mini.

Background Eunoia LambdaPi Translation Results & Future Work

Carve out the portion of CPC supporting QFUF.

● Rodin SMT-LIB benchmark, 30 unsat problems.

● Run cvc5with --proof-format=cpc, dump proofs.

● Check which CPC rules were used, calculate dependencies.

● Make someminor modifications, call this fork CPC-mini.

Background Eunoia LambdaPi Translation Results & Future Work

Carve out the portion of CPC supporting QFUF.

● Rodin SMT-LIB benchmark, 30 unsat problems.

● Run cvc5with --proof-format=cpc, dump proofs.

● Check which CPC rules were used, calculate dependencies.

● Make someminor modifications, call this fork CPC-mini.

Background Eunoia LambdaPi Translation Results & Future Work

Translate CPC-mini to LambdaPi using eo2lp.

Background Eunoia LambdaPi Translation Results & Future Work

Translate all of our Rodin proofs.

Background Eunoia LambdaPi Translation Results & Future Work

Lots of potential for future work:

Support full CPC: arithmetic, strings, bit-vectors, etc.

Scale up to bigger proofs.

Tidy translation: perform elaboration in LambdaPi?

Do all of this in Brazil, Nov 2025?

Background Eunoia LambdaPi Translation Results & Future Work

Lots of potential for future work:

Support full CPC: arithmetic, strings, bit-vectors, etc.

Scale up to bigger proofs.

Tidy translation: perform elaboration in LambdaPi?

Do all of this in Brazil, Nov 2025?

Background Eunoia LambdaPi Translation Results & Future Work

Lots of potential for future work:

Support full CPC: arithmetic, strings, bit-vectors, etc.

Scale up to bigger proofs.

Tidy translation: perform elaboration in LambdaPi?

Do all of this in Brazil, Nov 2025?

Background Eunoia LambdaPi Translation Results & Future Work

Lots of potential for future work:

Support full CPC: arithmetic, strings, bit-vectors, etc.

Scale up to bigger proofs.

Tidy translation: perform elaboration in LambdaPi?

Do all of this in Brazil, Nov 2025?

	Background
	Eunoia
	LambdaPi
	Translation
	Results & Future Work

