Ollscail
\v WA] TO N Institute for Information and s E Teicneolaiochta
A q A an Qirdheiscirt
Communication Systems Science
South East
echnological
ersity

Formal Verification of Cryptographic

Protocols
llias Cherkaoui




ProVerif slides are based on Blanchet & Cheval’s documentation



Motivation

Ignored implementation details

Use of obsolete modes

Need for a synchronous automatic check

Handling concurrent and serial processes.



Projects

ProVerif: Automated tool for verification using a classic symbolic model
(Dolev-Yao).

CryptoVerif: Mechanical verification using computation proofs.

Tamarin Prover: Heuristic, deduction and equational reasoning.

F*: Type-checker using SMT (satisfiability modulo theories) and manual
proofs (Ocaml..)



Deepsec: Bounded number of sessions, security properties expressed as
trace equivalences.

Scyther: Inference for proving or disproving a protocol.

CertiCrypt: Cog-based for mechanised proofs in a computational model.

EasyCrypt: Uses SMT and axiomatic rules to improve CertiCrypt timing.



Pi-calculus syntax

*N=4{a,b,cd, ..} Interconnection names
eP:=0 null process

output
* a(x).P iInput

*P|P parallel



e VX. P restriction
N replication
P+ P sum/choice

* [a(x).Q = P|Q {b/x} communication



Proverif Internal Mechanism

e 1- Processes
e 2- Horn Clauses
e 3- Saturation

* 4- Verification using all lemmas and
axioms.



ProVerif Initiation

On command line: Jproverif [options] (filename)
Script:

(* This is a comment*)

free c : channel.
free RSA: bitstring [private].
query attacker (RSA) .

Process
out (c ,RSA) ;

0



Process 0 (that is, the initial process):
{1}out(c, RSA)

-— Query not attacker(RSA[]) in process 0.
Translating the process into Horn clauses...
Completing. ..

Starting query not attacker(RSA[])

goal reachable: attacker(RSA[])

Derivation:

1. The message RSA[] may be sent to the attacker at output {1}.
attacker (RSA[]).

2. By 1, attacker(RSA[]).
The goal is reached, represented in the following fact:
attacker(RSA[]).

A more detailed output of the traces is available with
set traceDisplay = long.

out(c, "M) with "M = RSA at {1}

The attacker has the message "M = RSA.
A trace has been found.
RESULT not attacker(RSA[]) is false.

Verification summary:

Query not attacker(RSA[]) is false.



* Proverif tests the query not attacker(RSA), it is true when the name is not
derivable by the attacker.

* The attacker has, however, been able to obtain the free name RSA as denoted
by the RESULT not attacker:(RSA[]) is false.

* ProVerif is also able to provide an attack trace:

out(c, ~M) with ~M = RSA at {1}
The attacker has the message ~M = RSA.



Operations

* Constructors are used to build terms: f() for instance, a shared-key
encryption would be denoted by:

fun senc(bitstring, key) : bitstring.
 Destructors use rewrite rules g() M.

let x=g() in Pelse Q

It can be seen in decryption:

fun senc(bitstring, key) : bitstring
reduc forall m : bitstring, k : key; sdec(senc(m, k), k) = m.



In other words,

® for each constructor fof arity n, the clause
att() n ... n att() = att(f{(,..., ))

IS generated, representing that the adversary can compute (..., ) by
applying 7
whenithas, ...,.

For instance, for shared-key encryption senc, the following clause is
generated:

att(m) n att(k) = att(senc(m, k))



 For each destructor g, defined by a rewrite rule g(,..., ) = M, the clause
att() n ... n att() = att(M)

Is generated, representing that the adversary can compute Mwhen it has ,..., ,
by applying g.

For instance, for shared-key decryption sdec, defined by sdec(senc(m, k), k) =
m, the following clause is generated:

att(senc(m, k))ratt(k) = att(m)

If the adversary has the ciphertext senc(m, k) and key k, it can obtain the
cleartext m by decryption.



Denning-Sacco Protocol

Message 1. A — B: {{k}sk,tpk, Kk fresh
Message 2. B — A: {s}«

new ska.new skpg.let pk, = pk(ska) in let pkg = pk(skg) in
out(c, pk 4).out(c, pkg).
(A) l'in(c, x_pkg).new k.out(c, aenc(sign(k, ska),x_pkg)).

in(c, x).let s = sdec(x, k) in O

(B) | 'in(c,y).let y' = adec(y, skg) in
let k = check(y’, pk,) in out(c, senc(s, k))



Ollscail
\v WA] TO N Institute for Information and s E Teicneolaiochta
A q A an Qirdheiscirt
Communication Systems Science
South East
echnological
ersity

Thank you.

Formal Verification of Cryptographic

Protocols
llias Cherkaoui




	Slide 1
	ProVerif slides are based on Blanchet & Cheval’s documentation
	Slide 3
	Projects
	Slide 5
	Pi-calculus syntax
	Slide 7
	Proverif Internal Mechanism
	ProVerif Initiation
	Slide 10
	Slide 11
	Operations
	Slide 13
	Slide 14
	Slide 15
	Slide 16

