TLS and TEEs

Arto Niemi Principal Engineer Helsinki System Security Lab (HSSL) Huawei Technologies

EuroProofNet Tutorial on Usable Formal Methods for Security of Systems 27-28.3.2024, Dresden, Germany

Security Level: Public

Overview of the talk

- TLS: Transport Layer Security
 - > Widely-used for secure communication (HTTPS)
- TEE: Trusted Execution Environment
 - > Widely-used to protect keys (smartphones) and workloads (cloud)
- TLS and TEE: a happy marriage (?)
 - > Benefit 1: TEE makes TLS more secure
 - > Benefit 2: TLS helps TEE to communicate securely
 - > History, integration and standardization

Helsinki System Security Lab (HSSL)

- Part of Huawei Finland Research Center (FiRC)
 - > Around 25 employees (250+ in whole FiRC)
 - > Focuses on platform & system security
 - > Lots of former Nokia Research Center employees
- Significant TEE expertise
 - > Contributions to TrustedCore/iTrustee, Huawei Unified Keystore (HUKS)
 - > Representation in GlobalPlatform (TES Platforms & Services WGs), Linux CCC
- My earlier (pre-2020) background was in TLS & crypto implementation
 - > Found TEE use cases for TLS: device key provisioning, enclave migration, device health attestation

4

Transport Layer Security (TLS)

- World's most widely used secure communication protocol
 - > The "S" in HTTPS
 - > Client-server
 - > Conceptually: layers 5 & 6 in OSI model
- Establishes a secure channel
 - > Confidentiality, integrity for data
 - > Authentication of endpoints
 - > Replay protection, key confirmation, etc.
- TLS 1.3: 1.5 round-trips on top of TCP/IP
 - > UDP-based variant: DTLS

Timeline of TLS

		SSLEay (OpenSSL)	MatrixSS	GL mbedTI	_S		
	1980	1990	2000		2010	202	20
		SSL 1.0 SSL 2.0 SSL 3.0	TLS 1.0	TLS 1.2	IETF deprecates SSL 2.0	TLS 1.3 IETF deprecates SSL 3.0	IETF deprecates TLS 1.0 and TLS 1.1
 SSL SSL	 1.0 Netscape Flawed de integrity c 2.0 Only 1 cer Insecure N protection 3.0 First version support free Taher ElGa POODLE a 	internal protocol sign: no message or sequence numbers tificate per endpoint AD5 for integrity n on developed with om crypto experts (e.g. amal)	 TLS 1.0 1 TLS 1.1 TLS 1.1 TLS 1.2 1 	IETF takes over from Netso Basically the same protoco Attacks against RC4 cipher BEAST attack against CBC Renegotiation attack Heartbleed (OpenSSL) CRIME attack against com ROBOT attack against PKC	cape ol as SSL 3.0 rsuites padding pression S #1.5	 TLS 1.3 Sim We bind Less Onl Firs Widely-use Ope mb 	plified handshake II-designed key schedule with strong ding of secrets to particular handshake s round-trips y allow secure crypto t formally verified version ed implementations enSSL for high-end devices edTLS for embedded use cases

- Provides hardware-based support for:
 - > Isolated execution
 - > Protected storage (sealing)
 - > Ability to convince remote verifiers (remote attestation)
- Three varieties:
 - > 1. External secure co-processor (e.g. HSM, CryptoCard, SIM card)

Trusted Execution Environment (TEE)

- > 2. Embedded secure co-processor (e.g. TPM, SEP, eSIM)
- > 3. Processor secure environment:
 - > Split-world TEE (TrustZone)
 - > Enclave TEE (SGX, CCA)

Timeline of TEEs

	nemit		Onboard	Key attestation (concept)	GlobalPlatform TEE So (Annex C: TLS)	ocket API		
			credentials (Nokia) Finnish eID card	GlobalPlatf TEE OS	form Android KeyChain			
	1980	1990	2000	2010	20	20		
IBN (ea	1 3845, 3846 rly HSM)	SIM card (G&D for Radiolinja MNO)	Arm TrustZone M-Shield Trusted Platform (TI for Nokia) Module (TPM)		Intel SGX	Arm CCA		
Hardv	vare Security Moc	ule (HSM)	M-Shield	Key atte	estation	•	Confi	dential Computing
Subse Truste	IBM 3845 and 38 (1977) Clears secrets w (FIPS 140) criber Identity Mod Protects IMSI, ke Invented by G&I Radiolinja ed Platform Module Cheaper than a Measured boot, Required by Wir	Adde crypto devices Adde crypto devices when tampered with dule eys, small programs D for Finnish MNO e (TPM) HSM sealing ndows 10+	 Developed by TI in collaboration with Nokia Arm TrustZone First widely deployed TEE hardware Additional secure mode in the main CPU G&D MobiCore First widely deployed TrustZone-based TEE Intel SGX First widely deployed PSE for PCs Significantly inspired academic 	 C F S GlobalPl F V T p S c 	Concept: Kostiainen et al. Practical deployment: And Store + keymaster (2016) Hatform First standard for TEE OS Widely followed by mobile TMF and OTrP: way for ve provision keys into TEE ap Socket API: way for apps communicate with Interner • v.1.1 added TLS 1	(2010) Iroid Key TEE vendors endors to ops in TEE to t servers .3		Trend towards VM-level TEEs TLS: de-facto standard for communicating with cloud-based TEEs
	Huawei Public		research on TEES		 v.1.2 added attest v.1.x add server-si 	ide TLS ?		MUAWEI

٠

٠

٠

Gunn et al.: Hardware platform security for mobile devices, 2022

TLS does not verify endpoint security

"Using encryption on the Internet is the equivalent of arranging an armored car to deliver credit information from someone living in a cardboard box to someone living on a park bench"

- Gene Spafford

Client

Server

TLS does not verify endpoint security

"Using encryption on the Internet is the equivalent of arranging an armored car to deliver credit information from someone living in a cardboard box to someone living

secrets, confidential on a park bench"

workloads

Gene Spafford

Server

External secure co-processors

		Onboard	Key attestation (concept)	GlobalPlatform TEE Soc (Annex C: TLS)		
		credentials (Nokia) G&D MobiCore Finnish elD card	GlobalPlatf TEE OS	orm Android KeyChain		
1980	1990	2000	2010	2020	0	
IBM 3845, 3846 (early HSM)	SIM card (G&D for Radiolinja MNO)	Arm TrustZone M-Shield Trusted Platform (TI for Nokia) Module (TPM)		Intel SGX	Arm CCA	

- Hardware Security Module (HSM)
 - > Protects and operates cryptographic keys
 - > IBM 3845 and 3846 crypto devices (1977) were among the first
 - > Early usage: finance (ATMs), military communication
 - > Used especially to protect certificate signing keys (e.g. in EMV key management)
 - > Clears secrets when tampered with (FIPS 140)

- Subscriber Identity Module
 - > Protects IMSI, symmetric keys and small programs
 - > Invented by G&D for Finnish MNO Radiolinja
 - > Typically not combined with TLS (c.f. GP SCP)
- EU electronic identity (eID) cards
 - > Protects identity, TLS client authentication private key
 - > Finnish and Estonian eID cards were first to have privkey + cert

Securing TLS with HSM

HSM protects endpoint authentication private key and signs the hash of messages (for CertificateVerify)

Securing TLS with HSM

- HSM protects identity (key), but... •
 - App data not secured •

12

• endpoint is in a secure state (uncompromised)

Embedded secure co-processor

		Onboard	Key attestation GlobalPlatform TEE Socket API (concept) (Annex C: TLS)			
		credentials (Nokia) G&D MobiCore Finnish eID card	GlobalPlatf TEE OS	orm Android KeyChain		
1980	1990	2000	2010	20	20	
IBM 3845, 3846 (early HSM)	SIM card (G&D for Radiolinja MNO)	Arm TrustZone M-Shield Trusted Platform (TI for Nokia) Module (TPM)		Intel SGX	Arm CCA	

- Trusted Platform Module (TPM)
 - > Cheaper than a HSM
 - > Protects keys
 - > Can attest the TLS endpoint (measured boot)
 - > Required by Windows 10+

- Apple Secure Enclave Processor (SEP)
- Google Titan-M
- Microsoft Pluton

Securing TLS with TPM (one way)

Securing TLS with TPM (one way)

- Now endpoint security can be ٠ validated using remote attestation
- But app data is still not ٠ secured

Processor secure environment (PSE)

Securing TLS with PSE

Whole TLS endpoint can be in the TEE

Recap

- Benefit 1: TEE makes TLS more secure
- Benefit 2: TLS helps TEE to communicate securely
- 1. TLS + HSM: secures endpoint identity
- 2. TLS + TPM: secure endpoint identity, boot-time integrity
- 3. TLS + PSE: secures whole TLS endpoint (keys, integrity, data)

TLS can help TEE to communicate

- Use case 1: provisioning
 - > Install / update TA, provision secrets (e.g. DRM keys)
 - > Provision confidential cloud workload (e.g. LLM)
- Use case 2: access to services
 - > TA in smartphone talks to backend (e.g. banking app)
 - > Migrate workloads between two TEEs
 - > Request services from cloud (e.g. query LLM)
- Need standards and interoperability

TEE attestation + communication timeline

		Onboa	ard	Key attestation Globa (concept) (Anne	alPlatform TEE Sock ex C: TLS)	ket API
		credei	ntials G&D MobiCore	GlobalPlatform TEE OS	Android KeyChain	
1980	1990	2000		2010	2020	
IBM 3845, 3846 (early HSM)	SIM card (G&D for Radiolinja MNO)	Arm M-Shield (TI for Noł	n TrustZone Trusted Platform kia) Module (TPM)	Intel	SGX	Arm CCA
 Key attestat Proof t 	tion hat key cannot leave TEE	• G	 IobalPlatform First standard for 	r TEE OS	Confidenti "TEE	al Computing s in the cloud"
 Conce Practic (2016) 	pt: Kostiainen et al. (2010) al deployment: Android Ke	yChain	 Widely followed TMF and OTrP: provision keys in 	by mobile TEE vendors way for vendors to nto TEE apps	 Trend TLS: comm 	d towards VM-level TEEs de-facto standard for nunicating with cloud-based TEEs
			 Socket API: way communicate with v.1.1 adde v.1.2 adde v.1.2 adde 	of for apps in TEE to th Internet servers ed TLS 1.3 ed attested TLS	• Harm	onization via Linux CCC projects

TLS + TEE timeline

Integrating remote attestation and TLS

- Criteria:
 - Should not modify core protocol
 - Should be convenient to use with existing TLS libraries
 - Should be efficient (no extra round-trips)
 - Should be secure (channel binding)
- PKI-based attestation
 - CA appraises evidence during certificate issuance
 - Only attestation result, not evidence, is transmitted during HS
 - See later talk on attested CSR
- Pre-handshake
 - Evidence signed before HS (e.g. Intel RA-TLS)
- Post-handshake
 - Transmit evidence after HS (e.g. SCONE)
- Intra-handshake: sign & transmit evidence during HS
 - No extra roundtrips + strong channel binding
 - Works with existing TLS APIs (+extra configuration step)
 - Turns TLS into trusted channel (no intermediate phase)

Relay attack

- Attacker handshakes with an uncompromised device to get a valid-looking attestation evidence for his compromised device
- Possible because the attestation evidence was not bound to a specific TLS handshake or endpoint

Channel binding

- Channel binding:
 - Establishing that no man-in-the-middle exists between two end-points that have attested/authenticated each other in one (inner) protocol, but are using a secure channel provided by another, (outer) protocol
- Channel bindings (CB)
 - A unique identifier for a protocol session or endpoint
- *Explicit* channel binding
 - Endpoints compute CBs, transmit them over the wire
 - Endpoints check that self-computed CB matches received CB
- *Implicit* channel binding
 - CB of inner protocol is used in the key derivation of the outer protocol

Examples of attested TLS

- Trusted Sockets Layer
 - Intra-handshake
 - Send evidence as an extension in X.509 endpoint authentication certificate
 - Use TLS-Exporter as channel bindings --> makes evidence valid only in a single handshake.
- IETF's attested TLS draft RFC
 - Intra-handshake
 - Allow multiple ways to send evidence
 - Extensions for requesting and transmitting evidence
 - Allow Web PKI and attestation certificates to co-exist
 - Optional channel bindings
- GlobalPlatform TEE Sockets API v1.2 Annex C
 - Intra- & post-handshake
 - Defines *APIs* for attested TLS
 - Now: write TA, use custom attested TLS protocol
 - After attested TLS is standardized: use it (without needing to change TA code) or keep using custom

Summary

- State of the TLS
 - Initially developed for web browsers (online commerce), now omnipresent, used for most Internet traffic (HTTPS)
 - > Version 1.3 regarded secure, formally verified
- State of the TEE
 - Categories: 1) external and 2) embedded coprocessors, 3) processor secure environments (PSE)
 - > PSEs introduced in Nokia devices (IMEI, subsidy lock)
 - > Today very widely available:
 - Every smartphone has a PSE (TrustZonebased/GlobalPlatform-compliant)
 - Every PC has a TPM (for Windows/BitLocker)
 - Cloud providers deploying VM-granular TEEs (Confidential Computing): AMD SEV-SNP, Intel TDX

- TLS and TEE: a happy marriage? Yes!
 - > TEE makes TLS more secure
 - > TLS helps TEE to communicate securely
 - > Challenges:
 - Integration of RA not yet a solved problem (formal verification will help)
 - > Lack of standard for attested TLS
 - > And what about PKI?
 - > Both now over 30 years old it is about time!

Thank you! Any questions?

