
VERIFIED VAMPIRE PROOFS IN
𝜆𝛱 -CALCULUS MODULO

ANJA PETKOVIĆ KOMEL , MICHAEL RAWSON, MARTIN SUDA

EUROPROOFNET SYMPOSIUM: WORKSHOP ON AUTOMATED
REASONING AND PROOF LOGGING, SEPTEMBER 2025

(A MACHINE CHECKABLE PROOF OUTPUT MODE)

TWO APPROACHES TO FORMAL PROOFS

TWO APPROACHES TO FORMAL PROOFS

Automated theorem prover

(ATP)

TWO APPROACHES TO FORMAL PROOFS

Automated theorem prover

(ATP)

Interactive theorem prover

(ITP)

AUTOMATED THEOREM PROVER (ATP)

AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms

• (negated) conjecture

AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms

• (negated) conjecture

ATP

🙏🤞🍀

AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms

• (negated) conjecture

OUTPUT

Proof trace

ATP

🙏🤞🍀

AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms

• (negated) conjecture

OUTPUT

Proof trace

ATP

🙏🤞🍀

• Sequence / directed graph
of (first-order) formulas

AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms

• (negated) conjecture

OUTPUT

Proof trace

ATP

🙏🤞🍀

• Sequence / directed graph
of (first-order) formulas

• Which premises and
inference rules were used

AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms

• (negated) conjecture

OUTPUT

Proof trace

ATP

🙏🤞🍀

• Sequence / directed graph
of (first-order) formulas

• Which premises and
inference rules were used

• Should be enough to
reconstruct the proof

AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms

• (negated) conjecture

OUTPUT

Proof trace

ATP

🙏🤞🍀

• Sequence / directed graph
of (first-order) formulas

• Which premises and
inference rules were used

• Should be enough to
reconstruct the proof

• Can be used as a
“black box”

AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms

• (negated) conjecture

OUTPUT

Proof trace

ATP

🙏🤞🍀

• Sequence / directed graph
of (first-order) formulas

• Which premises and
inference rules were used

• Should be enough to
reconstruct the proof

• Can be used as a
“black box”

• Complex piece of software

AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms

• (negated) conjecture

OUTPUT

Proof trace

ATP

🙏🤞🍀

• Sequence / directed graph
of (first-order) formulas

• Which premises and
inference rules were used

• Should be enough to
reconstruct the proof

• Can be used as a
“black box”

• Complex piece of software

• Big trusted code base

FROM VAMPIRE TO DEDUKTI

INPUT

• Axioms

• (negated)
conjecture

ATP

VERIFIED

Translation
of proof trace

ITP

our work

WHY OUTPUT VAMPIRE PROOFS TO
DEDUKTI?

WHY OUTPUT VAMPIRE PROOFS TO
DEDUKTI?

• Find unsoundness bugs

WHY OUTPUT VAMPIRE PROOFS TO
DEDUKTI?

• Find unsoundness bugs

• Bugs have been found and
some are likely still there.

WHY OUTPUT VAMPIRE PROOFS TO
DEDUKTI?

• Find unsoundness bugs

• Bugs have been found and
some are likely still there.

• Most recent unsoundess Vampire
bug: January 2nd 2025,
UWA + HO

WHY OUTPUT VAMPIRE PROOFS TO
DEDUKTI?

• Find unsoundness bugs

• Have high degree of confidence

• Bugs have been found and
some are likely still there.

• Most recent unsoundess Vampire
bug: January 2nd 2025,
UWA + HO

WHY OUTPUT VAMPIRE PROOFS TO
DEDUKTI?

• Find unsoundness bugs

• Have high degree of confidence

• Interoperability of proofs
• Bugs have been found and

some are likely still there.

• Most recent unsoundess Vampire
bug: January 2nd 2025,
UWA + HO

WHY OUTPUT VAMPIRE PROOFS TO
DEDUKTI?

• Find unsoundness bugs

• Have high degree of confidence

• Interoperability of proofs

• Potential for hammers
• Bugs have been found and

some are likely still there.

• Most recent unsoundess Vampire
bug: January 2nd 2025,
UWA + HO

VAMPIRE

• First-order system, extended with:

★ reasoning with theories

★ induction

★ higher-order logic

• Saturation based theorem prover

• Employs a number of techniques: indexing,
scheduling, ordered rewriting, AVATAR, heuristics, etc.

WHY DEDUKTI?

WHY DEDUKTI?

WHY DEDUKTI?

• Choir: Interoperability, has a
small trusted kernel, powerful
enough to express our
language

WHY DEDUKTI?

• Choir: Interoperability, has a
small trusted kernel, powerful
enough to express our
language

• Scales reasonably well:
designed to machine check
large proofs
(unlike lambdapi?)

WHAT ARE WE DOING

WHAT ARE WE DOING

• Proof format “-p dedukti” (on vampire branch dedukti)

vampire $problem -p dedukti - - proof_extra full | dk check

WHAT ARE WE DOING

• Proof format “-p dedukti” (on vampire branch dedukti)

vampire $problem -p dedukti - - proof_extra full | dk check

• Using standard Dedukti encoding of FOL and Dedukti semantics
encode concrete instances of Vampire inferences

WHAT ARE WE DOING

• Proof format “-p dedukti” (on vampire branch dedukti)

vampire $problem -p dedukti - - proof_extra full | dk check

• Using standard Dedukti encoding of FOL and Dedukti semantics
encode concrete instances of Vampire inferences

• Sometimes need to store extra information in the proof:
“—proof_extra full”

More on that later

STANDARD ENCODING OF FOL IN DEDUKTI

General or instantiated
with false.

General or instantiated
with false.

Polymorphic Leibniz encoding of equality.

General or instantiated
with false.

Polymorphic Leibniz encoding of equality.

General or instantiated
with false.

Encoding of disjunction in clauses.

Encoding of disjunction in clauses.

“empty” AVATAR clause is regular clause.

Encoding of disjunction in clauses.

“empty” AVATAR clause is regular clause.

All thi
s rewrites/n

ormalizes
to enc

oding of
 FOL.

We did not in
troduce an

y new axiom
s.

WHAT WE CAN CURRENTLY DO

WHAT WE CAN CURRENTLY DO
• Parse input problem: read TPTP/SMT-LIB, write Dedukti axioms

WHAT WE CAN CURRENTLY DO
• Parse input problem: read TPTP/SMT-LIB, write Dedukti axioms

• Run vampire in default mode and fully check reasoning steps:
• Resolution

• Forward/backward demodulation

• Superposition

• Subsumption resolution

• Equality resolution

• AVATAR

• Trivial equality removal

• Factoring

• Remove duplicate literals

• Some pre-processing steps

★ Equality resolution with deletion

★ Definiton unfolding

WHAT WE CAN CURRENTLY DO
• Parse input problem: read TPTP/SMT-LIB, write Dedukti axioms

• Run vampire in default mode and fully check reasoning steps:
• Resolution

• Forward/backward demodulation

• Superposition

• Subsumption resolution

• Equality resolution

• AVATAR

• Trivial equality removal

• Factoring

• Remove duplicate literals

• Some pre-processing steps

★ Equality resolution with deletion

★ Definiton unfolding

• Many sorted logic and polymorphism are supported
Presented later

CURRENT (TEMPORARY) LIMITATIONS

CURRENT (TEMPORARY) LIMITATIONS

• Limited pre-processing: clausification is not checked

Full first-order formulas (FOF) can be
parsed, but clausification steps are not checked.

CURRENT (TEMPORARY) LIMITATIONS

• Limited pre-processing: clausification is not checked

• No higher-order reasoning and no theories yet

Full first-order formulas (FOF) can be
parsed, but clausification steps are not checked.

CURRENT (TEMPORARY) LIMITATIONS

• Limited pre-processing: clausification is not checked

• No higher-order reasoning and no theories yet

• Turn off all the fun bits (only inferences on the previous slide)

Full first-order formulas (FOF) can be
parsed, but clausification steps are not checked.

CURRENT (TEMPORARY) LIMITATIONS

• Limited pre-processing: clausification is not checked

• No higher-order reasoning and no theories yet

• Turn off all the fun bits (only inferences on the previous slide)

★ But inferences are done incrementally :)

Full first-order formulas (FOF) can be
parsed, but clausification steps are not checked.

CURRENT (TEMPORARY) LIMITATIONS

• Limited pre-processing: clausification is not checked

• No higher-order reasoning and no theories yet

• Turn off all the fun bits (only inferences on the previous slide)

★ But inferences are done incrementally :)

★ Unsupported inferences are handled by “sorry”.
We emit a warning during type-checking when
there is a sorry.

Full first-order formulas (FOF) can be
parsed, but clausification steps are not checked.

SOME LESSONS LEARNED DURING
IMPLEMENTATION

SOME LESSONS LEARNED DURING
IMPLEMENTATION

• Equality is symmetric:

SOME LESSONS LEARNED DURING
IMPLEMENTATION

• Equality is symmetric:

• Vampire will switch LHS and RHS when convenient.

SOME LESSONS LEARNED DURING
IMPLEMENTATION

• Equality is symmetric:

• Vampire will switch LHS and RHS when convenient.

• Manually insert commutativity lemmas during proof-printing.

SOME LESSONS LEARNED DURING
IMPLEMENTATION

• Equality is symmetric:

• Vampire will switch LHS and RHS when convenient.

• Manually insert commutativity lemmas during proof-printing.

• Numbering deduction steps accordingly: we give the deduction
steps in Deduct script the same number as appears in the “default”
Vampire proof trace, to ease uncovering bugs (if the elaborated
proofs do not type check).

AVATAR

AVATAR

• Technique that greatly improves the efficiency of first-order reasoning

AVATAR

• Technique that greatly improves the efficiency of first-order reasoning

• Splitting clauses and offloading the disjunctive structure to a SAT
solver

AVATAR

• Technique that greatly improves the efficiency of first-order reasoning

• Splitting clauses and offloading the disjunctive structure to a SAT
solver

• For proof logging: introducing propositional labels

AVATAR INFERENCES

AVATAR INFERENCES
Definition: propositional label
to a sub-clause

AVATAR INFERENCES
Definition: propositional label
to a sub-clause

Split: clauses split into variable-disjoint
components, deriving SAT clause

AVATAR INFERENCES
Definition: propositional label
to a sub-clause

Split: clauses split into variable-disjoint
components, deriving SAT clause

Component: injected into the
search space, conditionally on
the split label

AVATAR INFERENCES
Definition: propositional label
to a sub-clause

Split: clauses split into variable-disjoint
components, deriving SAT clause

Component: injected into the
search space, conditionally on
the split label

Avatar clause: all existing
inferences work conditionally on
avatar splits (conjunction of splits
of parents)

AVATAR INFERENCES
Definition: propositional label
to a sub-clause

Split: clauses split into variable-disjoint
components, deriving SAT clause

Component: injected into the
search space, conditionally on
the split label

Avatar clause: all existing
inferences work conditionally on
avatar splits (conjunction of splits
of parents)

Contradiction: false
conditionally on split derives SAT
clause (the split)

AVATAR INFERENCES
Definition: propositional label
to a sub-clause

Split: clauses split into variable-disjoint
components, deriving SAT clause

Component: injected into the
search space, conditionally on
the split label

Avatar clause: all existing
inferences work conditionally on
avatar splits (conjunction of splits
of parents)

Contradiction: false
conditionally on split derives SAT
clause (the split)

Refutation: last step of the proof,
derives false, because SAT set is
unsatisfiable.

AVATAR INFERENCES ENCODED

AVATAR INFERENCES ENCODED
Definition: just a Dedukti definition

AVATAR INFERENCES ENCODED
Definition: just a Dedukti definition

Split: unpack with variable renaming,
apply vars and literals to premise.

Prf(c=Y) -> Prf(false)

AVATAR INFERENCES ENCODED
Definition: just a Dedukti definition

Split: unpack with variable renaming,
apply vars and literals to premise.

Prf(c=Y) -> Prf(false)

AVATAR INFERENCES ENCODED
Definition: just a Dedukti definition

Split: unpack with variable renaming,
apply vars and literals to premise.

Avatar clause: clauses tagged
with split sets need to be
handled (bound and applied to
parents in the derivation)

Prf(c=Y) -> Prf(false)

AVATAR INFERENCES ENCODED
Definition: just a Dedukti definition

Split: unpack with variable renaming,
apply vars and literals to premise.

Component: morally the id function

Avatar clause: clauses tagged
with split sets need to be
handled (bound and applied to
parents in the derivation)

Prf(c=Y) -> Prf(false)

AVATAR INFERENCES ENCODED
Definition: just a Dedukti definition

Split: unpack with variable renaming,
apply vars and literals to premise.

Component: morally the id function

Avatar clause: clauses tagged
with split sets need to be
handled (bound and applied to
parents in the derivation)

Contradiction: just the premise

Prf(c=Y) -> Prf(false)

AVATAR INFERENCES ENCODED
Definition: just a Dedukti definition

Split: unpack with variable renaming,
apply vars and literals to premise.

Component: morally the id function

Avatar clause: clauses tagged
with split sets need to be
handled (bound and applied to
parents in the derivation)

Contradiction: just the premise
Refutation: involved, see next
slide.

Prf(c=Y) -> Prf(false)

AVATAR REFUTATION

AVATAR REFUTATION

• Vampire ships with a copy of MiniSAT that does not emit proofs.

AVATAR REFUTATION

• Vampire ships with a copy of MiniSAT that does not emit proofs.

• New SAT solver added: CaDiCaL -> emits DRAT proofs, but only the
reverse unit propagation (RUP) proofs are used

AVATAR REFUTATION

• Vampire ships with a copy of MiniSAT that does not emit proofs.

• New SAT solver added: CaDiCaL -> emits DRAT proofs, but only the
reverse unit propagation (RUP) proofs are used

• — proof_extra: intermediate SAT clauses

CaDiCaL computes again just the part where
MiniSAT succeeded, to get the RUP proof out

AVATAR REFUTATION

• Vampire ships with a copy of MiniSAT that does not emit proofs.

• New SAT solver added: CaDiCaL -> emits DRAT proofs, but only the
reverse unit propagation (RUP) proofs are used

• — proof_extra: intermediate SAT clauses

• re-play RUP steps (while proof printing) and encode them in Dedukti
(morally a chain of resolutions)

CaDiCaL computes again just the part where
MiniSAT succeeded, to get the RUP proof out

AVATAR REFUTATION

• Vampire ships with a copy of MiniSAT that does not emit proofs.

• New SAT solver added: CaDiCaL -> emits DRAT proofs, but only the
reverse unit propagation (RUP) proofs are used

• — proof_extra: intermediate SAT clauses

• re-play RUP steps (while proof printing) and encode them in Dedukti
(morally a chain of resolutions)

• must end in Prf(false)

CaDiCaL computes again just the part where
MiniSAT succeeded, to get the RUP proof out

WHAT DO WE TRUST

WHAT DO WE TRUST
• Manually check:

WHAT DO WE TRUST
• Manually check:

★ (Correct standard encoding of FOL in Dedukti.)

WHAT DO WE TRUST
• Manually check:

★ (Correct standard encoding of FOL in Dedukti.)

★ Correct encoding of the problem axioms and negated conjecture.

WHAT DO WE TRUST
• Manually check:

★ (Correct standard encoding of FOL in Dedukti.)

★ Correct encoding of the problem axioms and negated conjecture.

★ All symbols after the axioms are defined (using :=).

WHAT DO WE TRUST
• Manually check:

★ (Correct standard encoding of FOL in Dedukti.)

★ Correct encoding of the problem axioms and negated conjecture.

★ All symbols after the axioms are defined (using :=).

★ No “sorry”s.

WHAT DO WE TRUST
• Manually check:

★ (Correct standard encoding of FOL in Dedukti.)

★ Correct encoding of the problem axioms and negated conjecture.

★ All symbols after the axioms are defined (using :=).

★ No “sorry”s.

★ No rewrite rules after the encoding of FOL.

WHAT DO WE TRUST
• Manually check:

★ (Correct standard encoding of FOL in Dedukti.)

★ Correct encoding of the problem axioms and negated conjecture.

★ All symbols after the axioms are defined (using :=).

★ No “sorry”s.

★ No rewrite rules after the encoding of FOL.

• Trust:

WHAT DO WE TRUST
• Manually check:

★ (Correct standard encoding of FOL in Dedukti.)

★ Correct encoding of the problem axioms and negated conjecture.

★ All symbols after the axioms are defined (using :=).

★ No “sorry”s.

★ No rewrite rules after the encoding of FOL.

• Trust:

★ Dedukti type checker (dk check).

PROOF EXTRA

PROOF EXTRA
• Minimise what needs to be carried around during proof search:

PROOF EXTRA
• Minimise what needs to be carried around during proof search:

• Resolution: selected literals

PROOF EXTRA
• Minimise what needs to be carried around during proof search:

• Resolution: selected literals

• Superposition: selected literals, which side of the equation, rewritten term

PROOF EXTRA
• Minimise what needs to be carried around during proof search:

• Resolution: selected literals

• Superposition: selected literals, which side of the equation, rewritten term

• Subsumption resolution: selected literal

PROOF EXTRA
• Minimise what needs to be carried around during proof search:

• Resolution: selected literals

• Superposition: selected literals, which side of the equation, rewritten term

• Subsumption resolution: selected literal

• AVATAR: One final call to CaDiCaL to record intermediate clauses for RUP proofs

PROOF EXTRA
• Minimise what needs to be carried around during proof search:

• Resolution: selected literals

• Superposition: selected literals, which side of the equation, rewritten term

• Subsumption resolution: selected literal

• AVATAR: One final call to CaDiCaL to record intermediate clauses for RUP proofs

• Some things are re-computed at proof-output stage, but only for the steps that actually
appear in the proof:

PROOF EXTRA
• Minimise what needs to be carried around during proof search:

• Resolution: selected literals

• Superposition: selected literals, which side of the equation, rewritten term

• Subsumption resolution: selected literal

• AVATAR: One final call to CaDiCaL to record intermediate clauses for RUP proofs

• Some things are re-computed at proof-output stage, but only for the steps that actually
appear in the proof:

• Substitution (superposition, resolution, subsumption resolution, avatar split clauses …)

PROOF EXTRA
• Minimise what needs to be carried around during proof search:

• Resolution: selected literals

• Superposition: selected literals, which side of the equation, rewritten term

• Subsumption resolution: selected literal

• AVATAR: One final call to CaDiCaL to record intermediate clauses for RUP proofs

• Some things are re-computed at proof-output stage, but only for the steps that actually
appear in the proof:

• Substitution (superposition, resolution, subsumption resolution, avatar split clauses …)

• AVATAR: RUP steps for refutation

EXPERIMENTS

EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or
arithmetic).

EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or
arithmetic).

• Vampire ran on default strategy (replacing nondeterministic LRS with a stable one)

EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or
arithmetic).

• Vampire ran on default strategy (replacing nondeterministic LRS with a stable one)

• Ran without checking AVATAR refutation proofs (re-running benchmarks now again
with recent AVATAR proof development)

EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or
arithmetic).

• Vampire ran on default strategy (replacing nondeterministic LRS with a stable one)

• Ran without checking AVATAR refutation proofs (re-running benchmarks now again
with recent AVATAR proof development)

• Instruction limit 20 000 Mi: —proof_extra manages to prove just 5 problems fewer
than the total 7839 in the default mode.

EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or
arithmetic).

• Vampire ran on default strategy (replacing nondeterministic LRS with a stable one)

• Ran without checking AVATAR refutation proofs (re-running benchmarks now again
with recent AVATAR proof development)

• Instruction limit 20 000 Mi: —proof_extra manages to prove just 5 problems fewer
than the total 7839 in the default mode.

• All proofs were successfully checked by Dedukti (increasing stack was necessary)

Proof checking
(dk check) time
Median time: 0.006s
Average time: 0.881s
Max time: 2567s (42min)

CONSTRUCTIVE PROOFS

CONSTRUCTIVE PROOFS

• Inferences (so far) are constructive : We don’t yet use classical axioms.

CONSTRUCTIVE PROOFS

• Inferences (so far) are constructive : We don’t yet use classical axioms.

• Vampire outputs the proof of double negation:
negated conjecture —> false

CONSTRUCTIVE PROOFS

• Inferences (so far) are constructive : We don’t yet use classical axioms.

• Vampire outputs the proof of double negation:
negated conjecture —> false

• The last step to go from double negation to asserting conjecture is
classical, but we actually do not explicitly do that.
Note: Due to double-negation translation, it is
always possible to have a classical proof, that is
constructive all but for the one (last) step. This
is an illustration of this fact.

SPECULATIONS ON CURRENTLY
UNSUPPORTED INFERENCES

SPECULATIONS ON CURRENTLY
UNSUPPORTED INFERENCES

• Many classification rules are straightforward, but we need to traverse the formula
again and output more details in —proof_extra

SPECULATIONS ON CURRENTLY
UNSUPPORTED INFERENCES

• Many classification rules are straightforward, but we need to traverse the formula
again and output more details in —proof_extra

• Skolemization: there is no free lunch.

SPECULATIONS ON CURRENTLY
UNSUPPORTED INFERENCES

• Many classification rules are straightforward, but we need to traverse the formula
again and output more details in —proof_extra

• Skolemization: there is no free lunch.

• Posing an axiom of choice in full:
choose : (a : Set -> (r : (El a -> Prop) -> Prf (exists a r) -> El a)).
axiom_of_choice : (a : Set -> (r : (El a -> Prop) -> (tex : Prf (exists a r)) -> Prf (r (choose a r tex)))).

SPECULATIONS ON CURRENTLY
UNSUPPORTED INFERENCES

• Many classification rules are straightforward, but we need to traverse the formula
again and output more details in —proof_extra

• Skolemization: there is no free lunch.

• Posing an axiom of choice in full:
choose : (a : Set -> (r : (El a -> Prop) -> Prf (exists a r) -> El a)).
axiom_of_choice : (a : Set -> (r : (El a -> Prop) -> (tex : Prf (exists a r)) -> Prf (r (choose a r tex)))).

• Posing axioms that are instances choice needed for skolemization steps in the proof

SPECULATIONS ON CURRENTLY
UNSUPPORTED INFERENCES

• Many classification rules are straightforward, but we need to traverse the formula
again and output more details in —proof_extra

• Skolemization: there is no free lunch.

• Posing an axiom of choice in full:
choose : (a : Set -> (r : (El a -> Prop) -> Prf (exists a r) -> El a)).
axiom_of_choice : (a : Set -> (r : (El a -> Prop) -> (tex : Prf (exists a r)) -> Prf (r (choose a r tex)))).

• Posing axioms that are instances choice needed for skolemization steps in the proof

• Polarity flip: exploiting Dedukti definitions
def polarity_flip (p : Prop -> Prop) := (not p) and proceeding with polarity_flip(p).

vampire $problem -p dedukti - - proof_extra full

| egrep -v ^%

| dk check /dev/stdin

QUESTIONS?

