TUTORIAL ON PROVERIF

EuroProofNet 2024

Tutorial on Usable Formal Methods for Security of Systems

Vincent Cheval
University of Oxford
vincent.cheval@cs.ox.ac.uk

Dresden
27/03/2024

Communication and security over a network

Cryptographic protocols

- Concurrent programs designed to secure communications
- Rely on cryptographic primitives (encryption, digital signatures, ...)

Security properties

Each protocol have their own security goals

Transport Secure Layer

Electronic passport

Authentication
Secrecy
Forward Secrecy

Non-Malleability of coins Balance property

Cryptocurrency
Verifiability
Coercition resistance
Vote privacy
Unlinkability
Anonymity

Designing secure systems

Multiple aspects to consider

$$
\square \rightrightarrows \square \text { Protocols }
$$

Designing secure systems is hard!

Multiple aspects to consider

Attacks are common
Google SSO (2008)
Power fault attack on RSA (2010)
BAC (2010)
Helios (2011)
Triple Handshake on TLS (2014)
At least 15 on TLS
Freak and Logjam attacks (2015)
Spectre and Meltdown attacks (2017)
WPA2 (2017)
Practical collision in SHA-1 (2017)
5G Authentication.(2018)
PLATYPUS (2021)

Designing secure systems is hard!

Multiple aspects to consider

Formal methods to prevent large classes of attacks

Existing models

Computation model

Real algorithms (or as close as it gets)

Bitstring

Difficult and
by hand or with proof assistants

CRYPTOGRAPHIC PRIMITIVES

Symbolic model

Function symbols (assumed perfect)

Terms

Idealized
«Easier» and mechanized

Limited to the abstraction of the model

Symbolic (Dolev-Yao) models

The attacker can...

Read / Write

Intercept

But they cannot...
Break cryptography
Use side channels

Created in the 80^{\prime} but we have come a long way!

MODELLING A PROTOCOL AND ITS SECURITY PROPERTIES

A glimpse in the symbolic models

How do we translate an Alice-Bob description into something that we can analyse?

Symbolic terms

Nonces: $\quad a, b, c, \ldots$
atomic elements (keys, random numbers, ...)

Variables: x, y, z, \ldots

Functions symbols with their arity: enc/2, $\operatorname{dec} / 2, \oplus / 2,\langle \rangle / 2, \operatorname{proj}_{1} / 1, \operatorname{proj}_{2} / 1, \ldots$

Abstract functions

$\operatorname{enc}(b \oplus\langle x, c\rangle, k)$

$$
0
$$

Symbolic terms

If functions are kept abstracted and messages are not computed, what tests can we perform on messages?

Equality between terms

Syntactic equality: same term / tree
$a \neq b$
$\operatorname{dec}(e n c(m, k), k) \neq k \quad$ Not Ok... Decryption of a cipher with the correct key should be equal to the plain text

Algebraic properties of cryptographic primitives

Algebraic properties of the cryptographic primitives must be modelled.

Equational theory: $\quad \operatorname{dec}(\operatorname{enc}(x, y), y)=x \quad \operatorname{proj}_{1}(\langle x, y\rangle)=x \quad \operatorname{proj}_{2}(\langle x, y\rangle)=y$

$$
\begin{aligned}
& x \oplus(y \oplus x)=(x \oplus y) \oplus z \quad x \oplus y=y \oplus x \quad x \oplus x=0 \\
& x \oplus 0=x \quad\left(g^{\wedge} x\right)^{\wedge} y=\left(g^{\wedge} y\right)^{\wedge} x \quad\left(g^{\wedge} x\right) \times\left(g^{\wedge} y\right)=g^{\wedge}(x+y)
\end{aligned}
$$

Deduction

Equational theory $E: \quad x \oplus(y \oplus x)=(x \oplus y) \oplus z \quad x \oplus y=y \oplus x \quad x \oplus x=0 \quad x \oplus 0=x$

Imagine an attacker intercepted the 3 messages $a \oplus(b \oplus c), b$ and c.
Can he deduce the name a ?

Leaves are the messages

$t_{1}=(a \oplus(b \oplus c)) \oplus(b \oplus c)$
$t_{2}=\frac{a}{a} \quad \leftarrow t_{1}={ }_{E} t_{2}, ~$

Equational theory vs Rewrite rules

Strengths and weaknesses of rewrite rules

+ Verification efficient
+ Very expressive with otherwise
fun ifthenelse(bool,bitstring, bitstring): bitstring reduc
forall $x, y: b i t s t r i n g ; ~ i f t h e n e l s e(t r u e, x, y)=x$
otherwise forall $b: b o o l, x, y: b i t s t r i n g ; ~ i f t h e n e l s e(b, x, y)=y$.

the term
ifthenelse(true, m, decrypt($a, k)$) fails
fun lazy_ite(bool,bitstring, bitstring): bitstring
reduc
forall x:bitstring; y:bitstring or fail; lazy_ite(true, $x, y)=x$
otherwise forall b:bool, x:bitstring or fail,y:bitstring; lazy_ite(b, $x, y)=y$.

Equational theory vs Rewrite rules

Strengths and weaknesses of rewrite rules

+ Verification efficient
- Cannot call itself
+ Very expressive with otherwise

Algrebraic properties that cannot be modeled with rewrite rules in ProVerif

$$
\begin{aligned}
& \operatorname{dec}(\operatorname{enc}(x, y), y)=x \quad \text { with } \quad \operatorname{enc}(\operatorname{dec}(x, y), y)=x \\
& \exp (\exp (g, x), y)=\exp (\exp (g, y), x) \\
& \text { Diffie-Hellman }
\end{aligned}
$$

Equational theory vs Rewrite rules

Strengths and weaknesses of equational theory

+ Extremely expressive
- Makes the verification slow
- Not all equational theory can be handled (may not terminate from the start)

```
fun enc(G, passwd): G.
fun dec(G, passwd): G.
equation forall x: G, y: passwd; dec(enc(x,y),y) = x.
equation forall x: G, y: passwd; enc(dec(x,y),y) = x.
```

const g: G.
fun $\exp (G$, exponent): G.
equation forall x : exponent, y : exponent; $\exp (\exp (g, x), y)=\exp (\exp (g, y), x)$.
0

Security properties

Type of security properties

Reachability
Bad event in one system

Equivalence
Privacy as indistinguishability
? Anonymity
1 Vote privacy

Unlinkability

Semantics explains how the protocol can be executed in the presence of an attacker

with $\sigma=\{x \rightarrow t\}$ and $M \Phi={ }_{E} t$ and M does not contain names from \mathscr{E} but M can contain variables from the domain of Φ

Expressing secrecy properties

$$
\begin{array}{r}
\text { Secrecy of } k \text { in } P \\
\text { For all transitions } P \longrightarrow \mathscr{C}_{1} \ldots \ldots \ldots \ldots . \mathscr{C}_{n-1} \longrightarrow \mathscr{C}_{n} \text {, the secret } k \text { is not } \\
\text { deducible from the attacker knowledge in } \mathscr{C}_{n}
\end{array}
$$

Secrecy problem undecidable for simple cryptographic primitives

$$
0
$$

When equational theory fails? Example: Merkle Trees

Append only structure
Proof of presence in $\mathrm{O}(\log (\mathrm{n})$)
Proof of extension in $\mathrm{O}(\log (\mathrm{n})$)

Proof of presence in a Merkle Tree

How to prove the presence of d_{2} in digest $h\left(h\left(h\left(d_{1}\right), h\left(d_{2}\right)\right), h\left(d_{3}\right)\right)$?

Proof contains:

- the data d_{2}
- the labels of siblings of the branch from the data to the root: $h\left(d_{1}\right)$ and $h\left(d_{3}\right)$
- The position of the data in the tree

To verify the proof, reconstruct the label of the root and compare with the digest of the ledger

Proof of extension in a Merkle Tree

[^0]
Let's start with a simple list?

Digest has a list structure:
$h\left(d_{1}, h\left(d_{2}, h\left(d_{3}, h\left(\ldots, h\left(d_{n}, 0\right) \ldots\right)\right.\right.\right.$

How to prove the presence of d_{3}

Proof contains:

- the data
- the hash $h\left(d_{4}, h\left(\ldots, h\left(d_{n}, 0\right) \ldots\right)\right.$
- The previous elements d_{1}, d_{2}

Memory cell

ProVerif's calculus is stateless ... but we have private channels

A Ocaml like version

$$
\text { let } x=\operatorname{ref} 0 \quad \text { Initialisation }
$$

```
free cell:channel [private]
let init = out(cell,0).
```

```
let P =
    in(cell,x:nat); out(cell,x);
    ...
```

```
let Q =
    in(cell,x:nat); out(cell,n);
```

 ...

Memory cell

Initialisation
free cell:channel [private]
let init = out(cell,0).
Reading/Writing both consist of inputing the «current value» of the cell and outputting the «new value»

Communication are synchronous on private channels: always one single output available at all time.

Writing

Locking memory cell

Initialisation
free cell: channel [private]
let init = out(cell,0).

```
let P =
    in(cell,x:nat);
    event B;
    out(cell,x);
    ."
```

let $Q=$
".'
in(cell, x:nat);
event $A ;$
event $C ;$
out (cell, n) ;
..'

Communication are synchronous on private channels:
If no output available, all processes trying to input are «blocked»

The sequence of events A, B, C is not possible

Locking memory cell

Initialisation
free cell:channel [private]
let init = out(cell, 0).

```
let P =
    in(cell,x:nat);
    event B;
    out(cell,x);
    ."
```

```
let Q =
    'in(cell,x:nat);
    event A
    event C;
    out(cell,n);
    *"
```

Communication are synchronous on private channels:
If no output available, all processes trying to input are «blocked»

The sequence of events A, B, C is not possible

Simplified Yubikey protocol

P only accepts increasing sequence of natural numbers.

Q emits sequentially all natural numbers encrypted with k

```
free k:key [private].
```

free k:key [private].
free cellP,cellQ:channel [private]
free cellP,cellQ:channel [private]
let P =
let P =
in(c,x:bitstring);
in(c,x:bitstring);
in(cellP,i:nat);
in(cellP,i:nat);
let j = sdec(x,k) in
let j = sdec(x,k) in
if j > i
if j > i
then
then
event Accept(j);
event Accept(j);
out(cellP,j)
out(cellP,j)
else
else
out(cellP,i).
out(cellP,i).
let Q =
let Q =
in(cellQ,i:nat);
in(cellQ,i:nat);
out(c,senc(I,k));
out(c,senc(I,k));
out(cellQ,i+1).
out(cellQ,i+1).
process out(cellP,0) | out(cellQ,0) | !P | !Q

```
process out(cellP,0) | out(cellQ,0) | !P | !Q
```

Signal: The Double Ratchet Algorithm

Equivalence properties

Type of security properties

Reachability

Bad event in one system

Equivalence
Privacy as indistinguishability
? Anonymity
! Vote privacy

Unlinkability

Equivalence properties
Indistinguishability
of two situations where the private attribute differs
Anonymity ping ping \sim pote privacy

A simple e-voting protocol

A simple e-voting protocol

the vote appearing twice on the

 bulletin board is Bob's vote!
Equivalence of processes in ProVerif

```
let system1 = setup | voter(skA,v1) | voter(skB,v2).
let system2 = setup | voter(skA,v2) | voter(skB,v1).
equivalence system1 system2
```

let $\operatorname{system}(v A, v B)=$ setup | voter(skA,vA) | voter(skB,vB).
process system(choice[v1, v2], choice[v2, v1])

Equivalence between two processes

Internally

Equivalence as a biprocess

Equivalence of processes in ProVerif

Equivalence between two
 processes

Equivalence as a biprocess

+ Easier to model,
+ No need to know «how to match » the processes
- Can be slow
- Difficult to «fix» when not working
+ Also easy to model,
+ Works better with other features (e.g. lemmas, axioms)
+ More efficient
- Need to have a good idea why processes are equivalent

DEALING WITH "CANNOT BE PROVED"

Toy-example

B acts as an oracle for decryption with the key k but only one time!

How does ProVerif work (high level)?

free $s, k 1, k 2, k: b i t s t r i n g ~[p r i v a t e] . ~$
let $A=$
$\operatorname{out}(c, e n c(s,(k 1, k 2))) ;$
$\operatorname{out}(c, e n c(k 1, k)) ;$
out $(c, e n c(k 2, k))$.
..

Abstraction in Horn clauses

query attacker(s) ==> false.
\square

Why does it fail ?

> Transform process in Horn clauses

	$\rightarrow \operatorname{att}\left(\mathrm{enc}\left(s,\left\langle k_{1}, k_{2}\right\rangle\right)\right)$
free s,k1,k2,k:bitstring [private].	$\rightarrow \operatorname{att}\left(\mathrm{enc}\left(k_{1}, k\right)\right)$
$\begin{aligned} & \operatorname{out}(c, \operatorname{senc}(s,(k 1, k 2))) ; \\ & \operatorname{out}(c, \operatorname{senc}(k 1, k)) ; \end{aligned}$	$\rightarrow \operatorname{att}\left(\mathrm{enc}\left(k_{2}, k\right)\right)$

$$
\operatorname{att}(\operatorname{enc}(y, k)) \rightarrow \operatorname{att}(y)
$$

let $B=$
in(c, x);
out ($c, \operatorname{dec}(x, k)$.
process A | B

Horn clauses for the attacker
$\operatorname{att}(x) \wedge \operatorname{att}(y)-\quad$ arbitrary number of times for $\operatorname{att}(e n c(x, y)) \wedge \operatorname{att}(y)-\quad$ arbitrary instanciations

Secrecy of s is preserved if att(s) is not logically deducible from the set of Horn clauses

Why does it fail?

What to do ?

Add a [precise] option to the problematic input !

```
free s,k1,k2,k:bitstring [private].
let A =
out(c,senc(s,(k1,k2)));
    out(c,senc(k1,k));
    out(c,\operatorname{senc}(k2,k)).
let B =
    in(c,x) [precise];
    out(c, dec(x,k).
process A | B
```

```
-- Query not attacker(s[]) in process 0.
Translating the process into Horn clauses..
Completing..
Starting query not attacker(s[])
RESULT not attacker(s[]) is true.
Verification summary:
Query not attacker(s[]) is true.
```

Global setting

Adding [precise] options may increase the verification time or lead to non-termination

How to know where to put precise ?

Going through the derivation!

Find two different

 messages received by the same input $\{n\}$Check on your process if it should be possible

Derivation:

1. The message enc(k2[],k[]) may be sent to the attacker at output \{5\}. attacker(enc(k2[],k[])).
2. The message enc(k2[],k[]) that the attacker may have by 1 may be received at input \{7\}. So the message k2[] may be sent to the attacker at output $\{8\}$. attacker(k2[]).
3. The message enc(k1[],k[]) may be sent to the attacker at output \{4\}. attacker(enc(k1[],k[])).
4. The message enc(k1[],k[]) that the attacker may have by 3 may be received at input \{7\}. So the message k1[] may be sent to the attacker at output $\{8\}$. attacker(k1[]).
5. By 4, the attacker may know k1[].

By 2, the attacker may know k2[].
Using the function 2-tuple the attacker may obtain (k1[],k2[]). attacker(k 1 [],k2[])).
6. The message enc(s[],(k1[],k2[])) may be sent to the attacker at output \{6\}. attacker(enc(s[],(k1[],k2[]))).
7. By 6 , the attacker may know enc(s[],(k1[],k2[])).

By 5, the attacker may know (k1[],k2[]).
Using the function dec the attacker may obtain s[]. attacker(s[]).
8. By 7, attacker(s[]).

The goal is reached, represented in the following fact:
attacker(s[]).

How to know where to put precise ?

Going through the derivation!

Find two different

 messages received by the same input $\{n\}$Check on your process if it should be possible

Derivation:

1. The message enc(k2[],k[]) may be sent to the attacker at output \{5\}. attacker(enc(k2[],k[])).
2. The message enc(k2[],k[]) that the attacker may have by 1 may be received at input \{7\}. So the message k2[] may be sent to the attacker at output \{8\}. attacker(k2[]).
3. The message enc(k1[],k[]) may be sent to the attacker at output \{4\}. attacker(enc(k1[],k[])).
4. The message enc(k1[],k[]) that the attacker may have by 3 may be received at input \{7\}. So the message k1[] may be sent to the attacker at output $\{8\}$. attacker(k1[]).
5. By 4, the attacker may know k1[].

By 2, the attacker may know k2[].
Using the function 2-tuple the attacker may obtain (k1[],k2[]). attacker((k1[],k2[])).
6. The message enc(s[],(k1[],k2[])) may be sent to the attacker at output \{6\}. attacker(enc(s[],(k1[],k2[]))).
7. By 6 , the attacker may know enc(s[],(k1[],k2[])).

By 5, the attacker may know (k1[],k2[]).
Using the function dec the attacker may obtain s[]. attacker(s[]).
8. By 7, attacker(s[]).

The goal is reached, represented in the following fact:
attacker(s[]).

Two strange situations !

Simplified Yubikey

Can't disprove the sanity check...

```
free k:key [private].
free cellP,cellQ:channel [private]
let P =
    in(c,x:bitstring);
    in(cellP,i:nat);
    let j = sdec(x,k) in
    if j > i
    then
        event Accept(j);
        out(cellP,j)
    else
        out(cellP,i).
let Q =
    in(cellQ,i:nat);
    out(c,senc(I,k));
    out(cellQ,i+1).
process out(cellP,0) | out(cellQ,0) | !P | !Q
```

query i:nat; event(Accept(i)).

```
-- Query not event(Accept(i_2)) in process 0.
Translating the process into Horn clauses..
mess(cellO[],i 2) -> mess(cellO[],i_2 + 1)
select mess(ce\̃lQ[],i_2)/-5000
Completing...
Starting query not event(Accept(i_2))
goal reachable: i_2 \geq 1 && mess(cellQ[],i_2) -> end(Accept(i_2))
Derivation:
1. We assume as hypothesis that
mess(cellQ[],i_2).
2. The message i_2 that may be sent on channel cellQ[] by 1 may be received
at input {12}.
So the message senc(i 2,k[]) may be sent to the attacker at output {13}.
attacker(senc(i_2,k[])).
```


Two strange situations !

```
-- Query not attacker(S(kAminus[!1 = v],x_1)) in process 1.
select member(*x_1,y)/-5000
select memberid(*x_1,y)/-5000
Translating the process into Horn clauses...
Completing...
    more detailed output of the traces is available with
    set traceDisplay = long
new exponent: channel creating exponent_3 at {1}
new honestC: channel creating honestC_3 at {8}
new kAminus: skey creating kAminus_3 at {10} in copy a
...
event enddosi(Pk(kAminus_3),NI_3) at {37} in copy a, a_4, a_8
event mess3(Pk(kAminus_3)...))) at {46} in copy a, a_4, a_8
out(c, cons3(~M_9,....)) at {47} in copy a, a_4, a_8
The attacker has the message 3-proj-3-tuple(D(H(...)).
A trace has been found, assuming the following hypothesis:
memberid(Pk(a_12[]),a_5[])
Stopping attack reconstruction attempts. To try more traces,
modify the setting reconstructTrace.
RESULT not attacker(S(kAminus[!1 = v],x_1)) cannot be proved.
```


A trace is found... but ProVerif assume that the attacker has magically a term

A closer look

```
-- Query not attacker(S(kAminus[!1 = v],x_1)) in process 1.
select member(*x_1,y)/-5000
select memberid(*x_1,y)/-5000
Translating the process into Horn clauses...
Completing...
A more detailed output of the traces is available with
    set traceDisplay = long.
new exponent: channel creating exponent_3 at {1}
new honestC: channel creating honestC_3 at {8}
new kAminus: skey creating kAminus_3 at {10} in copy a
event enddosi(Pk(kAminus_3),NI_3) at {37} in copy a, a_4, a_8
event mess3(Pk(kAminus_3)...))) at {46} in copy a, a_4, a_8
out(c, cons3(~M_9,...)) at {47} in copy a, a_4, a_8
The attacker has the message 3-proj-3-tuple(D(H(...)).
A trace has been found, assuming the following hypothesis:
memberid(Pk(a_12[]),a_5[])
Stopping attack reconstruction attempts. To try more traces,
modify the setting reconstructTrace.
RESULT not attacker(S(kAminus[!1 = v],x_1)) cannot be proved.
```

```
-- Query not event(Accept(i_2)) in process 0.
Translating the process into Horn clauses...
mess(cellQ[],i_2) -> mess(cellQ[],i_2 + 1)
select mess(cellQ[],i_2)/-5000
Completing...
Starting query not event(Accept(i_2))
goal reachable: i_2 \geq 1 && mess(cellQ[],i_2) ->
end(Accept(i_2))
Derivation:
1. We assume as hypothesis that
mess(cellQ[],i_2).
2. The message i_ 2 that may be sent on channel cellQ[] by 1 may
be received at input {12}.
So the message senc(i_2,k[]) may be sent to the attacker at
output {13}.
attacker(senc(i_2,k[])).
Could not find a trace corresponding to this derivation.
```

ProVerif decided to prevent resolution on some facts

Why ProVerif prevent resolution?

Simplified Yubikey

```
free k:key [private].
free cellP,cellQ:channel [private]
let P =
    in(c,x:bitstring);
    in(cellP,i:nat);
    let j = sdec(x,k) in
    if j > i
    then
        event Accept(j);
        out(cellP,j)
    else
        out(cellP,i).
let Q =
    in(cellQ,i:nat);
    out(c,senc(I,k));
    out(cellQ,i+1).
process out(cellP,0) | out(cellQ,0) | !P | !Q
```


Clauses generated from the process Q

$$
\begin{aligned}
& \operatorname{mess}(c e l l Q, i) \rightarrow \operatorname{mess}(c e l l Q, i+1) \\
\rightarrow & \operatorname{mess}(c e l l Q, 0)
\end{aligned}
$$

If $m e s s(c e l l Q, i)$ was selected then by resolution:
\rightarrow mess(cellQ,1)
\rightarrow mess(cellQ,2)

What to do to solve the problem ?

> Use a new setting

```
set nounifIgnoreAFewTimes = auto.
```

When solving the query, ProVerif will ignore a «few times» the prevention of resolution.

By default, only one time but it can be parametrized

```
set nounifIgnoreNtimes = 3.
```

The bigger the number, the slower the verification will be

Useful for proofs and finding attacks

Proof of queries by induction

Simplified Yubikey

Even with

```
free k:key [private].
free cellP,cellQ:channel [private]
query i:nat; mess(cellQ,i) ==> is_nat(i).
let P =
    in(c,x:bitstring);
    in(cellP,i:nat);
    let j = sdec(x,k) in
    if j > i
    then
        event Accept(j);
        out(cellP,j)
    else
        out(cellP,i).
let Q =
    in(cellQ,i:nat);
    out(c,senc(I,k));
    out(cellQ,i+1).
process out(cellP,0) | out(cellQ,0) | !P | !Q
```

set nounifIgnoreAFewTimes = auto.
set nounifIgnoreNtimes $=10$.

With obtain

```
goal reachable: is_not_nat(i_2 + 10) && mess(cellQ[],i_2) ->
mess(cellQ[],i_2 + 10)
...
Could not find a trace corresponding to this derivation.
RESULT mess(cellQ[],i_2) ==> is_nat(i_2) cannot be proved.
```


The attacker is untyped!

Proof of queries by induction

Simplified Yubikey

$$
\begin{aligned}
& \text { goal reachable: is_not_nat(i_2 + 10) \&\& mess(cellQ[],i_2) -> } \\
& \text { mess(cellQ[],i_2+10) }
\end{aligned}
$$

```
free k:key [private].
free cellP,cellQ:channel [private]
query i:nat; mess(cellQ,i) ==> is_nat(i).
let P =
    in(c,x:bitstring);
    in(cellP,i:nat);
    let j = sdec(x,k) in
    if j > i
    then
        event Accept(j);
        out(cellP,j)
    else
        out(cellP,i).
let Q =
    in(cellQ,i:nat);
    out(c,senc(I,k));
    out(cellQ,i+1).
process out(cellP,0) | out(cellQ,0) | !P | !Q
```


The fact mess(cello[l],i_2) occurred strictly before mess(cello[], i_2+10) in the trace.

Induction on the size of the trace !

Proof of queries by induction

It also works for a group of queries !

Proof by mutual induction

```
query i:nat,...;
mess(cellQ,i) ==> is_nat(i);
mess(cellP,i) ==> is_nat(i);
query_3;
..
query_n [induction].
```


As usual it, it may slow down the verification or lead to non-termination

Does not work as well for injective correspondence

Lemmas, axioms, restrictions

> Restrictions « restrict » the traces considered in axioms, lemmas and queries.

restriction phi_1.
…
restriction phi_n.
axiom aphi_1.
...
axiom aphi_m.
lemma lphi_1.
lemma lphi_k.
query attacker(s).

query attacker(s). holds if no trace satisfying phi_1, ..., phi_n reveals 5

1 Proverif assumes that the axioms aphi_1, ..., aphi_n hold.

Proverif tries to prove in order the lemmas Lphi_1, .., Lphi_k
2
reusing all axioms and previously proved lemmas

Proverif tries to prove the query query attacker(s). reusing all axioms and all lemmas.

The precise option under the hood

Option [precise] for inputs, table lookup and predicate testing

 is coded as an axiom internally .```
free s,k1,k2,k:bitstring [private].
let A =
 out(c,senc(s,(k1,k2)));
 out(c,\operatorname{senc}(k1,k));
 out(c,\operatorname{senc}(k2,k)).
let B =
 in(c,x) [precise];
 out(c,dec(x,k).
process A | B
```

```
type occurrence.
free s,k1,k2,k:bitstring [private].
event Precise(occurrence,bitstring).
axiom occ:occurrence,x1,x2:bitstring;
 event(Precise(occ,x1)) && event(Precise(occ,x2)) ==> x1 = x2.
let A =
 out(c,senc(s,(k1,k2)));
 out(c,senc(k1,k));
 out(c,senc(k2,k)).
let B =
 in(c,x);
 new occ[]:occurrence;
 event Precise(occ,x);
 out(c,dec(x,k).
process A | B
```


## On the derivation



## On the derivation



## When to use Lemmas, Axioms and restrictions?

## Restriction

To avoid heavy encoding in the calculus

Ex: To model that a process does not accept twice the same message through multiple session

```
restriction
occ1,occ2:occurrence,x:bitstring;
 event(Unique(occ1,x)) &&
 event(Unique(occ2,x)) ==> occ1 = occ2.
let P =
 in(c,x);
 new occ[]:occurrence;
 event Unique(occ,x);
 ...
```

When you the property can help proving the main

## Lemma

## Axiom

 query.Ideally, always use lemma. Use axiom when you can prove by hand (or with another tool) that your property holds ... and ProVerif cannot.

## DEALING WITH NON-TERMINATION

## How to determine if ProVerif does not terminate?



## The first clues

- Size of the queue seems to always increase
- Size of the queue seems to be cyclic
- No rule inserted for ages (can happen with lemmas)
- Termination warnings


## How to determine if ProVerif does not terminate?

## The real way to do it...

## Display all the rules generated

```
Rule with hypothesis fact 0 selected: mess(cellO[],i_2)
mess(cello[],i_2) -> mess(cello[],i_2)
m
T
Rule with hypothesis fact 0 selected: mess(cello[],i_2)
is_nat(i_2) && mess(cellQ[],i_2) }->\mathrm{ mess(cellQ[],i_2 + +1)
The hypothesis occurs strictly before the conclusion.
2 rules inserted. Base: 2 rules (0 with conclusion selected). Queue: 5 rules.
Rule with conclusion selected:
mess(cellQ[],0)
3 rules inserted. Base: 3 rules (1 with conclusion selected). Queue: 4 rules.
Rule with hypothesis fact 0 selected: attacker(cello[])
attacker(cellQ[]) && attacker(i_2) -> mess(cellQ[],i_2)
The 1st, 2nd hypotheses occur before the conclusion.
4 rules inserted. Base: 4 rules (1 with conclusion selected). Queue: 3 rules.
Rule with hypothesis fact 0 selected: mess(cello[],i_2)
is_nat(i_2) && mess(cello[],i_2) }->\mathrm{ mess(cellQ[],i_2-2)
The hypothesis occurs strictly before the conclusion.
5 rules inserted. Base: 5 rules (1 with conclusion selected). Queue: 5 rules.
Rule with conclusion selected:
mess(cellO[],1)
6 rules inserted. Base: 6 rules (2 with conclusion selected). Queue: 4 rules.
Rule with hypothesis fact 0 selected: attacker(cello[])
is_nat(i_2) && attacker(cellQ[]) && attacker(i_2) -> mess(cello[],i_2 + 1)
The 1st, 2nd hypotheses occur strictly before the conclusion.
7 rules inserted. Base: }7\mathrm{ rules (2 with conclusion selected). Queue: 3 rules.
```

Signs of a cycle

- Size of the term in the conclusion increases
- Number of hypotheses increases


Very long and painful to read

## Best way to find the problem

Best way to understand how to solve it

## Not attacker declaration and lemmas

## Look if some facts should not be true



The cell should be private

Rule with hypothesis fact 1 selected: attacker(h(i))
is_not_nat(i_2) \&\& event(Accept(i_2)) $\delta \& \operatorname{attacker(h(i))~->~mess(cellQ[],i\_ 2)~}$
The 1st, znd hypotheses occur before the conclusion.
14 rules iłserted. Base: 3 rules ( 2 with conclusion selected). Queue: 3 rules.

Faster but semantically equivalent to

```
Lemma attacker(cellQ).
```


## Playing with the selection function



The automatic detection of selections to avoid is not perfect

If you think this fact will lead to nontermination, you can tell it to ProVerif

```
noselect i:nat, attacker(h(i)).
```

noselect i:nat, attacker(h(*i)).
*i means « any term»

Clauses generated from the process Q

$$
\operatorname{mess}(c e l l Q, i) \rightarrow \operatorname{mess}(c e l l Q, i+1)
$$

$$
\begin{aligned}
& \operatorname{mess}\left(\operatorname{cellQ}, i_{1}\right) \rightarrow \operatorname{mess}\left(\text { cellQ }, i_{1}+2\right) \\
& \operatorname{mess}\left(\operatorname{cellQ}, i_{2}\right) \rightarrow \operatorname{mess}\left(\text { cellQ }, i_{2}+3\right)
\end{aligned}
$$

## Try it!

## http://proverif.inria.fr

## Mailing list

https://sympa.inria.fr/sympa/subscribe/proverif

To ask questions: proverif@inria.fr
To report bug or ask for features: proverif-dev@inria.fr


[^0]:    In green, proof of extension between the two trees

