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Background Eunoia LambdaPi Translation Results & Future Work

Eunoia and Ethos

● Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.

development led by Andrew Reynolds, at University of Iowa.
the ‘spiritual successor’ of the Alethe proof format.
covers theory signatures & proof scripts.
paired with the Ethos checker.

● Extends SMT-LIB by adding:

○ (dependent) types, parametric polymorphism,
○ ‘programs’ (i.e., constants with rewrite rules),
○ inference rule declarations,
○ commands for building proof scripts.
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LambdaPi
● Logical framework based on the λΠ-calculus modulo rewriting.

development led by Frédéric Blanqui, INRIA Paris-Saclay
small code base, trusted foundations.
fast typechecker.
interactive theorem proving via LSP!
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TheCo-operating Proof Calculus

● The co-operating proof calculus (CPC) is cvc5’s proof system.

formalized as a Eunoia signature ΣCPC.
not small (> 600 inference rules).

some rules take arguments, some have side-conditions.

● Proofs produced by cvc5 are Eunoia proof scripts that
exclusively use the rules from ΣCPC.
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Example. A CPC rule for elimination on n-ary conjunctions,
whereϕ1 . . .ϕn are formulas and i ∈N.

(ϕ1 ∧ . . . ∧ϕn) ∣ i
ϕi

(and_elim)

The rule is formalized in Eunoia thus:
1 (declare-rule and_elim ((Fs Bool) (i Int))
2 :premises (Fs)
3 :args (i)
4 :conclusion (eo::list_nth and Fs i)
5 )



Example. A CPC rule for elimination on n-ary conjunctions,
whereϕ1 . . .ϕn are formulas and i ∈N.

(ϕ1 ∧ . . . ∧ϕn) ∣ i
ϕi

(and_elim)

The rule is formalized in Eunoia thus:
1 (declare-rule and_elim ((Fs Bool) (i Int))
2 :premises (Fs)
3 :args (i)
4 :conclusion (eo::list_nth and Fs i)
5 )



Example.The following problem is unsatisfiable. In this case,
cvc5 can provide a proof demonstrating this.

1 (set-logic QF_UF)
2 (set-option :produce-proofs true)
3 (declare-const p Bool)
4 (assert (and p (not p)))
5 (check-sat)
6 (get-proof)
7 (exit)

1 unsat
2 (declare-fun p () Bool)
3 (assume @p1 (and p (not p)))
4 (step @p2 :rule and_elim :premises (@p1) :args (1))
5 (step @p3 :rule and_elim :premises (@p1) :args (0))
6 (step @p4 false :rule contra :premises (@p3 @p2))
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● Thus, ifΠ is a valid Eunoia proof script depending on Σ, then
T(Π) should be well-typed wrt. T(Σ).
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● Fix a set of symbols S, and let s ∈ S.

● Define eo as the set of Eunoia expressions thus:

e ∈ eo ∶∶= s (symbol)
∣ (s e1 . . . en) (application)

● In general, expressions are either:

○ terms (e.g., true, false)
○ types (e.g., Bool, (-> Bool Bool) )
○ kinds (e.g., Type, (-> Type Type))
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Background Eunoia LambdaPi Translation Results & Future Work

Eunoia has type declarations.

(declare-type s (e1 . . . en))

Example.The Array symbol declared a (binary) type constructor.
1 (declare-type Array (Type Type))
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Eunoia has constant declarations of the form:

(declare-const s e ⟨α⟩?)

where α is a constant attribute. i.e.,

α ∈ attrc ∶∶= :right-assoc ∣ :right-assoc-nil⟨t⟩
∣ :left-assoc ∣ :left-assoc-nil⟨t⟩
∣ :chainable⟨s⟩ ∣ :pairwise⟨s⟩ ∣ :binder⟨s⟩

Example. Declare and right-associative, with nil terminator true.
1 (declare-const and (-> Bool Bool Bool)
2 :right-assoc-nil true
3 )
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ρ ∈ param ∶∶= (s t ⟨ν⟩?)
ν ∈ attrv ∶∶= :implicit ∣ :list

Example. Implicit type parameter and :chainable attribute.
1 (declare-parameterized-const =
2 ((A Type :implicit)) (-> A A Bool)
3 :chainable and
4 )
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Eunoia can define symbols (with an optional type annotation):

(define s (ρ1 . . . ρn) e ⟨:type t⟩?)

Example. Some definition from cpc/rules/Booleans.eo.
1 (define $remove_maybe_self ((l Bool) (C Bool))
2 (eo::ite (eo::eq l C) false (eo::list_erase or C l))
3 )
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Eunoia has user-defined programs.

⎛
⎜
⎝

program s (ρ1 . . . ρn)
:signature (t1 . . . tm) t′
((e1 e′1) . . . (ek e′k))

⎞
⎟
⎠

Example. Some program from cpc/rules/Booleans.eo.
1 (program $to_clause
2 ((F1 Bool) (F2 Bool :list))
3 :signature (Bool) Bool
4 (
5 (($to_clause (or F1 F2)) (or F1 F2))
6 (($to_clause false) false)
7 (($to_clause F1) (or F1))
8 )
9 )
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Eunoia has rule declarations.

⎛
⎜
⎜
⎜
⎝

declare-rule s (ρ1 . . . ρn)
⟨:premises (ϕ1 . . . ϕm)⟩?
⟨:args (e1 . . . ek)⟩?
:conclusionψ

⎞
⎟
⎟
⎟
⎠

Example. Resolution rule from cpc/rules/Booleans.eo.
1 (declare-rule resolution
2 ((C1 Bool) (C2 Bool) (pol Bool) (L Bool))
3 :premises (C1 C2)
4 :args (pol L)
5 :conclusion ($resolve C1 C2 pol L)
6 )
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For proof scripts, we have twomain commands:

π ∈ prf ∶∶= (assume sϕ)

∣
⎛
⎜
⎝

step s ⟨ψ⟩? :rule s′
⟨:premises (ϕ1 . . . ϕn)⟩?
⟨:args (e1 . . . em)⟩?

⎞
⎟
⎠

∣ . . .

Example.
1 (assume @p1 (and p (not p)))
2 (step @p2 :rule and_elim :premises (@p1) :args (1))
3 (step @p3 :rule and_elim :premises (@p1) :args (0))
4 (step @p4 false :rule contra :premises (@p3 @p2))
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LambdaPi
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● LambdaPi terms are those of the λΠ-calculus.

t ∈ termlp ∶∶= x ∣ t1 ⋅ t2 ∣ λ x ∶ t1. t2 ∣ Π x ∶ t1. t2

● Symbols are declared thus:

symbol s ⟨ρ⟩∗ ∶ t;

where ρ ranges over LambdaPi parameters:

ρ ∈ paramlp ∶∶= (x ∶ t) ∣ [x ∶ t]
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● Symbols can also be defined:

symbol s ⟨∶ t⟩? ∶= t′;

Note that providing the type of s is optional.

● Rewrite rules are declared as follows:

rule r ⟨with r′⟩∗;

Where r ranges over rw ∶∶= (t ↪ t′).
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Type universes a la Tarski; closed under (↝).

Set ∶ TYPE; El ∶ Set→ TYPE;

(↝) ∶ Set→ Set→ Set;

Proofs are encoded similarly:

Prop ∶ TYPE; Prf ∶ Prop→ TYPE;

Example.

symbol (=) [a ∶ Set] ∶ El (a↝ a↝ Bool);
symbol refl [a ∶ Set] [x ∶ El a] ∶ Prf(x = x);
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Goal: Given a Eunoia signature Σ, generate the corresponding
LambdaPi signature T(Σ).

● Process each command in Σ, updating an environmentΘ as
we go:

TΘ(c ;Σ) = c ;TΘ′(Σ)

● Our translation tool eo2lp is written in OCaml.

● The following is a high-level overview.
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● The following is a high-level overview.
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Expressions are first elaborated with elabγ ∶ eo→ eo.

γ ∶ S ⇀ (attrc ∪ attrv)

Where γ attributes of symbols during translation.

● Eunoia has a built-in symbol _ for (higher-order) application.

● The default elaboration strategy is to left-fold:

elabγ(s e1 . . . en) = ((s ∗ e1) ∗ . . . ∗ en)
= (_ (. . . (_ s e1) . . .) en)

● In general, strategy depends on attributes, e.g.,

elabγ(and p q r) = and p ∗ (and q ∗ (and r ∗ false))
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Translate kinds into LambdaPi types via J ⋅ Kty ∶ eo→ lp;

JType Kty = Set

J ((->) ∗ e) ∗ e′ Kty = J e Kty → J e′ Kty
J e′ Kty = El J e′ Ktm

Example. Consider translating the following Eunoia kind.

J (-> Int Type) Kty = J (-> ∗ Int) ∗ Type Kty
= JInt Kty → JType Kty
= El JInt Ktm → Set
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Now, we can easily translate type declarations:

J (declare-type t (e1 . . . en)) K

⇓

symbol {∣ t ∣} ∶ J (-> e1 . . . en Type) Kty;

⇓

symbol {∣ t ∣} ∶ J e1 Kty → . . .→ J en Kty → Set;

Example.
1 (declare-type Array (Type Type))

1 symbol {|Array|} : Set → Set;
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Use J ⋅ Ktm ∶ eo→ lp to translate terms/types to LambdaPi terms.

J s Ktm = {
(↝) if s = (->),
{∣ s ∣} otherwise

J e ∗ e′ Ktm = J e Ktm ⋅ J e′ Ktm

Example. Consider translating the following type.

J (-> Bool (BitVec 5)) Ktm = J (-> ∗ Bool) ∗ (BitVec ∗ 5) Ktm
= JBool Ktm ↝ JBitVec ∗ 5 Ktm
= {∣Bool ∣} ↝ ({∣BitVec ∣} ⋅ {∣5 ∣})



Background Eunoia LambdaPi Translation Results & Future Work

Use J ⋅ Ktm ∶ eo→ lp to translate terms/types to LambdaPi terms.

J s Ktm = {
(↝) if s = (->),
{∣ s ∣} otherwise

J e ∗ e′ Ktm = J e Ktm ⋅ J e′ Ktm

Example. Consider translating the following type.

J (-> Bool (BitVec 5)) Ktm = J (-> ∗ Bool) ∗ (BitVec ∗ 5) Ktm
= JBool Ktm ↝ JBitVec ∗ 5 Ktm
= {∣Bool ∣} ↝ ({∣BitVec ∣} ⋅ {∣5 ∣})



Background Eunoia LambdaPi Translation Results & Future Work

Now, we can translate constant declarations, e.g.;

(declare-const s (-> e1 . . . en) ⟨α⟩?)

⇓

constant symbol {∣ s ∣} ∶ El J (-> e1 . . . en) Ktm;

⇓

constant symbol {∣ s ∣} ∶ El (J e1 Ktm ↝ . . .↝ J en Ktm);

Also, update the attribute map γwith (s ↦ α).
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Translation of (implicit) parameters is easy.

J (s e) Kparam = (J s Ktm ∶ J e Kty)

J (s e :implicit) Kparam = [J s Ktm ∶ J e Kty]
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Translate parameterized constant declarations thus:

(declare-parameterized-const s (ρ1 . . . ρn) e)

⇓

constant symbol {∣ s ∣} Jρ1 K . . . Jρn K ∶ El J e Ktm;

Example. Consider translating the following declaration.
1 (declare-parameterized-const =
2 ((A Type :implicit)) (-> A A Bool)
3 :chainable and
4 )

1 constant symbol {|=|} [A : Set] : El (A ~> A ~> Bool)
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Definitions are translated thus:

(define s (ρ1 . . . ρn) e ⟨:type e′⟩?)

⇓

symbol {∣ s ∣} Jρ1 . . . ρn K ⟨∶ J e′ Ktm⟩? ∶= J e Ktm;
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Programs are translated.

Example. Translation of $from_clause.
1 sequential symbol
2 {|$from_clause|} : (El Bool → El Bool);

4 rule {|$from_clause|} (or $F1 $F2) |->
5 {|eo::ite|} [Bool]
6 ({|eo::is_eq|} [Bool] $F2 false)
7 $F1 (or $F1 $F2)

9 with {|$from_clause|} $F1 |-> $F1;
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Rule declarations are translated.

Example. Translation of $from_clause.
1 sequential symbol
2 cnf_implies_pos_aux : (El Bool → El Bool);

4 rule cnf_implies_pos_aux (=> $F1 $F2)
5 |-> or (not (=> $F1 $F2))
6 (or (not $F1) (or $F2 false));

8 constant symbol cnf_implies_pos : Π (x0 : El Bool),
9 El (Proof (cnf_implies_pos_aux x0));
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Proof scripts are translated:

Example. Translation of $from_clause.
1 constant symbol Z : Set;
2 constant symbol input : El Bool;
3 constant symbol reg : El Bool;
4 constant symbol nf : El Z;
5 constant symbol flash : El Z;
6 constant symbol circuit : El Bool;
7 symbol {|@t1|} : El Bool � not input;
8 symbol {|@t2|} : El Bool � not reg;
9 symbol {|@t3|} : El Bool � and input (and {|@t2|} true);
10 constant symbol {|@p1|} : El (Proof circuit);
11 constant symbol {|@p2|} : El (Proof (= nf flash));
12 constant symbol {|@p3|} : El (Proof (not (or {|@t3|} (or {|@t1|} (or reg false)))));
13 symbol {|@p4|} : El (Proof (not {|@t3|})) � not_or_elim [or {|@t3|} (or {|@t1|} (or reg false))] {|@p3|} {|eo::0|};
14 symbol {|@p5|} : El (Proof {|@t2|}) � not_or_elim [or {|@t3|} (or {|@t1|} (or reg false))] {|@p3|} ({|eo::succ|} ({|eo::succ|} {|eo::0|}));
15 symbol {|@p6|} : El (Proof (not {|@t1|})) � not_or_elim [or {|@t3|} (or {|@t1|} (or reg false))] {|@p3|} ({|eo::succ|} {|eo::0|});
16 symbol {|@p7|} : El (Proof input) � not_not_elim [input] {|@p6|};
17 symbol {|@p8_aux|} : El (Proof (and input (and {|@t2|} true))) � and_cons {|@p7|} (and_cons {|@p5|} trueI);
18 symbol {|@p8|} : El (Proof {|@t3|}) � and_intro [and input (and {|@t2|} true)] {|@p8_aux|};
19 symbol {|@p9|} : El (Proof false) � contra [{|@t3|}] {|@p8|} {|@p4|};
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Carve out the portion of CPC supporting QFUF.

● Rodin SMT-LIB benchmark, 30 unsat problems.

● Run cvc5with --proof-format=cpc, dump proofs.

● Check which CPC rules were used, calculate dependencies.

● Make someminor modifications, call this fork CPC-mini.
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● Rodin SMT-LIB benchmark, 30 unsat problems.

● Run cvc5with --proof-format=cpc, dump proofs.

● Check which CPC rules were used, calculate dependencies.

● Make someminor modifications, call this fork CPC-mini.
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Translate CPC-mini to LambdaPi using eo2lp.
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Translate all of our Rodin proofs.
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Lots of potential for future work:

Support full CPC: arithmetic, strings, bit-vectors, etc.

Scale up to bigger proofs.

Tidy translation: perform elaboration in LambdaPi?

Do all of this in Brazil, Nov 2025?
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