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AUTOMATED THEOREM PROVER (ATP)
INPUT

• Axioms 

• (negated) conjecture

OUTPUT

Proof trace

ATP

🙏🤞🍀

• Sequence / directed graph 
of (first-order) formulas

• Which premises and  
inference rules were used

• Should be enough to 
reconstruct the proof

• Can be used as a  
“black box”

• Complex piece of software

• Big trusted code base



FROM VAMPIRE TO DEDUKTI

INPUT

• Axioms 

• (negated) 
conjecture

ATP

VERIFIED

Translation 
of proof trace

ITP

our work
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WHY OUTPUT VAMPIRE PROOFS TO 
DEDUKTI?

• Find unsoundness bugs

• Have high degree of confidence 

• Interoperability  of proofs

• Potential for hammers
• Bugs have been found and  

some are likely still there.

• Most recent unsoundess Vampire  
bug: January 2nd 2025,  
UWA + HO 



VAMPIRE

• First-order system, extended with: 

★ reasoning with theories 

★ induction 

★ higher-order logic  

• Saturation based theorem prover  

• Employs a number of techniques: indexing, 
scheduling, ordered rewriting, AVATAR, heuristics, etc. 
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WHY DEDUKTI?

• Choir: Interoperability, has a 
small trusted kernel, powerful 
enough to express our 
language

• Scales reasonably well: 
designed  to machine check 
large proofs  
(unlike lambdapi?)
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WHAT ARE WE DOING

• Proof format “-p dedukti” (on vampire branch dedukti)

vampire $problem -p dedukti  - - proof_extra full | dk check

• Using standard Dedukti encoding of FOL and Dedukti semantics 
encode concrete instances of Vampire inferences 

• Sometimes need to store extra information in the proof:  
“—proof_extra full”

More on that later
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Encoding of disjunction in clauses.

“empty” AVATAR clause is regular clause.

All thi
s rewrites/n

ormalizes 
to enc

oding of
 FOL.  

We did not in
troduce an

y new axiom
s. 
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WHAT WE CAN CURRENTLY DO
• Parse input problem: read TPTP/SMT-LIB, write Dedukti axioms

• Run vampire in default mode and fully check reasoning steps:
• Resolution 

• Forward/backward demodulation 

• Superposition 

• Subsumption resolution 

• Equality resolution 

• AVATAR

• Trivial equality removal 

• Factoring 

• Remove duplicate literals 

• Some pre-processing steps 

★ Equality resolution with deletion 

★ Definiton unfolding

• Many sorted logic and polymorphism are supported 
Presented later
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CURRENT (TEMPORARY) LIMITATIONS 

• Limited pre-processing: clausification is not checked

• No higher-order reasoning and no theories yet

• Turn off all the fun bits  (only inferences on the previous slide)

★ But inferences are done incrementally :) 

★ Unsupported inferences are handled by “sorry”. 
We emit a warning during type-checking when 
there is a sorry. 

Full first-order formulas (FOF) can be  
parsed, but clausification steps are not checked. 
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SOME LESSONS LEARNED DURING 
IMPLEMENTATION 

• Equality is symmetric: 

• Vampire will switch LHS and RHS when convenient. 

• Manually insert commutativity lemmas during proof-printing. 

• Numbering deduction steps accordingly: we give the deduction 
steps in Deduct script the same number as appears in the “default” 
Vampire proof trace, to ease uncovering bugs (if the elaborated 
proofs do not type check). 
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AVATAR

• Technique that greatly improves the efficiency of first-order reasoning

• Splitting clauses and offloading the disjunctive structure to a SAT 
solver

• For proof logging: introducing propositional labels
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AVATAR INFERENCES
Definition: propositional label  
to a sub-clause

Split: clauses split into variable-disjoint  
components, deriving SAT clause

Component: injected into the 
search space, conditionally on 
the split label

Avatar clause: all existing 
inferences work conditionally on 
avatar splits (conjunction of splits 
of parents)

Contradiction: false 
conditionally on split derives SAT 
clause (the split)

Refutation: last step of the proof, 
derives false, because SAT set is 
unsatisfiable. 
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AVATAR INFERENCES ENCODED
Definition: just a Dedukti definition

Split: unpack with variable renaming,  
apply vars and literals to premise.

Component: morally the id function

Avatar clause: clauses tagged 
with split sets need to be 
handled (bound and applied to 
parents in the derivation) 

Contradiction: just the premise
Refutation: involved, see next 
slide.

Prf(c=Y) -> Prf(false)
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AVATAR REFUTATION

• Vampire ships with a copy of MiniSAT that does not emit proofs. 

• New SAT solver added: CaDiCaL -> emits DRAT proofs, but only the 
reverse unit propagation (RUP) proofs are used

• — proof_extra: intermediate SAT clauses 

• re-play RUP steps (while proof printing) and encode them in Dedukti 
(morally a chain of resolutions)

• must end in Prf(false)

CaDiCaL computes again just the part where 
MiniSAT succeeded, to get the RUP proof out
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WHAT DO WE TRUST
• Manually check:

★ (Correct standard encoding of FOL in Dedukti.)

★ Correct encoding of the problem axioms and negated conjecture.

★ All symbols  after the axioms are defined (using :=). 

★ No “sorry”s.

★ No rewrite rules after the encoding of FOL.

• Trust:

★ Dedukti type checker (dk check).
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PROOF EXTRA
• Minimise what needs to be carried around during proof search:

• Resolution: selected literals

• Superposition: selected literals, which side of the equation, rewritten term

• Subsumption resolution: selected literal

• AVATAR: One final call to CaDiCaL to record intermediate clauses for RUP proofs

• Some things are re-computed at proof-output stage, but only for the steps that actually 
appear in the proof:

• Substitution (superposition, resolution, subsumption resolution, avatar split clauses …)

• AVATAR: RUP steps for refutation



EXPERIMENTS



EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or 
arithmetic). 



EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or 
arithmetic). 

• Vampire ran on default strategy (replacing nondeterministic LRS with a stable one)



EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or 
arithmetic). 

• Vampire ran on default strategy (replacing nondeterministic LRS with a stable one)

• Ran without checking AVATAR refutation proofs (re-running benchmarks now again 
with recent AVATAR proof development)



EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or 
arithmetic). 

• Vampire ran on default strategy (replacing nondeterministic LRS with a stable one)

• Ran without checking AVATAR refutation proofs (re-running benchmarks now again 
with recent AVATAR proof development)

• Instruction limit 20 000 Mi: —proof_extra manages to prove just 5 problems fewer 
than the total 7839 in the default mode. 



EXPERIMENTS

• Ran on TPTP 9.0.0 in CNF, FOF, TF0 and TF1 fragments (no satisfiable problems or 
arithmetic). 

• Vampire ran on default strategy (replacing nondeterministic LRS with a stable one)

• Ran without checking AVATAR refutation proofs (re-running benchmarks now again 
with recent AVATAR proof development)

• Instruction limit 20 000 Mi: —proof_extra manages to prove just 5 problems fewer 
than the total 7839 in the default mode. 

• All proofs were successfully checked by Dedukti (increasing stack was necessary) 





Proof checking  
(dk check) time 
Median time: 0.006s 
Average time: 0.881s 
Max time: 2567s (42min)



CONSTRUCTIVE PROOFS



CONSTRUCTIVE PROOFS

• Inferences (so far) are constructive : We don’t yet use classical axioms. 



CONSTRUCTIVE PROOFS

• Inferences (so far) are constructive : We don’t yet use classical axioms. 

• Vampire outputs the proof of double negation:  
negated conjecture —> false



CONSTRUCTIVE PROOFS

• Inferences (so far) are constructive : We don’t yet use classical axioms. 

• Vampire outputs the proof of double negation:  
negated conjecture —> false

• The last step to go from double negation to asserting conjecture is 
classical, but we actually do not explicitly do that. 
Note: Due to double-negation translation, it is 
always possible to have a classical proof, that is 
constructive all but for the one (last) step. This 
is an illustration of this fact. 
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SPECULATIONS ON CURRENTLY 
UNSUPPORTED  INFERENCES

• Many classification rules are straightforward, but we need to traverse the formula 
again and output more details in —proof_extra 

• Skolemization:  there is no free lunch. 

• Posing an axiom of choice in full: 
choose : (a : Set -> (r : (El a -> Prop) -> Prf (exists a r) -> El a)). 
axiom_of_choice : (a : Set -> (r : (El a -> Prop) -> (tex : Prf (exists a r)) -> Prf (r (choose a r tex)))).

• Posing axioms that are instances choice needed for skolemization steps in the proof

• Polarity flip: exploiting Dedukti definitions  
def polarity_flip (p : Prop -> Prop) := (not p)   and proceeding with polarity_flip(p).



vampire $problem -p dedukti  - - proof_extra full 

| egrep -v ^%  

| dk check /dev/stdin

QUESTIONS?


