Why formal methods remains inaccessible for
most cryptographers?

Georgio Nicolas (COSIC, KU Leuven)
Wednesday 27" March, 2024

EuroProofNet WG3 Meeting, TU Dresden

Table of contents

About Me
Why am | giving this talk?
Concerns

Conclusion

About Me

About Me 1/2

e 2nd year PhD Student, supervised by Nigel Smart and Bart Preneel.

About Me 1/2

e 2nd year PhD Student, supervised by Nigel Smart and Bart Preneel.

e Been dabbling with formal methods since 2018.

About Me 1/2

e 2nd year PhD Student, supervised by Nigel Smart and Bart Preneel.
e Been dabbling with formal methods since 2018.

e Worked on cute tools that are relatively usable: Noise Explorer /
Verifpal.

About Me 2/2

e | give 2 lectures/year about formal methods in a cryptographic

protocols course.

About Me 2/2

e | give 2 lectures/year about formal methods in a cryptographic
protocols course.
e Had a masters student who worked on verifying parts of a Shamir

Secret Sharing implementation in Rust.

About Me 2/2

e | give 2 lectures/year about formal methods in a cryptographic
protocols course.

e Had a masters student who worked on verifying parts of a Shamir
Secret Sharing implementation in Rust.

e My love for the computational model is unreciprocated by the tools.

About Me 2/2

| give 2 lectures/year about formal methods in a cryptographic

protocols course.

e Had a masters student who worked on verifying parts of a Shamir
Secret Sharing implementation in Rust.

My love for the computational model is unreciprocated by the tools.

e For some reason, everyone in my group thinks that I'm an expert at

formal methods...

About Me 2/2

| give 2 lectures/year about formal methods in a cryptographic
protocols course.

e Had a masters student who worked on verifying parts of a Shamir
Secret Sharing implementation in Rust.

My love for the computational model is unreciprocated by the tools.

e For some reason, everyone in my group thinks that I'm an expert at
formal methods...

[]

I'm definitely not.

Why am | giving this talk?

Cryptography (1/3)

e Cryptography is equally powerful and fragile.

Cryptography (1/3)

e Cryptography is equally powerful and fragile.

e High-assurances are required by definition.

Cryptography (1/3)

e Cryptography is equally powerful and fragile.
e High-assurances are required by definition.

e Constructions and proofs can get very complex.

Cryptography (1/3)

Cryptography is equally powerful and fragile.

High-assurances are required by definition.

Constructions and proofs can get very complex.

[]

Perfect material for leveraging Formal Methods!

Disclaimer (2/3)

e Whatever | say here is not to discredit any of the amazing work done

by the community!

Disclaimer (2/3)

e Whatever | say here is not to discredit any of the amazing work done
by the community!

e Every single contribution was crucial to getting us where we are
today.

Disclaimer (2/3)

e Whatever | say here is not to discredit any of the amazing work done
by the community!

e Every single contribution was crucial to getting us where we are
today.

e We have a plethora of tools with all sorts of functionalities and
guarantees!

Disclaimer (2/3)

e Whatever | say here is not to discredit any of the amazing work done
by the community!

e Every single contribution was crucial to getting us where we are
today.

e We have a plethora of tools with all sorts of functionalities and
guarantees!

e However... | think we can do better in some things.

Concerns (3/3)

Resolving dependencies (for humans and software)

Teaching material and documentation

Reproducing and reasoning about results

General friction with getting results accepted by the community

Concerns

Resolving Dependencies (for humans and software) (1/4)

e Our tools have dependency chains.

Resolving Dependencies (for humans and software) (1/4)

e Our tools have dependency chains.

e Managing software dependency chains can be painful.

Resolving Dependencies (for humans and software) (1/4)

e Our tools have dependency chains.
e Managing software dependency chains can be painful.

e Managing human dependency chains is even more painful.

Resolving Dependencies (for humans and software) (2/4)

EasyCrypt uses the following third-party tools/libraries:
OCaml (>=4.08)
Available at https://ocaml.org/
OCamlbuild
Why3 (>=1.7.x, < 1.8)
Available at http://why3.Iri.fr/
Why3 must be installed with a set a provers. See http://why3.Iri.fr/#provers
Why3 libraries must be installed (make byte && make install-lib)
Menhir http://gallium.inria.fr/~fpottier/menhir/
OCaml Batteries Included http://batteries.forge.ocamlicore.org/

OCaml PCRE (>= 7) https://github.com/mmottl/pcre-ocaml

OCaml Zarith https://forge.ocamlcore.org/projects/zarith

OCaml ini-files http://archive.ubuntu.com/ubuntu/pool/universe/o/ocaml-inifiles/

Figure 1: EasyCrypt Software Dependencies.

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list

e Cryptography (and formal security definitions)

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list
e Cryptography (and formal security definitions)

e Game-based proofs

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list
e Cryptography (and formal security definitions)
e Game-based proofs

e Distributions and Probabilistic Logic

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list

Cryptography (and formal security definitions)

Game-based proofs

e Distributions and Probabilistic Logic

[]

Type Theory and Functional Programming

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list

Cryptography (and formal security definitions)

Game-based proofs

e Distributions and Probabilistic Logic

Type Theory and Functional Programming

[]

Algebraic Structures

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list

e Cryptography (and formal security definitions)
e Game-based proofs

e Distributions and Probabilistic Logic

e Type Theory and Functional Programming

e Algebraic Structures

e Inductive/Deductive Reasoning

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list

e Cryptography (and formal security definitions)
e Game-based proofs

e Distributions and Probabilistic Logic

e Type Theory and Functional Programming

e Algebraic Structures

e Inductive/Deductive Reasoning

e Debugging

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list

e Cryptography (and formal security definitions)
e Game-based proofs

e Distributions and Probabilistic Logic

e Type Theory and Functional Programming

e Algebraic Structures

e Inductive/Deductive Reasoning

e Debugging

e Management of feelings when opam decides to not work

Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

e Figuring out what needs to be in this list

e Cryptography (and formal security definitions)

e Game-based proofs

e Distributions and Probabilistic Logic

e Type Theory and Functional Programming

e Algebraic Structures

e Inductive/Deductive Reasoning

e Debugging

e Management of feelings when opam decides to not work

e Emacs...

Resolving Dependency Chains (for humans and software) (4/4)

Let's assume that such a list exists:

e Can we be sure that it is comprehensive?

10

Resolving Dependency Chains (for humans and software) (4/4)

Let's assume that such a list exists:

e Can we be sure that it is comprehensive?

e \What if we learn all of this, and then realize that the research

question depends on solving another problem?

10

Resolving Dependency Chains (for humans and software) (4/4)

Let's assume that such a list exists:

e Can we be sure that it is comprehensive?

e What if we learn all of this, and then realize that the research
question depends on solving another problem?

e Can we plan for such a project if there is no direct access to an

expert?

10

Teaching Material and Documentation

e Teaching material for generic proof assistant use is abundant!

11

Teaching Material and Documentation

e Teaching material for generic proof assistant use is abundant!

e Unfortunately, this is not the case for crypto-specific tools.

11

Teachin aterial and Documentation

e Teaching material for generic proof assistant use is abundant!
e Unfortunately, this is not the case for crypto-specific tools.

e | understand that writing documentation does not produce papers
for the person writing it;

11

Teachin aterial and Documentation

Teaching material for generic proof assistant use is abundant!

Unfortunately, this is not the case for crypto-specific tools.

| understand that writing documentation does not produce papers
for the person writing it;

e but good documentation might enable more people to get into
producing their own results!

11

Teachin aterial and Documentation

Teaching material for generic proof assistant use is abundant!

Unfortunately, this is not the case for crypto-specific tools.

| understand that writing documentation does not produce papers
for the person writing it;

but good documentation might enable more people to get into
producing their own results!

e How can we do better at that? Where can we start?

11

Reproducing and reasoning about results

e When the constructions we are attempting to analyze are so
complex, the results would be only understandable by experts using

the same tool.

12

Reproducing and reasoning about results

e When the constructions we are attempting to analyze are so
complex, the results would be only understandable by experts using
the same tool.

e |s it expected that it would take more than 4h to be able to setup

the toolchain to reproduce a certain result?

12

Reproducing and reasoning about results

e When the constructions we are attempting to analyze are so
complex, the results would be only understandable by experts using
the same tool.

e |s it expected that it would take more than 4h to be able to setup
the toolchain to reproduce a certain result?

e |n some cases, it is impossible to reason about or reproduce results if
they were drafted based on a version of a tool that has been

deprecated.

12

Academic Friction

e Novices are expected to be on par with experts when they would like

to have their results peer-reviewed.

13

Academic Friction

e Novices are expected to be on par with experts when they would like
to have their results peer-reviewed.

e Non-reproducible results or flawed proofs that were overlooked in the

review process fly under the radar and are rarely retracted.

13

Academic Friction

e Novices are expected to be on par with experts when they would like
to have their results peer-reviewed.

e Non-reproducible results or flawed proofs that were overlooked in the
review process fly under the radar and are rarely retracted.

e Some work happens behind closed doors (ex: non-public protocols).

13

Conclusion

Conclusion

e The tools we have are great! For those who are good at them.

How can we add more interested people to that set.

The problem does not lie strictly with the tooling, but how can we
reduce the friction from our side?

| would love to hear your thoughts and critiques.

14

	About Me
	Why am I giving this talk?
	Concerns
	Conclusion

