A Rollercoaster Ride on the Formal Analysis of Attested TLS

Muhammad Usama Sardar¹, Arto Niemi², Hannes Tschofenig³, Thomas Fossati⁴

¹TU Dresden, Germany

²Huawei Technologies, Helsinki, Finland

³University of Applied Sciences Bonn-Rhein-Sieg and Siemens, Germany

⁴Linaro, Lausanne, Switzerland

March 28, 2024

Muhammad Usama Sardar (TUD)

Agenda

1 TLS

- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)

4 Contributions

- 5 Approach and Tool
- 6 Validation of TLS 1.3
- Formal Analysis of Attested TLS

8 Summary

• TLS¹: world's most-used cryptographic protocol

2/39

¹https://datatracker.ietf.org/doc/html/rfc8446

- TLS¹: world's most-used cryptographic protocol
- Conceptually 2 main subprotocols:

2/39

¹https://datatracker.ietf.org/doc/html/rfc8446

- TLS¹: world's most-used cryptographic protocol
- Conceptually 2 main subprotocols:

¹https://datatracker.ietf.org/doc/html/rfc8446

- TLS¹: world's most-used cryptographic protocol
- Conceptually 2 main subprotocols:

¹https://datatracker.ietf.org/doc/html/rfc8446

TLS Handshake Protocol

- Most complex part of TLS
 - 1. Unauthenticated key exchange (and parameter negotiation)
 - 2. Authentication (inc. key confirmation)

Muhammad Usama Sardar (TUD)

• No validation of security state of endpoint software and platform

- No validation of security state of endpoint software and platform
 - Need a more comprehensive set of security metrics in some use cases, e.g., CC

- No validation of security state of endpoint software and platform
 - Need a more comprehensive set of security metrics in some use cases, e.g., CC
- Very complex: at least 15 different exploits

- No validation of security state of endpoint software and platform
 - Need a more comprehensive set of security metrics in some use cases, e.g., CC
- Very complex: at least 15 different exploits
 - Is all complexity (e.g., of key schedule) justified?

Outline

1 TLS

2 Attestation (RA)

- 3 Attested TLS (RA+TLS)
- 4 Contributions
- 5 Approach and Tool

Validation of TLS 1.3

- Key Schedule
- Validation of Key Schedule

Formal Analysis of Attested TLS

- Flow
- Property

Summary

Architecturally-defined Attestation

Architecturally-defined Attestation

Architecturally-defined Attestation

Data-in-use: Architecturally-defined attestation²

Intel TDX

	Integrity	Freshness	Confidentiality	Authentication
Intel's claimed TCB	×	×	×	×
Our proposed TCB	\checkmark	\checkmark	\checkmark	×

• Arm CCA

Attester	Integrity	Freshness	Confidentiality	Authentication
Platform	\checkmark	×	\checkmark	×
Realm	\checkmark	\checkmark	\checkmark	×

• Problem 1: No server authentication (e.g., misconfiguration)

• Problem 2: No standard way of implementation

Muhammad Usama Sardar (TUD)

²Sardar et al., Formal Specification and Verification of Architecturally-defined Attestation Mechanisms in Arm CCA and Intel TDX, 2023.

Outline

1 TLS

2 Attestation (RA)

3 Attested TLS (RA+TLS)

- 4 Contributions
- 5 Approach and Tool

Validation of TLS 1.3

- Key Schedule
- Validation of Key Schedule

7 Formal Analysis of Attested TLS

- Flow
- Property

Summary

Data-in-transit + Data-in-use

Muhammad Usama Sardar (TUD)

Intel's RA-TLS³

• Widely used protocol, e.g., in Gramine, RATS-TLS, Open Enclave Attested TLS, and SGX SDK Attested TLS

Figure 1: Remote Attestation Example. The challenger is off-platform with respect to the attester.

³Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

Intel's RA-TLS³

• Widely used protocol, e.g., in Gramine, RATS-TLS, Open Enclave Attested TLS, and SGX SDK Attested TLS

Figure 2: TLS 1.2 Handshake Messages.

³Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

Outline

1 TLS

- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)

4 Contributions

5 Approach and Tool

Validation of TLS 1.3

- Key Schedule
- Validation of Key Schedule

Formal Analysis of Attested TLS

- Flow
- Property

Summary

11/39

Contributions

 Validation of formal model⁴ of TLS 1.3 Key Schedule, revealing 3 major issues

⁴https://github.com/Inria-Prosecco/reftls

Contributions

- Validation of formal model⁴ of TLS 1.3 Key Schedule, revealing 3 major issues
- First formal analysis of attested TLS for TEEs

⁴https://github.com/Inria-Prosecco/reftls

Outline

1 TLS

- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Contributions
- 5 Approach and Tool

Validation of TLS 1.3

- Key Schedule
- Validation of Key Schedule

Formal Analysis of Attested TLS

- Flow
- Property

Summary

 $^{^5\}mathsf{Blanchet},$ Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

⁶Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

Benefits of Symbolic

Muhammad Usama Sardar (TUD)

 $^{^5\}mathsf{Blanchet},$ Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

⁶Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

- Benefits of Symbolic
 - Reasonable level of abstraction

 $^{^5\}mathsf{Blanchet},$ Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

⁶Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

- Benefits of Symbolic
 - Reasonable level of abstraction
 - Unbounded number of sessions

 $^{^5\}mathsf{B}\mathsf{lanchet},$ Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

⁶Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

- Benefits of Symbolic
 - Reasonable level of abstraction
 - Unbounded number of sessions
- Limitation of Symbolic

 $^{^5}Blanchet,$ Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

⁶Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

- Benefits of Symbolic
 - Reasonable level of abstraction
 - Unbounded number of sessions
- Limitation of Symbolic
 - Non-probabilistic model of cryptographic primitives

⁶Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

Muhammad Usama Sardar (TUD)

 $^{^5\}mathsf{B}\mathsf{lanchet},$ Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

- Benefits of Symbolic
 - Reasonable level of abstraction
 - Unbounded number of sessions
- Limitation of Symbolic
 - Non-probabilistic model of cryptographic primitives
 - Side-channels out of scope

⁶Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

Muhammad Usama Sardar (TUD)

 $^{^5\}mathsf{B}\mathsf{lanchet},$ Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

- Benefits of Symbolic
 - Reasonable level of abstraction
 - Unbounded number of sessions
- Limitation of Symbolic
 - Non-probabilistic model of cryptographic primitives
 - Side-channels out of scope
- Tool used: ProVerif⁵

⁶Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

Muhammad Usama Sardar (TUD)

 $^{^5\}mathsf{B}\mathsf{lanchet},$ Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022.

- Benefits of Symbolic
 - Reasonable level of abstraction
 - Unbounded number of sessions
- Limitation of Symbolic
 - Non-probabilistic model of cryptographic primitives
 - Side-channels out of scope
- Tool used: ProVerif⁵
 - Applied pi-calculus

⁵Blanchet, Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022. ⁶Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

- Benefits of Symbolic
 - Reasonable level of abstraction
 - Unbounded number of sessions
- Limitation of Symbolic
 - Non-probabilistic model of cryptographic primitives
 - Side-channels out of scope
- Tool used: ProVerif⁵
 - Applied pi-calculus
 - Faster and extension to computational proofs (CryptoVerif)

 $^{^5}$ Blanchet, Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022. 6 Barbosa et al., "SoK : Computer-Aided Cryptography", 2021.

Approach - Simplified

"Rollercoaster"

• Incomplete and outdated specs for RA-TLS⁷

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/
- Incomplete and outdated specs for RA-TLS⁷
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS⁷
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS⁷
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model⁸

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS⁷
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model⁸
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS⁷
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model⁸
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts⁹

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS⁷
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model⁸
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts⁹
 - Fix: Designed an automated validation framework for key schedule

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS⁷
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model⁸
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts⁹
 - Fix: Designed an automated validation framework for key schedule
- A simple extension made the artifacts running for 1 month on high-end server (icelake)

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS⁷
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model⁸
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts⁹
 - Fix: Designed an automated validation framework for key schedule
- A simple extension made the artifacts running for 1 month on high-end server (icelake)
 - Submitted to ProVerif developers for analysis

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS⁷
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model⁸
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts⁹
 - Fix: Designed an automated validation framework for key schedule
- A simple extension made the artifacts running for 1 month on high-end server (icelake)
 - Submitted to ProVerif developers for analysis
 - Fix: Formal model from scratch

Muhammad Usama Sardar (TUD)

⁷Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

⁸https://github.com/Inria-Prosecco/reftls/tree/master/pv

⁹https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

Approach

Muhammad Usama Sardar (TUD)

March 28, 2024

17 / 39

Outline

1 TLS

- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Contributions
- 5 Approach and Tool

6 Validation of TLS 1.3

- Key Schedule
- Validation of Key Schedule

- Flow
- Property

Summary

18 / 39

- Key Schedule
- Validation of Key Schedule

Key Schedule - Overview

Muhammad Usama Sardar (TUD)

Key Schedule¹⁰

```
0
PSK -> HKDF-Extract = Early Secret
          +----> Derive-Secret(., "ext binder" | "res binder", "")
                               = binder_key
          +----> Derive-Secret(., "c e traffic", ClientHello)
                               = client early traffic secret
         +----> Derive-Secret(., "e exp master", ClientHello)
                               = early exporter master secret
   Derive-Secret(., "derived", "")
(EC)DHE -> HKDF-Extract = Handshake Secret
         +----> Derive-Secret(.. "c hs traffic".
                               ClientHello...ServerHello)
                               = client handshake traffic secret
          +----> Derive-Secret(., "s hs traffic",
                               ClientHello...ServerHello)
                               = server_handshake_traffic_secret
   Derive-Secret(., "derived", "")
0 -> HKDF-Extract = Master Secret
          +----> Derive-Secret(., "c ap traffic",
                               ClientHello...server Finished)
                               = client_application_traffic_secret_0
          +----> Derive-Secret(., "s ap traffic",
                               ClientHello...server Finished)
                               = server application traffic secret 0
          +----> Derive-Secret(., "exp master",
                               ClientHello...server Finished)
                               = exporter_master_secret
          +----> Derive-Secret(., "res master",
                               ClientHello...client Finished)
                               = resumption master secret
```

```
<sup>10</sup>https://datatracker.ietf.org/doc/html/rfc8446#section-7.1
```

Key Schedule with 2nd Stage

Muhammad Usama Sardar (TUD)

Agenda

- Key Schedule
- Validation of Key Schedule

Validation Framework

Validation Result

Muhammad Usama Sardar (TUD)

Issue 1: Salt for Handshake Secret¹¹

¹¹https://github.com/Inria-Prosecco/reftls/issues/7

Issue 2: Salt for Master Secret¹²

¹²https://github.com/Inria-Prosecco/reftls/issues/7

Issue 3: Master Secret¹³

¹³https://github.com/Inria-Prosecco/reftls/issues/6

Ruling out Abstractions

Ubuntu 20.04 LTS on an Intel Core i7-11800H processor with 64 GB of RAM

Code	ProVerif 2.04	ProVerif 2.05
Original	6 min 06.634 s	6 min 02.256 s
With issue 1 fixed	5 min 51.682 s	6 min 03.335 s
With issue 2 fixed	7 min 04.472 s	6 min 14.954 s
With issue 3 fixed	7 min 11.434 s	6 min 41.872 s
With all 3 issues fixed	6 min 40.010 s	6 min 31.887 s

Community input

- Paper authors¹⁴
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK¹⁵ authors
- IETF TLS WG¹⁶
- IRTF UFMRG chairs
- CCC attestation SIG¹⁷
- ..
- IETF 119 Hackathon¹⁸
- IRTF Crypto Forum RG @ IETF 119¹⁹

¹⁴Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate", 2017.

¹⁵https://github.com/lurk-t/proverif

¹⁶https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{17} \tt https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf$

¹⁸https://wiki.ietf.org/meeting/119/hackathon

¹⁹https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00

Muhammad Usama Sardar (TUD)

Outline

1 TLS

- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Contributions
- 5 Approach and Tool

• Validation of TLS 1.3

- Key Schedule
- Validation of Key Schedule

Formal Analysis of Attested TLS

- Flow
- Property

• Property

RA-TLS in BC Model

Muhammad Usama Sardar (TUD)

- Flow
- Property

Replay Protection of Evidence

query ev : bitstring;

inj - event(Accepted(ev)) = => inj - event(Sent(ev)) (1)

Muhammad Usama Sardar (TUD)

Attack Trace (BC with one-way authenticated channel)

Outline

1 TLS

- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Contributions
- 5 Approach and Tool

Validation of TLS 1.3

- Key Schedule
- Validation of Key Schedule

7 Formal Analysis of Attested TLS

- Flow
- Property

• Intel's RA-TLS is potentially vulnerable to replay attacks

38 / 39

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt
 - 1. Comments in formal models (best practices)

38 / 39

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of tools for formal analysis

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of tools for formal analysis
- Plan

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of tools for formal analysis
- Plan
 - Client-side attestation

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of tools for formal analysis
- Plan
 - Client-side attestation
 - Propose and verify the fixed version for RA-TLS

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of tools for formal analysis
- Plan
 - Client-side attestation
 - Propose and verify the fixed version for RA-TLS
- Call to action

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Inria's formal model of TLS 1.3 draft-20 key schedule is wrong!
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of tools for formal analysis
- Plan
 - Client-side attestation
 - Propose and verify the fixed version for RA-TLS
- Call to action
 - anyone interested?

Key References

- Barbosa, Manuel et al. "SoK : Computer-Aided Cryptography". In: 42nd IEEE Symposium on Security and Privacy. 2021. URL: https://eprint.iacr.org/2019/1393.pdf.
- Bhargavan, Karthikeyan, Bruno Blanchet, and Nadim Kobeissi. "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate". In: 2017 IEEE Symposium on Security and Privacy (SP). 2017, pp. 483–502. DOI: 10.1109/SP.2017.26.
- Blanchet, Bruno, Vincent Cheval, and Véronique Cortier. "ProVerif with lemmas, induction, fast subsumption, and much more". In: IEEE Symposium on Security and Privacy (S&P'22). Los Alamitos, CA, USA: IEEE Computer Society, May 2022, pp. 205–222. DOI: 10.1109/SP46214.2022.00013.
 - Knauth, T. et al. Integrating Remote Attestation with Transport Layer Security. Tech. rep. Intel Labs, 2018. URL: https://arxiv.org/abs/1801.05863.
 - Sardar, Muhammad Usama et al. Formal Specification and Verification of Architecturally-defined Attestation Mechanisms in Arm CCA and Intel TDX. Nov. 2023. URL: https://www.researchgate.net/publication/375592777_Formal_Specification_ and_Verification_of_Architecturallydefined_Attestation_Mechanisms_in_Arm_CCA_and_Intel_TDX.