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e Eunoia is an emerging logical framework aimed at formalizing
the proof systems used by SMT solvers.
£ development led by Andrew Reynolds, at University of lowa.
¥ the ‘spiritual successor’ of the Alethe proof format.
", covers theory signatures & proof scripts.
V/ paired with the Ethos checker.

e Extends SMT-LIB by adding:
o (dependent) types, parametric polymorphism,
o ‘programs’ (i.e., constants with rewrite rules),
o inference rule declarations,
o commands for building proof scripts.
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e Logical framework based on the ATT-calculus modulo rewriting.
BB development led by Frédéric Blanqui, INRIA Paris-Saclay
& small code base, trusted foundations.
% fast typechecker.
@ interactive theorem proving via LSP!

e Primarily focused on proof assistant interoperability.
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The Co-operating Proof Calculus

e The co-operating proof calculus (CPC) is cvc5’s proof system.
formalized as a Eunoia signature cpc.
0 not small (> 600 inference rules).
%> some rules take arguments, some have side-conditions.

e Proofs produced by cvcb are Eunoia proof scripts that
exclusively use the rules from Zcpc.
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Example. A CPC rule for elimination on n-ary conjunctions,
where @, ... @, are formulas and i € IN.

(and_elim)

(@A A@y) |
Pi

The rule is formalized in Eunoia thus:

(declare-rule and_elim ((Fs Bool) (i Int))
:premises (Fs)
rargs (i)
:conclusion (eo::1list_nth and Fs i)
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Example. The following problem is unsatisfiable. In this case,
cvch can provide a proof demonstrating this.

(set-logic QF_UF)

(set-option :produce-proofs true)
(declare-const p Bool)

(assert (and p (not p)))
(check-sat)

(get-proof)

(exit)

unsat

(declare-fun p () Bool)

(assume @pl (and p (not p)))

(step @p2 :rule and_elim :premises (@pl) :args (1))
(step @p3 :rule and_elim :premises (@pl) :args (0))
(step @p4 false :rule contra :premises (@p3 @p2))
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e Goal: Design a translation procedure T such that;
o if' ¥ is a Eunoia signature implementing some logic L,
o then T(X) is a LambdaPi signature also implementing L.

e Thus, if TTis a valid Eunoia proof script depending on X, then
T(TT) should be well-typed wrt. T(X).
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e Fixasetof symbols S, and letse S.

e Define eo as the set of Eunoia expressions thus:

eceo=s (symbol)
| (se;...e,) (application)

e In general, expressions are either:
o terms (e.g., true, false)
o types(e.g.,Bool, (->Bool Bool))
o kinds (e.g., Type, (-> Type Type))
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Eunoia has type declarations.

(declare-types (e, ... e,))

Example. The Array symbol declared a (binary) type constructor.
+ (declare-type Array (Type Type))
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Eunoia has constant declarations of the form:
(declare-constse (x);)

where o is a constant attribute. i.e.,

o € attr, == :right-assoc | :right-assoc-nil(t)
| :left-assoc| :left-assoc-nil(t)
|

:chainable(s) | :pairwise(s) | :binder(s)

Example. Declare and right-associative, with nil terminator true.

; (declare-const and (-> Bool Bool Bool)
2 :right-assoc-nil true

50)
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Example. Declare and right-associative, with nil terminator true.

1 (declare-const and (-> Bool Bool Bool)
2 :right-assoc-nil true

50)

The following n-ary application of and is elaborated thus:

(and p q r) = (and p (and q (and r true)))
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We can also declare parameterized constants:
(declare-parameterized-const s (p; ... p,) e {(a);)

where p is a (typed) parameter. i.e.,

(st(v):)

:implicit | :1list

p € param :
V € attry
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We can also declare parameterized constants:
(declare-parameterized-const s (p; ... p,) e {(a);)

where p is a (typed) parameter. i.e.,

(st(v):)

:implicit | :1list

p € param :
V € attry

Example. Implicit type parameter and : chainable attribute.

(declare-parameterized-const =
((A Type :implicit)) (-> A A Bool)
:chainable and
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Example. Implicit type parameter and : chainable attribute.

(declare-parameterized-const =
((A Type :implicit)) (-> A A Bool)
:chainable and

The following n-ary application of = is elaborated thus:

(=xyz)—(and (=xy) (=y 2))
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Eunoia can define symbols (with an optional type annotation):
(defines(p;... py)e(:typet);)

Example. Some definition from cpc/rules/Booleans. eo.

(define $remove_maybe_self ((1 Bool) (C Bool))
(eo::ite (eo::eq 1 C) false (eo::list_erase or C 1))

)
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Eunoia has user-defined programs.

programs (p; ... Py)
:signature (f; ... t,)t’

((ere])...(exey))

Example. Some program from cpc/rules/Booleans.eo.

+ (program $to_clause
2 ((F1 Bool) (F2 Bool :1list))

3 :signature (Bool) Bool

4 (

5 (($to_clause (or F1 F2)) (or F1 F2))
6 (($to_clause false) false)

7 (($to_clause F1) (or F1))

s )
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Eunoia has rule declarations.

declare-rules(p; ... pp)
(:premises (@; ... @p)):

(rargs (e ... e))>
:conclusion

Example. Resolution rule from cpc/rules/Booleans. eo.

1 (declare-rule resolution
2 ((C1 Bool) (C2 Bool) (pol Bool) (L Bool))

3 :premises (C1 C2)

s rargs (pol L)

s :conclusion ($resolve C1 C2 pol L)
6 )
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1

For proof scripts, we have two main commands:

7 e prf = (assumes @)

steps (V); :rules’
| (:premises (@; ... @,)):
(rargs (e, ... em)):

Example.

(assume @pl (and p (not p)))

(step @p2 :rule and_elim :premises (@pl) :args (1))
(step @p3 :rule and_elim :premises (@pl) :args (0))
(step @p4 false :rule contra :premises (@p3 @p2))
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e LambdaPi terms are those of the ATT-calculus.

tetermy == x | t-t, | Ax:tt, | TTx:t.t,

e Symbols are declared thus:
symbols (p). : t;
where p ranges over LambdaPi parameters:

p € paramy, == (x: t) | [x: ]
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e Symbols can also be defined:

symbol s (:t); :=t';
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e Symbols can also be defined:
symbol s (:t); :=t';

Note that providing the type of s is optional.




LAMBDAPI

e Symbols can also be defined:
symbol s (:t); :=t';
Note that providing the type of s is optional.
e Rewrite rules are declared as follows:
ruler (with?'),;

Where r ranges over rw == (t < t').
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Type universes a la Tarski; closed under (~).
Set : TYPE; El:Set — TYPE;
(~):Set - Set — Set;
Proofs are encoded similarly:

Prop : TYPE; Prf : Prop — TYPE;

Example.

symbol (=) [a: Set] : El(a ~ a~ Bool);
symbol refl [a: Set][x:Ela] : Prf(x =x);
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Goal: Given a Eunoia signature X, generate the corresponding
LambdaPi signature T(X).

e Process each command in £, updating an environment © as
we go:
T@(C; Z) = C;T@/(X)

e Our translation tool eo21p is written in OCaml.

e The following is a high-level overview.
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Expressions are first elaborated with elab,, : eo — eo.
v : S — (attr, U attr,)

Where y attributes of symbols during translation.
e Eunoia has a built-in symbol _ for (higher-order) application.

e The default elaboration strategy is to left-fold:

elab, (se; ... e,) =((s*e) *...xey)

=(_(...(_se)...) e)
e In general, strategy depends on attributes, e.g.,

elab, (andpqr) = andp * (and ¢ » (and r * false))
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Translate kinds into LambdaPi types via [ -], : eo — Ip;

[Type],, =Set
[((=>)xe) we'ly=Tely =[]y
[¢]g=EL ¢ [im

Example. Consider translating the following Eunoia kind.

[(->Int Type) ], =[(->* Int) * Type],,
=[Int], > [Type],
=E1l[Int],, — Set




TRANSLATION

O000@00000000

Now, we can easily translate type declarations:

[ (declare-typet (e, ... e,))]
|
symbol {t]}: [(->e ... s Type) ;s
U

symbol {tf}: [e ]y = ... > [en],, > Set;
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Now, we can easily translate type declarations:

[ (declare-typet (e ... €,))]

U
symbol {t]}: [(->e ... s Type) ;s
U

symbol {tf}: [e ]y = ... > [en],, > Set;

Example.

1 (declare-type Array (Type Type))

. symbol {|Array|} : Set - Set;
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Use [-],,, : @ — Ip to translate terms/types to LambdaPi terms.

() o0

{s|} otherwise

[[e*el]]tm: [[e]]tm' [[el]]tm




TRANSLATION RESULTS & FUTL

0000080000000 ¢

Use [-],,, : @ — Ip to translate terms/types to LambdaPi terms.

() o0

{s|} otherwise
[[6 * e/]]tm = [[e]]tm ’ [[el]]tm
Example. Consider translating the following type.

[(->Bool (BitVec5)) [, = [ (-> % Bool) * (BitVec *5) [,
=[Bool],, ~ [BitVec* 5],
={Bool|} ~ ({BitVec|-{5]})
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Now, we can translate constant declarations, e.g.;

(declare-consts(->e¢ ... e,) (x);)

U

constant symbol {s[} :EL[(->e ... ey) [

J

constant symbol {]S[} :El ([[Q]]tm LT [[en ]]tm);
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Now, we can translate constant declarations, e.g.;

(declare-consts(->e¢ ... e,) (x);)

U

constant symbol {s[} :EL[(->e ... ey) [

J

constant symbol {]S[} :El ([[el]]tm LT [[en ]]tm);

Also, update the attribute map y with (s —» ).
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Translation of (implicit) parameters is easy.

[(se) Jparam = ([ ]im : [[e]]ty)

[(se:implicit) Jparam = [[$Jom : [¢]yy]
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Translate parameterized constant declarations thus:

(declare-parameterized-const s (p; ... p,)e)

U

constant symbol {sf} [p.]...[pn]:EL €],
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Translate parameterized constant declarations thus:

(declare-parameterized-const s (p; ... p,)e)

U

constant symbol {sf} [p.]...[pn]:EL €],

Example. Consider translating the following declaration.

(declare-parameterized-const =
((A Type :implicit)) (-> A A Bool)
:chainable and

constant symbol {[|=|} [A : Set] : E1 (A ~> A ~> Bool)
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Definitions are translated thus:

(defines(p;... pn)e(:typee))
J
symbol {sf [p: ... o] (:[€ Jem)> = [€]em:
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Programs are translated.

Example. Translation of $from_clause.

sequential symbol
{l$from_clausel|} : (E1l Bool - E1 Bool);

rule {|$from_clausel} (or $F1 $F2) |->
{leo::itel} [Bool]
({leo::is_eql} [Bool] $F2 false)
$F1 (or $F1 $F2)

with {|$from clausel|} $F1 |-> $F1;
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Rule declarations are translated.

Example. Translation of $from_clause.

sequential symbol

cnf_implies_pos_aux : (El Bool -+ El Bool);

rule cnf_implies_pos_aux (=> $F1 $F2)
[-> or (not (=> $F1 $F2))
(or (not $F1) (or $F2 false));

constant symbol cnf_implies_pos : II (xO0
El (Proof (cnf_implies_pos_aux x0));

E1l Bool),
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Proof scripts are translated:

Example. Translation of $from_clause.

1 constant symbol Z : Set;

2 constant symbol input : E1 Bool;

3 constant symbol reg : El1 Bool;

4 constant symbol nf : El1 Z;

5 constant symbol flash : El Z;

6 constant symbol circuit : E1 Bool;

7  symbol {l@t1l} : E1l Bool mnot input;

8 symbol {|@t2|} : E1 Bool mnot reg;

9 symbol {|@t3|} : El Bool and input (and {|@t2|} true);

10 constant symbol {|@p1l|} : E1 (Proof circuit);

11 constant symbol {|@p2|} : E1 (Proof (= nf flash));

12 constant symbol {|@p3|} : E1l (Proof (mot (or {l@t3|} (or {l@t1|} (or reg false)))));

13 symbol {l@p4|} : E1 (Proof (mot {l@t31[})) not_or_elim [or {l@t3|} (or {l@t1|} (or reg false)
14 symbol {|@p5|} : E1 (Proof {l@t2[}) not_or_elim [or {l@t3|} (or {l@t1l|} (or reg false))] {IC
15 symbol {|@p6|} : E1l (Proof (mot {l@t1]})) not_or_elim [or {l@t3|} (or {l@t1|} (or reg false)
16 symbol {|@p7|} : E1 (Proof input) not_not_elim [input] {l@p6l};

17 symbol {l|@p8_aux|} : El (Proof (and input (and {|@t2l|} true))) and_cons {|@p7|} (and_cons {l|
18 symbol {|@p8|} : E1 (Proof {|@t3|}) and_intro [and input (and {|0t2|} true)] {|@p8_auxl};

19 symbol {|@p9l|} : E1 (Proof false) contra [{l@t3|}] {lep8l|} {lep4l};
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Carve out the portion of CPC supporting QFUF.

Rodin SMT-LIB benchmark, 30 unsat problems.

Run cvch with —-proof-format=cpc, dump proofs.

Check which CPC rules were used, calculate dependencies.

Make some minor modifications, call this fork CPC-mini.
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Translate CPC-mini to LambdaPi using eo21p.
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Translate all of our Rodin proofs.
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Lots of potential for future work:
& Support full CPC: arithmetic, strings, bit-vectors, etc.
~/ Scale up to bigger proofs.
7 Tidy translation: perform elaboration in LambdaPi?

Do all of this in Brazil, Nov 2025?
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