
Ilias Cherkaoui

Formal Verification of Cryptographic
Protocols

ProVerif slides are based on Blanchet & Cheval’s documentation

Motivation

• Ignored implementation details

• Use of obsolete modes

• Need for a synchronous automatic check

• Handling concurrent and serial processes.

Projects

• ProVerif: Automated tool for verification using a classic symbolic model
(Dolev-Yao).

• CryptoVerif: Mechanical verification using computation proofs.

• Tamarin Prover: Heuristic, deduction and equational reasoning.

• F*: Type-checker using SMT (satisfiability modulo theories) and manual
proofs (Ocaml..)

• Deepsec: Bounded number of sessions, security properties expressed as
trace equivalences.

• Scyther: Inference for proving or disproving a protocol.

• CertiCrypt: Coq-based for mechanised proofs in a computational model.

• EasyCrypt: Uses SMT and axiomatic rules to improve CertiCrypt timing.

Pi-calculus syntax

• N = {a, b, c, d, …} interconnection names

• P := 0 null process

 output

• a(x).P input

• P | P parallel

• vx. P restriction

• ! P replication

• P + P sum/choice

• |a(x).Q ⇒ P|Q {b/x} communication

Proverif Internal Mechanism

• 1- Processes

• 2- Horn Clauses

• 3- Saturation

• 4- Verification using all lemmas and
axioms.

ProVerif Initiation

On command line: ./proverif [options] ⟨filename⟩

Script:

(* This is a comment*)

free c : channel.

free RSA: bitstring [private].

query attacker (RSA) .

Process

 out (c ,RSA) ;

0

• Proverif tests the query not attacker(RSA), it is true when the name is not
derivable by the attacker.

• The attacker has, however, been able to obtain the free name RSA as denoted
by the RESULT not attacker:(RSA[]) is false.

• ProVerif is also able to provide an attack trace:

 out(c, ~M) with ~M = RSA at {1}

 The attacker has the message ~M = RSA.

Operations
• Constructors are used to build terms: f() for instance, a shared-key

encryption would be denoted by:

 fun senc(bitstring, key) : bitstring.

• Destructors use rewrite rules g() M.

 let x= g() in P else Q

 It can be seen in decryption:

 fun senc(bitstring, key) : bitstring

 reduc forall m : bitstring, k : key; sdec(senc(m, k), k) = m.

In other words,

• for each constructor f of arity n, the clause

 att() ∧ ... ∧ att() ⇒ att(f(,...,))

 is generated, representing that the adversary can compute f(,...,) by
applying f

 when it has , . . . , .

 For instance, for shared-key encryption senc, the following clause is
generated:

att(m) ∧ att(k) ⇒ att(senc(m, k))

• For each destructor g, defined by a rewrite rule g(,...,) → M, the clause

att() ∧ ... ∧ att() ⇒ att(M)

 is generated, representing that the adversary can compute M when it has ,..., ,
by applying g.

 For instance, for shared-key decryption sdec, defined by sdec(senc(m, k), k) →
m, the following clause is generated:

att(senc(m, k))∧att(k) ⇒ att(m)

 If the adversary has the ciphertext senc(m, k) and key k, it can obtain the
cleartext m by decryption.

Denning-Sacco Protocol

Ilias Cherkaoui

Formal Verification of Cryptographic
Protocols

Thank you.

	Slide 1
	ProVerif slides are based on Blanchet & Cheval’s documentation
	Slide 3
	Projects
	Slide 5
	Pi-calculus syntax
	Slide 7
	Proverif Internal Mechanism
	ProVerif Initiation
	Slide 10
	Slide 11
	Operations
	Slide 13
	Slide 14
	Slide 15
	Slide 16

