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Communication and security over a network

NETWORK



Cryptographic protocols

‣ Concurrent programs designed to secure communications 
‣ Rely on cryptographic primitives (encryption, digital signatures, …)

5G



Security properties

4

Each protocol have their own security goals

Transport Secure Layer

Authentication
Secrecy

Forward Secrecy

Electronic passport

Anonymity

Unlinkability Verifiability
Coercition resistance

Vote privacy

Non-Malleability of coins

Balance property

Voting systems

Cryptocurrency



Designing secure systems

Multiple aspects to consider

Hardware Primitives

Protocols



Designing secure systems is hard!

Multiple aspects to consider

Attacks are common
Google SSO (2008)  

Power fault attack on RSA (2010)  
BAC (2010) 

Helios (2011) 
Triple Handshake on TLS (2014) 

At least 15 on TLS 
Freak and Logjam attacks (2015) 

Spectre and Meltdown attacks (2017) 
WPA2 (2017) 

Practical collision in SHA-1 (2017)  
5G Authentication (2018) 

PLATYPUS (2021)  
… 

…

Hardware Primitives

Protocols



Designing secure systems is hard!

Multiple aspects to consider

Attacks are common
Google SSO (2008)  

Power fault attack on RSA (2010)  
BAC (2010) 

Helios (2011) 
Triple Handshake on TLS (2014) 

At least 15 on TLS 
Freak and Logjam attacks (2015) 

Spectre and Meltdown (2017) 
WPA2 (2017) 

Practical collision in SHA-1 (2017)  
5G Authentication (2018) 

PLATYPUS (2021)  
… 

Formal methods to prevent large classes of attacks 

Automated verification to guarantee 
the absence of logical attacks

Hardware Primitives

Protocols



Existing models

Bitstring Terms

Real algorithms  
(or as close as it gets)

Function symbols 
(assumed perfect)

PPT Idealized

Difficult and  
by hand or with proof assistants « Easier » and mechanized

Strong Limited to the abstraction 
of the model

MESSAGES

CRYPTOGRAPHIC PRIMITIVES

ATTACKER

PROOFS

SECURITY GUARANTEES

Computation model Symbolic model



Symbolic (Dolev-Yao) models

The attacker can…

Read / Write

Intercept

But they cannot…

Break cryptography

Use side channels

Success stories (not exhaustif)

Certificate Transparency Belenios

Wireguard 5G-AKA

Noise Framework

Signal

EMV

Created in the 80’ but we have come a long way!

TLS 1.3 with Encrypted Client Hello CHVote Swiss Post

ZCash



MODELLING A PROTOCOL AND ITS SECURITY PROPERTIES



A glimpse in the symbolic models
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How do we translate an Alice-Bob description into something that we can analyse?



enc(x, y)

x y

enc

x

x, y, z, . . .a, b, c, . . .Nonces: Variables:

Functions symbols with their arity: 𝖾𝗇𝖼/2, 𝖽𝖾𝖼/2, ⊕ /2, ⟨ ⟩/2, 𝗉𝗋𝗈𝗃1/1, 𝗉𝗋𝗈𝗃2/1,…

⟨x, y⟩

⟨ ⟩

y

𝖾𝗇𝖼(b ⊕ ⟨x, c⟩, k)
𝖾𝗇𝖼

k⊕

⟨ ⟩b

x c

Symbolic terms

atomic elements (keys, random 
numbers, …)

Abstract functions



TYPES AND FUNCTIONS



If functions are kept abstracted and messages are not computed, what tests can 
we perform on messages?

Symbolic terms

Equality between terms

Syntactic equality: same term / tree

a ≠ b

dec(enc(m, k), k) ≠ k

Ok two different represents two large random numbers 

Not Ok… Decryption of a cipher with the correct key should 
be equal to the plain text



Algebraic properties of cryptographic primitives

Algebraic properties of the cryptographic primitives must be modelled.

Equational theory: 𝖽𝖾𝖼(𝖾𝗇𝖼(x, y), y) = x 𝗉𝗋𝗈𝗃1(⟨x, y⟩) = x 𝗉𝗋𝗈𝗃2(⟨x, y⟩) = y

x ⊕ (y ⊕ x) = (x ⊕ y) ⊕ z x ⊕ y = y ⊕ x x ⊕ x = 0

x ⊕ 0 = x (g ̂x) ̂y = (g ̂y) ̂x (g ̂x) × (g ̂y) = g ̂(x + y)



Deduction

x ⊕ (y ⊕ x) = (x ⊕ y) ⊕ z x ⊕ y = y ⊕ x x ⊕ x = 0 x ⊕ 0 = xEquational theory E:

b c

b ⊕ ca ⊕ (b ⊕ c)

(a ⊕ (b ⊕ c)) ⊕ (b ⊕ c)

a

Leaves are the messages

Application of  ⊕

t1 =E t2t1 =

t2 =

a ⊕ (b ⊕ c), b and c .Imagine an attacker intercepted the 3 messages 
Can he deduce the name a ?



EQUATIONS



Equational theory vs Rewrite rules

Strengths and weaknesses of rewrite rules

+ Verification efficient 
+ Very expressive with otherwise

fun ifthenelse(bool,bitstring,bitstring):bitstring 
reduc 
  forall x,y:bitstring; ifthenelse(true,x,y) = x 
  otherwise forall b:bool,x,y:bitstring; ifthenelse(b,x,y) = y. 

fun lazy_ite(bool,bitstring,bitstring):bitstring 
reduc 
  forall x:bitstring; y:bitstring or fail; lazy_ite(true,x,y) = x 
  otherwise forall b:bool,x:bitstring or fail,y:bitstring; lazy_ite(b,x,y) = y. 

ifthenelse(true,m,decrypt(a,k))!
the term

fails



Equational theory vs Rewrite rules

Strengths and weaknesses of rewrite rules

+ Verification efficient 
+ Very expressive with otherwise

- Cannot call itself

𝖽𝖾𝖼(𝖾𝗇𝖼(x, y), y) = x 𝖾𝗇𝖼(𝖽𝖾𝖼(x, y), y) = x

Algrebraic properties that cannot be modeled with rewrite rules in ProVerif

with

𝖾𝗑𝗉(𝖾𝗑𝗉(𝗀, x), y) = 𝖾𝗑𝗉(𝖾𝗑𝗉(𝗀, y), x) Diffie-Hellman



Equational theory vs Rewrite rules

Strengths and weaknesses of equational theory

+ Extremely expressive - Makes the verification slow 
- Not all equational theory can be handled 

(may not terminate from the start)

const g: G. 
fun exp(G, exponent): G. 
equation forall x: exponent, y: exponent; exp(exp(g, x), y) = exp(exp(g, y), x). 

fun enc(G, passwd): G. 
fun dec(G, passwd): G. 
equation forall x: G, y: passwd; dec(enc(x,y),y) = x. 
equation forall x: G, y: passwd; enc(dec(x,y),y) = x. 



ROLES



Security properties

Reachability
Bad event in one system

Authentication

Secrecy

Equivalence

?

?

Privacy as indistinguishability

Anonymity

Vote privacy

Unlinkability

Type of security properties



Semantics explains how the protocol can be executed in the 
presence of an attacker

(ℰ, {{if u = v then P else Q}} ∪ 𝒫, Φ) (ℰ, {{P}} ∪ 𝒫, Φ) if u =E v

(ℰ, {{if u = v then P else Q}} ∪ 𝒫, Φ) (ℰ, {{Q}} ∪ 𝒫, Φ) if u ≠E v

(ℰ, {{νk . P}} ∪ 𝒫, Φ) (ℰ ∪ {k′￼}, {{Pρ}} ∪ 𝒫, Φ) with k′￼ fresh and ρ = {k → k′￼}

(ℰ, {{P ∣ Q}} ∪ 𝒫, Φ) (ℰ, {{P; Q}} ∪ 𝒫, Φ)

(ℰ, {{!P}} ∪ 𝒫, Φ) (ℰ, {{!P; P}} ∪ 𝒫, Φ)

(ℰ, {{out(c, u) . P}} ∪ 𝒫, Φ) (ℰ, {{P}} ∪ 𝒫, Φ ∪ {z → u})out(c, z) z fresh

(ℰ, {{in(c, x) . P}} ∪ 𝒫, Φ) (ℰ, {{Pσ}} ∪ 𝒫, Φ)in(c, M)

with σ = {x → t} and MΦ =E t and M does not contain names from ℰ
but M can contain variables from the domain of Φ

Hard to read and understand! 

… but necessary



Expressing secrecy properties

P

Secrecy of k in P

deducible from the attacker knowledge in 𝒞n

For all transitions 

Secrecy problem undecidable for simple cryptographic primitives

𝒞1 𝒞n𝒞n−1 , the secret k is not



SECURITY PROPERTIES



When equational theory fails? Example: Merkle Trees

h(d1) h(d2)

h(h(d1), h(d2))

h(h(h(d1), h(d2)), h(d3))

h(d3)

digest of the ledger

data in the leaves

Append only structure

Proof of presence in O(log(n))

Proof of extension in O(log(n))



Proof of presence in a Merkle Tree

h(d1) h(d2)

h(h(d1), h(d2))

h(h(h(d1), h(d2)), h(d3))

h(d3)

digest of the ledger

How to prove the presence of d2

in digest                                     ?h(h(h(d1), h(d2)), h(d3))

Proof contains:
d2• the data 

• the labels of siblings of the branch 
from the data to the root:          andh(d1) h(d3)

To verify the proof, reconstruct the label of the 
root and compare with the digest of the ledger

left

right

• The position of the data in the tree



Proof of extension in a Merkle Tree

h(d1) h(d2)

h(h(d1), h(d2))

h(h(h(d1), h(d2)), h(d3))

h(d3)

h(d1) h(d2)

h(h(d1), h(d2))

h(h(h(d1), h(d2)), h(h(d3), h(d4)) h(d5)

h(h(d3), h(d4))

h(d3) h(d4)

h(h(h(h(d1), h(d2)), h(h(d3), h(d4)), h(d5))

left

right

left

In green, proof of extension between the two trees



Let’s start with a simple list?

h(d1, h(d2, h(d3, h(…, h(dn,0)…)

How to prove the presence of d3Digest has a list structure:

Proof contains:

• the data 

• the hash

• The previous elements 

h(d4, h(…, h(dn,0)…)

d1, d2



PREDICATES



Memory cell

ProVerif’s calculus is stateless  … but we have private channels

A Ocaml like version

let x = ref 0 

!x

x := n

Initialisation

Reading

Writing

free cell:channel [private] 
let init = out(cell,0). 

let P =  
  … 
  in(cell,x:nat); out(cell,x); 
  … 

let Q =  
  … 
  in(cell,x:nat); out(cell,n); 
  … 



Memory cell

Initialisation

Reading

Writing

free cell:channel [private] 
let init = out(cell,0). 

let P =  
  … 
  in(cell,x:nat); out(cell,x); 
  … 

let Q =  
  … 
  in(cell,x:nat); out(cell,n); 
  … 

Reading/Writing both consist 
of inputing the « current value » 
of the cell and outputting the  
« new value »

The system process 
  init | P | Q | !in(cell,x:nat);out(cell,x) 

Avoids « blocking » an agent

Communication are synchronous 
on private channels: always one 
single output available at all time.



Locking memory cell

Initialisation

Reading

Writing

free cell:channel [private] 
let init = out(cell,0). 

let P =  
  … 
  in(cell,x:nat);  
  event B; 
  out(cell,x); 
  … 

let Q =  
  … 
  in(cell,x:nat);  
  event A; 
  event C; 
  out(cell,n); 
  … 

The sequence of events A, B, C is not possible

Communication are synchronous 
on private channels:  
If no output available, all processes 
trying to input are « blocked »



Locking memory cell

Initialisation

Lock and read

Write and unlock

free cell:channel [private] 
let init = out(cell,0). 

let P =  
  … 
  in(cell,x:nat);  
  event B; 
  out(cell,x); 
  … 

let Q =  
  … 
  in(cell,x:nat);  
  event A; 
  event C; 
  out(cell,n); 
  … 

The sequence of events A, B, C is not possible

Communication are synchronous 
on private channels:  
If no output available, all processes 
trying to input are « blocked »



Simplified Yubikey protocol

free k:key [private]. 
free cellP,cellQ:channel [private] 

let P =  
in(c,x:bitstring); 
in(cellP,i:nat); 
let j = sdec(x,k) in 
if j > i  
then 
event Accept(j); 
out(cellP,j) 

else 
out(cellP,i). 

let Q = 
in(cellQ,i:nat); 
out(c,senc(I,k)); 
out(cellQ,i+1). 

process out(cellP,0) | out(cellQ,0) | !P | !Q 

Q emits sequentially 
all natural numbers encrypted 
with k 

P only accepts increasing sequence 
of natural numbers.  



SIGNAL: THE DOUBLE RATCHET ALGORITHM



Equivalence properties

Reachability
Bad event in one system

Authentication

Secrecy

Equivalence

?

?

Privacy as indistinguishability

Anonymity

Vote privacy

Unlinkability

Type of security properties



Equivalence properties
Indistinguishability

of two situations where the private attribute differs

1 00 1

Vote privacy

ping

Anonymity

ping

ping

Unlinkability

ping

pong

pong



{yes}pk

A simple e-voting protocol

Public key: pk

{yes}pk

{no}pk

?

no

yes

?
Tally

yes

the vote appearing  
twice on the bulletin  
board is Bob’s vote!



{yes}pk

A simple e-voting protocol

{yes}pk

{no}pk

?

no

yes

?
Tally

yes

the vote appearing  twice on the 
bulletin  board is Bob’s vote!

{no}pk{no}pk

{yes}pk

?

no

yesTally

no

the vote appearing  twice on the 
bulletin  board is Bob’s vote!

?

The second and third 
votes are equal

The second and third 
votes are not equal

The second and third 
votes are equal

The second and third 
votes are equalFirst vote is « no » First vote is not « no »



Equivalence of processes in ProVerif

let system1 = setup | voter(skA,v1) | voter(skB,v2). 
let system2 = setup | voter(skA,v2) | voter(skB,v1). 

equivalence system1 system2 

Equivalence between two 
processes

Equivalence as a biprocess
let system(vA,vB) = setup | voter(skA,vA) | voter(skB,vB). 

process system(choice[v1,v2],choice[v2,v1]) 

Internally



Equivalence of processes in ProVerif

Equivalence between two 
processes Equivalence as a biprocess

+ Easier to model,  
+ No need to know « how to match »  

the processes 
- Can be slow 
- Difficult to « fix » when not working

+ Also easy to model,  
+ Works better with other features 

(e.g. lemmas, axioms) 
+ More efficient 
• Need to have a good 

idea why processes are equivalent



DEALING WITH “CANNOT BE PROVED”



Toy-example

44

A B
enc(s, ⟨k1, k2⟩)

enc(k1, k)

enc(k2, k)

enc(y, k)

y

B acts as an oracle for decryption with the key k
but only one time !
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Abstraction in Horn clauses

Saturation of the set of Horn 
clauses

…

How does ProVerif work (high level) ?

Verification of the query on 
all saturated clauses

! att(enc(s, hk1, k2i))
! att(enc(k1, k))

! att(enc(k2, k))

att(enc(y, k)) ! att(y)

…

free s,k1,k2,k:bitstring [private]. 

let A =  
out(c,enc(s,(k1,k2))); 
out(c,enc(k1,k)); 
out(c,enc(k2,k)). 

…

query attacker(s) ==> false.

True False Cannot 
be proved



Why does it fail ?
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Transform process 
in Horn clauses

Secrecy of s is preserved if att(s) is not logically 
deducible from the set of Horn clauses

Horn clauses for 
the attacker

att(x) ^ att(y) ! att(enc(x, y))

att(enc(x, y)) ^ att(y) ! att(x)

att(x) ^ att(y) ! att(hx, yi)

free s,k1,k2,k:bitstring [private]. 

let A =  
out(c,senc(s,(k1,k2))); 
out(c,senc(k1,k)); 
out(c,senc(k2,k)). 

let B =  
in(c,x); 
out(c,dec(x,k). 

process A | B 

! att(enc(s, hk1, k2i))
! att(enc(k1, k))

! att(enc(k2, k))

Horn clauses can be applied an 
arbitrary number of times for 

arbitrary instanciations

att(enc(y, k)) ! att(y)



Why does it fail ?
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! att(enc(s, hk1, k2i))

! att(enc(k1, k)) ! att(enc(k2, k))

att(enc(y, k)) ! att(y)

att(k1)

att(s)

att(enc(y, k)) ! att(y)

att(enc(x, y)) ^ att(y) ! att(x)

att(x) ^ att(y) ! att(hx, yi)

att(k2)

att(⟨k1, k2⟩)

att(enc(k1, k)) att(enc(k2, k))

att(enc(s, ⟨k1, k2⟩))

free s,k1,k2,k:bitstring [private]. 

let A =  
out(c,senc(s,(k1,k2))); 
out(c,senc(k1,k)); 
out(c,senc(k2,k)). 

let B =  
in(c,x); 
out(c,dec(x,k). 

process A | B 



What to do ?
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free s,k1,k2,k:bitstring [private]. 

let A =  
out(c,senc(s,(k1,k2))); 
out(c,senc(k1,k)); 
out(c,senc(k2,k)). 

let B =  
in(c,x) [precise]; 
out(c,dec(x,k). 

process A | B 

Add a [precise] option to the problematic input !

-- Query not attacker(s[]) in process 0. 
Translating the process into Horn clauses... 
Completing... 
Starting query not attacker(s[]) 

RESULT not attacker(s[]) is true. 

-------------------------------------------------------------- 
Verification summary: 

Query not attacker(s[]) is true. 

--------------------------------------------------------------

Global setting set preciseActions = true.

!
Adding [precise] options may increase the verification 
time or lead to non-termination



How to know where to put precise ?
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Derivation: 

1. The message enc(k2[],k[]) may be sent to the attacker at output {5}. 
attacker(enc(k2[],k[])). 

2. The message enc(k2[],k[]) that the attacker may have by 1 may be received at input {7}. 
So the message k2[] may be sent to the attacker at output {8}. 
attacker(k2[]). 

3. The message enc(k1[],k[]) may be sent to the attacker at output {4}. 
attacker(enc(k1[],k[])). 

4. The message enc(k1[],k[]) that the attacker may have by 3 may be received at input {7}. 
So the message k1[] may be sent to the attacker at output {8}. 
attacker(k1[]). 

5. By 4, the attacker may know k1[]. 
By 2, the attacker may know k2[]. 
Using the function 2-tuple the attacker may obtain (k1[],k2[]). 
attacker((k1[],k2[])). 

6. The message enc(s[],(k1[],k2[])) may be sent to the attacker at output {6}. 
attacker(enc(s[],(k1[],k2[]))). 

7. By 6, the attacker may know enc(s[],(k1[],k2[])). 
By 5, the attacker may know (k1[],k2[]). 
Using the function dec the attacker may obtain s[]. 
attacker(s[]). 

8. By 7, attacker(s[]). 
The goal is reached, represented in the following fact: 
attacker(s[]).

Going through 
the derivation !

Find two different 
messages received 

by the same input {n}

Check on your 
process if it should 

be possible



How to know where to put precise ?
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Derivation: 

1. The message enc(k2[],k[]) may be sent to the attacker at output {5}. 
attacker(enc(k2[],k[])). 

2. The message enc(k2[],k[]) that the attacker may have by 1 may be received at input {7}. 
So the message k2[] may be sent to the attacker at output {8}. 
attacker(k2[]). 

3. The message enc(k1[],k[]) may be sent to the attacker at output {4}. 
attacker(enc(k1[],k[])). 

4. The message enc(k1[],k[]) that the attacker may have by 3 may be received at input {7}. 
So the message k1[] may be sent to the attacker at output {8}. 
attacker(k1[]). 

5. By 4, the attacker may know k1[]. 
By 2, the attacker may know k2[]. 
Using the function 2-tuple the attacker may obtain (k1[],k2[]). 
attacker((k1[],k2[])). 

6. The message enc(s[],(k1[],k2[])) may be sent to the attacker at output {6}. 
attacker(enc(s[],(k1[],k2[]))). 

7. By 6, the attacker may know enc(s[],(k1[],k2[])). 
By 5, the attacker may know (k1[],k2[]). 
Using the function dec the attacker may obtain s[]. 
attacker(s[]). 

8. By 7, attacker(s[]). 
The goal is reached, represented in the following fact: 
attacker(s[]).

Going through 
the derivation !

Find two different 
messages received 

by the same input {n}

Check on your 
process if it should 

be possible



Two strange situations !
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-- Query not event(Accept(i_2)) in process 0. 
Translating the process into Horn clauses... 
mess(cellQ[],i_2) -> mess(cellQ[],i_2 + 1) 
select mess(cellQ[],i_2)/-5000 
Completing... 
Starting query not event(Accept(i_2)) 

goal reachable: i_2 ≥ 1 && mess(cellQ[],i_2) -> end(Accept(i_2)) 

Derivation: 

1. We assume as hypothesis that 
mess(cellQ[],i_2). 

2. The message i_2 that may be sent on channel cellQ[] by 1 may be received 
at input {12}. 
So the message senc(i_2,k[]) may be sent to the attacker at output {13}. 
attacker(senc(i_2,k[])). 

… 

Could not find a trace corresponding to this derivation.

free k:key [private]. 
free cellP,cellQ:channel [private] 

let P =  
in(c,x:bitstring); 
in(cellP,i:nat); 
let j = sdec(x,k) in 
if j > i  
then 
event Accept(j); 
out(cellP,j) 

else 
out(cellP,i). 

let Q = 
in(cellQ,i:nat); 
out(c,senc(I,k)); 
out(cellQ,i+1). 

process out(cellP,0) | out(cellQ,0) | !P | !Q 

Simplified Yubikey Can’t disprove the sanity check…

query i:nat; event(Accept(i)).



Two strange situations !
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-- Query not attacker(S(kAminus[!1 = v],x_1)) in process 1. 
select member(*x_1,y)/-5000 
select memberid(*x_1,y)/-5000 
Translating the process into Horn clauses... 
Completing... 

… 

A more detailed output of the traces is available with 
  set traceDisplay = long. 

new exponent: channel creating exponent_3 at {1} 

new honestC: channel creating honestC_3 at {8} 

new kAminus: skey creating kAminus_3 at {10} in copy a 

… 
… 

event enddosi(Pk(kAminus_3),NI_3) at {37} in copy a, a_4, a_8 

event mess3(Pk(kAminus_3)…))) at {46} in copy a, a_4, a_8 

out(c, cons3(~M_9,….)) at {47} in copy a, a_4, a_8 

The attacker has the message 3-proj-3-tuple(D(H(…)). 
A trace has been found, assuming the following hypothesis: 
memberid(Pk(a_12[]),a_5[]) 
Stopping attack reconstruction attempts. To try more traces,  
modify the setting reconstructTrace. 
RESULT not attacker(S(kAminus[!1 = v],x_1)) cannot be proved.

A trace is found… but  ProVerif 
assume that the attacker has 

magically a term



A closer look
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-- Query not attacker(S(kAminus[!1 = v],x_1)) in process 1. 
select member(*x_1,y)/-5000 
select memberid(*x_1,y)/-5000 
Translating the process into Horn clauses... 
Completing... 

… 

A more detailed output of the traces is available with 
  set traceDisplay = long. 

new exponent: channel creating exponent_3 at {1} 

new honestC: channel creating honestC_3 at {8} 

new kAminus: skey creating kAminus_3 at {10} in copy a 

… 
… 

event enddosi(Pk(kAminus_3),NI_3) at {37} in copy a, a_4, a_8 

event mess3(Pk(kAminus_3)…))) at {46} in copy a, a_4, a_8 

out(c, cons3(~M_9,….)) at {47} in copy a, a_4, a_8 

The attacker has the message 3-proj-3-tuple(D(H(…)). 
A trace has been found, assuming the following hypothesis: 
memberid(Pk(a_12[]),a_5[]) 
Stopping attack reconstruction attempts. To try more traces,  
modify the setting reconstructTrace. 
RESULT not attacker(S(kAminus[!1 = v],x_1)) cannot be proved.

-- Query not event(Accept(i_2)) in process 0. 
Translating the process into Horn clauses... 
mess(cellQ[],i_2) -> mess(cellQ[],i_2 + 1) 
select mess(cellQ[],i_2)/-5000 
Completing... 
Starting query not event(Accept(i_2)) 

goal reachable: i_2 ≥ 1 && mess(cellQ[],i_2) -> 
end(Accept(i_2)) 

Derivation: 

1. We assume as hypothesis that 
mess(cellQ[],i_2). 

2. The message i_2 that may be sent on channel cellQ[] by 1 may 
be received at input {12}. 
So the message senc(i_2,k[]) may be sent to the attacker at 
output {13}. 
attacker(senc(i_2,k[])). 

… 

Could not find a trace corresponding to this derivation.

ProVerif decided to prevent  
resolution on some facts



Why ProVerif prevent resolution ?
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free k:key [private]. 
free cellP,cellQ:channel [private] 

let P =  
in(c,x:bitstring); 
in(cellP,i:nat); 
let j = sdec(x,k) in 
if j > i  
then 
event Accept(j); 
out(cellP,j) 

else 
out(cellP,i). 

let Q = 
in(cellQ,i:nat); 
out(c,senc(I,k)); 
out(cellQ,i+1). 

process out(cellP,0) | out(cellQ,0) | !P | !Q 

Simplified Yubikey

Clauses generated from the process Q

mess(cellQ, i) → mess(cellQ, i + 1)

select mess(cellQ[],i_2)/-5000 

If mess(cellQ, i) was selected then by resolution:

→ mess(cellQ,1)

→ mess(cellQ,2)

→ mess(cellQ,0)



What to do to solve the problem ?
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set nounifIgnoreAFewTimes = auto. Use a new setting

When solving the query, ProVerif will ignore  
a « few times » the prevention of resolution. 

By default, only one time but it can be parametrized

set nounifIgnoreNtimes = 3. 

! The bigger the number, the slower the verification will be

! Not always enough !Useful for proofs and finding attacks



Proof of queries by induction
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free k:key [private]. 
free cellP,cellQ:channel [private] 

query i:nat; mess(cellQ,i) ==> is_nat(i). 

let P =  
in(c,x:bitstring); 
in(cellP,i:nat); 
let j = sdec(x,k) in 
if j > i  
then 
event Accept(j); 
out(cellP,j) 

else 
out(cellP,i). 

let Q = 
in(cellQ,i:nat); 
out(c,senc(I,k)); 
out(cellQ,i+1). 

process out(cellP,0) | out(cellQ,0) | !P | !Q 

Simplified Yubikey

set nounifIgnoreAFewTimes = auto. 
set nounifIgnoreNtimes = 10. 

Even with 

With obtain

goal reachable: is_not_nat(i_2 + 10) && mess(cellQ[],i_2) -> 
mess(cellQ[],i_2 + 10) 

… 
… 

Could not find a trace corresponding to this derivation. 
RESULT mess(cellQ[],i_2) ==> is_nat(i_2) cannot be proved.

The attacker is untyped !!



Proof of queries by induction
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free k:key [private]. 
free cellP,cellQ:channel [private] 

query i:nat; mess(cellQ,i) ==> is_nat(i). 

let P =  
in(c,x:bitstring); 
in(cellP,i:nat); 
let j = sdec(x,k) in 
if j > i  
then 
event Accept(j); 
out(cellP,j) 

else 
out(cellP,i). 

let Q = 
in(cellQ,i:nat); 
out(c,senc(I,k)); 
out(cellQ,i+1). 

process out(cellP,0) | out(cellQ,0) | !P | !Q 

Simplified Yubikey goal reachable: is_not_nat(i_2 + 10) && mess(cellQ[],i_2) -> 
mess(cellQ[],i_2 + 10) 

Induction on the size of the trace !

mess(cellQ[],i_2)The fact occurred strictly
before mess(cellQ[],i_2 +10) in the trace.

query i:nat; mess(cellQ,i) ==> is_nat(i) [induction]. 



Proof of queries by induction
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query i:nat,…;  
mess(cellQ,i) ==> is_nat(i); 

mess(cellP,i) ==> is_nat(i); 

query_3; 

… 

query_n [induction]. 

It also works for a group of queries !

Proof by mutual induction

As usual it, it may slow down the verification 
or lead to non-termination !

Does not work as well for injective correspondence!



Lemmas, axioms, restrictions

restriction phi_1. 
… 
restriction phi_n. 

axiom aphi_1. 
… 
axiom aphi_m. 

lemma lphi_1. 

lemma lphi_k. 

query attacker(s). 

Restrictions « restrict » the traces considered in axioms, 
lemmas and queries.

query attacker(s). holds if no trace satisfying phi_1, …, phi_n

reveals s

Proverif assumes that the axioms aphi_1, …, aphi_n hold.

Proverif tries to prove in order the lemmas lphi_1, …, lphi_k

reusing all axioms and previously proved lemmas

Proverif tries to prove the query query attacker(s).

all axioms and all lemmas.
reusing

1

2

3



The precise option under the hood
Option [precise] for inputs, table lookup and predicate testing 

is coded as an axiom internally .

type occurrence. 

free s,k1,k2,k:bitstring [private]. 
event Precise(occurrence,bitstring). 

axiom occ:occurrence,x1,x2:bitstring; 
event(Precise(occ,x1)) && event(Precise(occ,x2)) ==> x1 = x2. 

let A =  
out(c,senc(s,(k1,k2))); 
out(c,senc(k1,k)); 
out(c,senc(k2,k)). 

let B =  
in(c,x); 
new occ[]:occurrence; 
event Precise(occ,x); 
out(c,dec(x,k). 

process A | B 

free s,k1,k2,k:bitstring [private]. 

let A =  
out(c,senc(s,(k1,k2))); 
out(c,senc(k1,k)); 
out(c,senc(k2,k)). 

let B =  
in(c,x) [precise]; 
out(c,dec(x,k). 

process A | B 

Encoded as 



On the derivation
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! att(enc(s, hk1, k2i))

! att(enc(k1, k)) ! att(enc(k2, k))

att(enc(y, k)) ! att(y)

att(k1)

att(s)

att(enc(y, k)) ! att(y)

att(enc(x, y)) ^ att(y) ! att(x)

att(x) ^ att(y) ! att(hx, yi)

att(k2)

att(⟨k1, k2⟩)

att(enc(k1, k)) att(enc(k2, k))

att(enc(s, ⟨k1, k2⟩))

free s,k1,k2,k:bitstring [private]. 

let A =  
out(c,senc(s,(k1,k2))); 
out(c,senc(k1,k)); 
out(c,senc(k2,k)). 

let B =  
in(c,x); 
out(c,dec(x,k). 

process A | B 



On the derivation
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! att(enc(s, hk1, k2i))

! att(enc(k1, k))

! att(enc(k2, k))

att(enc(y, k)) ! att(y)

att(k1)

att(s)

att(enc(y, k)) ! att(y)

att(enc(x, y)) ^ att(y) ! att(x)

att(x) ^ att(y) ! att(hx, yi)

att(k2)

att(⟨k1, k2⟩)

att(enc(k1, k))

att(enc(k2, k))

att(enc(s, ⟨k1, k2⟩))

event(𝖯𝗋𝖾𝖼𝗂𝗌𝖾(occ, 𝖾𝗇𝖼(y, k))) ∧
event(𝖯𝗋𝖾𝖼𝗂𝗌𝖾(occ, 𝖾𝗇𝖼(y, k)) ∧

event(𝖯𝗋𝖾𝖼𝗂𝗌𝖾(occ, 𝖾𝗇𝖼(y, k2))

event(𝖯𝗋𝖾𝖼𝗂𝗌𝖾(occ, 𝖾𝗇𝖼(y, k1))



When to use Lemmas, Axioms and restrictions ?

Axiom

Restriction

Lemma
Ideally, always use lemma. Use axiom when you can 
prove by hand (or with another tool) that your 
property holds … and ProVerif cannot.

To avoid heavy encoding in the calculus

Ex : To model that a process does not 
accept twice the same message through 

multiple session

restriction 
occ1,occ2:occurrence,x:bitstring; 
event(Unique(occ1,x)) && 
event(Unique(occ2,x)) ==> occ1 = occ2. 

let P =  
in(c,x); 
new occ[]:occurrence; 
event Unique(occ,x); 
… 

When you the property can help proving the main 
query. 



DEALING WITH NON-TERMINATION



How to determine if ProVerif does not terminate ?

Translating the process into Horn clauses... 
Completing... 
200 rules inserted. Base: 200 rules (97 with conclusion selected). Queue: 679 rules. 
400 rules inserted. Base: 400 rules (133 with conclusion selected). Queue: 481 rules. 
600 rules inserted. Base: 600 rules (133 with conclusion selected). Queue: 291 rules. 
800 rules inserted. Base: 800 rules (133 with conclusion selected). Queue: 135 rules. 
1000 rules inserted. Base: 997 rules (157 with conclusion selected). Queue: 184 rules. 
1200 rules inserted. Base: 1093 rules (204 with conclusion selected). Queue: 134 rules. 
1400 rules inserted. Base: 1253 rules (293 with conclusion selected). Queue: 208 rules. 
1600 rules inserted. Base: 1420 rules (352 with conclusion selected). Queue: 281 rules. 
1800 rules inserted. Base: 1596 rules (382 with conclusion selected). Queue: 315 rules. 
2000 rules inserted. Base: 1790 rules (394 with conclusion selected). Queue: 369 rules. 
2200 rules inserted. Base: 1970 rules (400 with conclusion selected). Queue: 387 rules. 
2400 rules inserted. Base: 2166 rules (400 with conclusion selected). Queue: 393 rules. 
2600 rules inserted. Base: 2323 rules (402 with conclusion selected). Queue: 423 rules. 
2800 rules inserted. Base: 2507 rules (402 with conclusion selected). Queue: 447 rules. 
3000 rules inserted. Base: 2644 rules (416 with conclusion selected). Queue: 484 rules. 
3200 rules inserted. Base: 2790 rules (416 with conclusion selected). Queue: 500 rules. 
3400 rules inserted. Base: 2933 rules (443 with conclusion selected). Queue: 547 rules. 
3600 rules inserted. Base: 3068 rules (443 with conclusion selected). Queue: 571 rules. 
3800 rules inserted. Base: 3209 rules (464 with conclusion selected). Queue: 617 rules. 
4000 rules inserted. Base: 3320 rules (484 with conclusion selected). Queue: 715 rules. 
4200 rules inserted. Base: 3408 rules (484 with conclusion selected). Queue: 747 rules. 
4400 rules inserted. Base: 3529 rules (498 with conclusion selected). Queue: 756 rules. 
4600 rules inserted. Base: 3637 rules (530 with conclusion selected). Queue: 804 rules. 
4800 rules inserted. Base: 3705 rules (530 with conclusion selected). Queue: 882 rules. 
… 
…

The first clues

Number of rules left to 
handle

Number of rules 
generated

Current size of the set 
of rules

• Size of the queue seems to  
always increase 

• Size of the queue seems to  
be cyclic 

• No rule inserted for ages 
(can happen with lemmas) 

• Termination warnings

! Be patient 😊 

On TLS 1.3, terminates 
with 200k rules inserted.



How to determine if ProVerif does not terminate ?

Rule with hypothesis fact 0 selected: mess(cellQ[],i_2) 
mess(cellQ[],i_2) -> mess(cellQ[],i_2) 
The hypothesis occurs before the conclusion. 
1 rules inserted. Base: 1 rules (0 with conclusion selected). Queue: 3 rules. 

Rule with hypothesis fact 0 selected: mess(cellQ[],i_2) 
is_nat(i_2) && mess(cellQ[],i_2) -> mess(cellQ[],i_2 + 1) 
The hypothesis occurs strictly before the conclusion. 
2 rules inserted. Base: 2 rules (0 with conclusion selected). Queue: 5 rules. 

Rule with conclusion selected: 
mess(cellQ[],0) 
3 rules inserted. Base: 3 rules (1 with conclusion selected). Queue: 4 rules. 

Rule with hypothesis fact 0 selected: attacker(cellQ[]) 
attacker(cellQ[]) && attacker(i_2) -> mess(cellQ[],i_2) 
The 1st, 2nd hypotheses occur before the conclusion. 
4 rules inserted. Base: 4 rules (1 with conclusion selected). Queue: 3 rules. 

Rule with hypothesis fact 0 selected: mess(cellQ[],i_2) 
is_nat(i_2) && mess(cellQ[],i_2) -> mess(cellQ[],i_2 + 2) 
The hypothesis occurs strictly before the conclusion. 
5 rules inserted. Base: 5 rules (1 with conclusion selected). Queue: 5 rules. 

Rule with conclusion selected: 
mess(cellQ[],1) 
6 rules inserted. Base: 6 rules (2 with conclusion selected). Queue: 4 rules. 

Rule with hypothesis fact 0 selected: attacker(cellQ[]) 
is_nat(i_2) && attacker(cellQ[]) && attacker(i_2) -> mess(cellQ[],i_2 + 1) 
The 1st, 2nd hypotheses occur strictly before the conclusion. 
7 rules inserted. Base: 7 rules (2 with conclusion selected). Queue: 3 rules.

The real way to do it… set verboseRules = true. 

• Size of the term in the 
conclusion increases  

• Number of hypotheses 
increases

Display all the rules generated

Signs of a cycle

!
Very long  and painful 

to read

Best way to find the 
problem

Best way to understand 
how to solve it



Not attacker declaration and lemmas

Rule with hypothesis fact 0 selected: attacker(cellQ[]) 
attacker(cellQ[]) && attacker(i_2) -> mess(cellQ[],i_2) 
The 1st, 2nd hypotheses occur before the conclusion. 
4 rules inserted. Base: 4 rules (1 with conclusion selected). Queue: 3 rules. 

not attacker(cellQ). 

Look if some facts should 
not be true

Rule with hypothesis fact 1 selected: attacker(h(i)) 
is_not_nat(i_2) && event(Accept(i_2)) && attacker(h(i)) -> mess(cellQ[],i_2) 
The 1st, 2nd hypotheses occur before the conclusion. 
14 rules inserted. Base: 3 rules (2 with conclusion selected). Queue: 3 rules. 

The cell should be 
private

The content of the cell should be 
natural numbers

lemma i:nat; mess(cellQ,i) ==> is_nat(i). 

Faster but semantically equivalent to 

Lemma attacker(cellQ). 



Playing with the selection function

Rule with hypothesis fact 1 selected: attacker(h(i)) 
is_not_nat(i_2) && event(Accept(i_2)) && attacker(h(i)) -> mess(cellQ[],i_2) 
The 1st, 2nd hypotheses occur before the conclusion. 
14 rules inserted. Base: 3 rules (2 with conclusion selected). Queue: 3 rules. 

The fact that will be selected for 
resolution

Clauses generated from the process Q

mess(cellQ, i) → mess(cellQ, i + 1)

select mess(cellQ[],i_2)/-5000 

mess(cellQ, i1) → mess(cellQ, i1 + 2)

mess(cellQ, i2) → mess(cellQ, i2 + 3)
If you think this fact will lead to non-
termination, you can tell it to ProVerif 

The automatic detection of selections to 
avoid is not perfect

noselect i:nat, attacker(h(i)). 

noselect i:nat, attacker(h(*i)). 
*i means « any term »



Try it!

http://proverif.inria.fr

Mailing list

https://sympa.inria.fr/sympa/subscribe/proverif

proverif@inria.fr

proverif-dev@inria.fr

To ask questions:

To report bug or ask for features:

mailto:proverif@inria.fr
mailto:proverif-dev@inria.fr

