
Why formal methods remains inaccessible for

most cryptographers?

Georgio Nicolas (COSIC, KU Leuven)

Wednesday 27th March, 2024

EuroProofNet WG3 Meeting, TU Dresden



Table of contents

About Me

Why am I giving this talk?

Concerns

Conclusion

1



About Me



About Me 1/2

� 2nd year PhD Student, supervised by Nigel Smart and Bart Preneel.

� Been dabbling with formal methods since 2018.

� Worked on cute tools that are relatively usable: Noise Explorer /

Verifpal.

2



About Me 1/2

� 2nd year PhD Student, supervised by Nigel Smart and Bart Preneel.

� Been dabbling with formal methods since 2018.

� Worked on cute tools that are relatively usable: Noise Explorer /

Verifpal.

2



About Me 1/2

� 2nd year PhD Student, supervised by Nigel Smart and Bart Preneel.

� Been dabbling with formal methods since 2018.

� Worked on cute tools that are relatively usable: Noise Explorer /

Verifpal.

2



About Me 2/2

� I give 2 lectures/year about formal methods in a cryptographic

protocols course.

� Had a masters student who worked on verifying parts of a Shamir

Secret Sharing implementation in Rust.

� My love for the computational model is unreciprocated by the tools.

� For some reason, everyone in my group thinks that I’m an expert at

formal methods...

� I’m definitely not.

3



About Me 2/2

� I give 2 lectures/year about formal methods in a cryptographic

protocols course.

� Had a masters student who worked on verifying parts of a Shamir

Secret Sharing implementation in Rust.

� My love for the computational model is unreciprocated by the tools.

� For some reason, everyone in my group thinks that I’m an expert at

formal methods...

� I’m definitely not.

3



About Me 2/2

� I give 2 lectures/year about formal methods in a cryptographic

protocols course.

� Had a masters student who worked on verifying parts of a Shamir

Secret Sharing implementation in Rust.

� My love for the computational model is unreciprocated by the tools.

� For some reason, everyone in my group thinks that I’m an expert at

formal methods...

� I’m definitely not.

3



About Me 2/2

� I give 2 lectures/year about formal methods in a cryptographic

protocols course.

� Had a masters student who worked on verifying parts of a Shamir

Secret Sharing implementation in Rust.

� My love for the computational model is unreciprocated by the tools.

� For some reason, everyone in my group thinks that I’m an expert at

formal methods...

� I’m definitely not.

3



About Me 2/2

� I give 2 lectures/year about formal methods in a cryptographic

protocols course.

� Had a masters student who worked on verifying parts of a Shamir

Secret Sharing implementation in Rust.

� My love for the computational model is unreciprocated by the tools.

� For some reason, everyone in my group thinks that I’m an expert at

formal methods...

� I’m definitely not.

3



Why am I giving this talk?



Cryptography (1/3)

� Cryptography is equally powerful and fragile.

� High-assurances are required by definition.

� Constructions and proofs can get very complex.

� Perfect material for leveraging Formal Methods!

4



Cryptography (1/3)

� Cryptography is equally powerful and fragile.

� High-assurances are required by definition.

� Constructions and proofs can get very complex.

� Perfect material for leveraging Formal Methods!

4



Cryptography (1/3)

� Cryptography is equally powerful and fragile.

� High-assurances are required by definition.

� Constructions and proofs can get very complex.

� Perfect material for leveraging Formal Methods!

4



Cryptography (1/3)

� Cryptography is equally powerful and fragile.

� High-assurances are required by definition.

� Constructions and proofs can get very complex.

� Perfect material for leveraging Formal Methods!

4



Disclaimer (2/3)

� Whatever I say here is not to discredit any of the amazing work done

by the community!

� Every single contribution was crucial to getting us where we are

today.

� We have a plethora of tools with all sorts of functionalities and

guarantees!

� However... I think we can do better in some things.

5



Disclaimer (2/3)

� Whatever I say here is not to discredit any of the amazing work done

by the community!

� Every single contribution was crucial to getting us where we are

today.

� We have a plethora of tools with all sorts of functionalities and

guarantees!

� However... I think we can do better in some things.

5



Disclaimer (2/3)

� Whatever I say here is not to discredit any of the amazing work done

by the community!

� Every single contribution was crucial to getting us where we are

today.

� We have a plethora of tools with all sorts of functionalities and

guarantees!

� However... I think we can do better in some things.

5



Disclaimer (2/3)

� Whatever I say here is not to discredit any of the amazing work done

by the community!

� Every single contribution was crucial to getting us where we are

today.

� We have a plethora of tools with all sorts of functionalities and

guarantees!

� However... I think we can do better in some things.

5



Concerns (3/3)

� Resolving dependencies (for humans and software)

� Teaching material and documentation

� Reproducing and reasoning about results

� General friction with getting results accepted by the community

6



Concerns



Resolving Dependencies (for humans and software) (1/4)

� Our tools have dependency chains.

� Managing software dependency chains can be painful.

� Managing human dependency chains is even more painful.

7



Resolving Dependencies (for humans and software) (1/4)

� Our tools have dependency chains.

� Managing software dependency chains can be painful.

� Managing human dependency chains is even more painful.

7



Resolving Dependencies (for humans and software) (1/4)

� Our tools have dependency chains.

� Managing software dependency chains can be painful.

� Managing human dependency chains is even more painful.

7



Resolving Dependencies (for humans and software) (2/4)

Figure 1: EasyCrypt Software Dependencies.

8



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependencies (for humans and software) (3/4)

EasyCrypt Human Dependencies:

� Figuring out what needs to be in this list

� Cryptography (and formal security definitions)

� Game-based proofs

� Distributions and Probabilistic Logic

� Type Theory and Functional Programming

� Algebraic Structures

� Inductive/Deductive Reasoning

� Debugging

� Management of feelings when opam decides to not work

� Emacs...

9



Resolving Dependency Chains (for humans and software) (4/4)

Let’s assume that such a list exists:

� Can we be sure that it is comprehensive?

� What if we learn all of this, and then realize that the research

question depends on solving another problem?

� Can we plan for such a project if there is no direct access to an

expert?

10



Resolving Dependency Chains (for humans and software) (4/4)

Let’s assume that such a list exists:

� Can we be sure that it is comprehensive?

� What if we learn all of this, and then realize that the research

question depends on solving another problem?

� Can we plan for such a project if there is no direct access to an

expert?

10



Resolving Dependency Chains (for humans and software) (4/4)

Let’s assume that such a list exists:

� Can we be sure that it is comprehensive?

� What if we learn all of this, and then realize that the research

question depends on solving another problem?

� Can we plan for such a project if there is no direct access to an

expert?

10



Teaching Material and Documentation

� Teaching material for generic proof assistant use is abundant!

� Unfortunately, this is not the case for crypto-specific tools.

� I understand that writing documentation does not produce papers

for the person writing it;

� but good documentation might enable more people to get into

producing their own results!

� How can we do better at that? Where can we start?

11



Teaching Material and Documentation

� Teaching material for generic proof assistant use is abundant!

� Unfortunately, this is not the case for crypto-specific tools.

� I understand that writing documentation does not produce papers

for the person writing it;

� but good documentation might enable more people to get into

producing their own results!

� How can we do better at that? Where can we start?

11



Teaching Material and Documentation

� Teaching material for generic proof assistant use is abundant!

� Unfortunately, this is not the case for crypto-specific tools.

� I understand that writing documentation does not produce papers

for the person writing it;

� but good documentation might enable more people to get into

producing their own results!

� How can we do better at that? Where can we start?

11



Teaching Material and Documentation

� Teaching material for generic proof assistant use is abundant!

� Unfortunately, this is not the case for crypto-specific tools.

� I understand that writing documentation does not produce papers

for the person writing it;

� but good documentation might enable more people to get into

producing their own results!

� How can we do better at that? Where can we start?

11



Teaching Material and Documentation

� Teaching material for generic proof assistant use is abundant!

� Unfortunately, this is not the case for crypto-specific tools.

� I understand that writing documentation does not produce papers

for the person writing it;

� but good documentation might enable more people to get into

producing their own results!

� How can we do better at that? Where can we start?

11



Reproducing and reasoning about results

� When the constructions we are attempting to analyze are so

complex, the results would be only understandable by experts using

the same tool.

� Is it expected that it would take more than 4h to be able to setup

the toolchain to reproduce a certain result?

� In some cases, it is impossible to reason about or reproduce results if

they were drafted based on a version of a tool that has been

deprecated.

12



Reproducing and reasoning about results

� When the constructions we are attempting to analyze are so

complex, the results would be only understandable by experts using

the same tool.

� Is it expected that it would take more than 4h to be able to setup

the toolchain to reproduce a certain result?

� In some cases, it is impossible to reason about or reproduce results if

they were drafted based on a version of a tool that has been

deprecated.

12



Reproducing and reasoning about results

� When the constructions we are attempting to analyze are so

complex, the results would be only understandable by experts using

the same tool.

� Is it expected that it would take more than 4h to be able to setup

the toolchain to reproduce a certain result?

� In some cases, it is impossible to reason about or reproduce results if

they were drafted based on a version of a tool that has been

deprecated.

12



Academic Friction

� Novices are expected to be on par with experts when they would like

to have their results peer-reviewed.

� Non-reproducible results or flawed proofs that were overlooked in the

review process fly under the radar and are rarely retracted.

� Some work happens behind closed doors (ex: non-public protocols).

13



Academic Friction

� Novices are expected to be on par with experts when they would like

to have their results peer-reviewed.

� Non-reproducible results or flawed proofs that were overlooked in the

review process fly under the radar and are rarely retracted.

� Some work happens behind closed doors (ex: non-public protocols).

13



Academic Friction

� Novices are expected to be on par with experts when they would like

to have their results peer-reviewed.

� Non-reproducible results or flawed proofs that were overlooked in the

review process fly under the radar and are rarely retracted.

� Some work happens behind closed doors (ex: non-public protocols).

13



Conclusion



Conclusion

� The tools we have are great! For those who are good at them.

� How can we add more interested people to that set.

� The problem does not lie strictly with the tooling, but how can we

reduce the friction from our side?

� I would love to hear your thoughts and critiques.

14


	About Me
	Why am I giving this talk?
	Concerns
	Conclusion

