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What is integrity?

• Ensuring system correctness

 If the user supplies expected input, system 
generates desired output

• Ensuring security

  If an attacker supplies unexpected input, system 
does not fail in certain ways



My research area

• Understanding of the issues involved in building high 
integrity software intensive systems. 

• Providing both practical and theoretical insights into 
industrial strength tools and techniques that promote 
the development and modelling of high integrity 
software intensive systems.

• Reasoning techniques in AI with focus on high integrity.



Relevance of integrity 

We consider cases where high integrity is needed:

• Security

• Data, knowledge and process management

• Meaning and disambiguation

• Achieving program efficiency and correctness

• Data transmission over a network and network modelling.



Today’s talk 

Tools for model analysis:

• Alloy

• Spin

• UPPAAL



Dynamic versus static models 

• Security as code – a model where we define our Cyber 
security policies as Code and not as a static rule. 

• Three areas of focus for Security as Code:

• Security Testing

• Vulnerability Scanning

• Access Control and Policy Management

• Refers to various routines, subroutines and scripts. 



Dynamic models in Alloy

• Basics of dynamic models

• Modeling a system’s states and state 

transitions

• Modeling operations causing transitions

• Simple example of operations



Static Models
Alloy is used to define the allowable values of 
state components

• values of sets

• values of relations

• A model instance is a set of state 
component values that

• Satisfies the constraints defined by 
multiplicities, fact, “realism” conditions, 
…
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Dynamic Models

• Static models allow us to describe the legal 
states of a dynamic system

• We also want to be able to describe the 
legal transitions between states

E.g.

• A message is sent before it can be received.
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Example
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abstract sig Person {
 senders: set Person,
 recipients: set Person
} 

sig Sender, Receiver extends Person {}

sig Signatory in Person {
 signed: one Signatory
}

Message Model



Modeling State Transitions

• Alloy does not have an embedded notions of state transition. 

• However, there are several ways to model dynamic aspects of a 
system

• A a general and relatively simple one is to: 

• introduce a Time signature expressing time and

• add a time component to each relation that changes over time
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Signatures are static
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abstract sig Person {
 sender: Person set -> Time,
 recipients: Person set -> Time,
 signatory: Person lone -> Time
}
sig Man, Woman extends Person {}

sig Signatory in Person {
 signed: Signatory one -> Time
}

Message Model



Signatures are static
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abstract sig Person {
 children: Person set -> Time,
 siblings: Person set -> Time,
 spouse: Person lone -> Time
}

sig Man, Woman extends Person {}

Family Model: Another example

We want to add this relation, but where?

alive: Person set -> Time



Signatures are static
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abstract sig Person {
 children: Person set -> Time,
 siblings: Person set -> Time,
 spouse: Person lone -> Time
 alive: set Time

}

sig Man, Woman extends Person {}

Family Model



Revising static constraints

fact static {

 -- People cannot be their own ancestors

 all t: Time | no p: Person | 

    p in p.^(parents.t)

 -- No one can have more than one father

 -- or mother

 all t: Time | all p: Person | 

  lone (p.parents.t & Man) 

     and 

  lone (p.parents.t & Woman) 

 ...
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Revising static 
constraints...

-- A person p's siblings are those people other

-- than p with the same parents as p

all t: Time | all p: Person | 

  some p.parents.t implies 

  p.siblings.t = 

   ({q: Person | p.parents.t = q.parents.t} – p )

 else no p.siblings.t

-- Each married man (woman) has a wife (husband) 

all t: Time | all p: Person | 

  let s = p.spouse.t |

   (p in Man implies s in Woman) and

    (p in Woman implies s in Man)

 ...
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Transitions
• A person is born

• Add to alive relation

• NB: No requirement that a person have parents
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Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {} 

children = {}

siblings = {}

alive = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {Sue}Time t Time t’



State Sequences
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Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

alive = {Sue, Matt}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

alive = {Sue, Matt, Sean}



Express a transition in Alloy

• A transition can be modeled as a predicate between 
two states: 

• the state right before the transition and

• the state right after it

• We define it as predicate with (at least) two formal 
parameters: t, t’: Time

• Constraints over time t (resp., t’) model the state 
right before (resp., after) the transition
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Express a transition in 
Alloy

• Pre condition constraints

Describe the states to which the transition applies

• Post condition constraints

• Describes the effects of the transition in generating the next state

• Frame condition constraints

• Describes what does not change between pre-state and post-state of a 
transition

 Distinguishing the pre, post and frame conditions in comment provides useful 
documentation
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Example: Marriage
pred marriage [m: Man, w: Woman, t,t': Time, ] {

-- precondition

-- m and w must be alive before marriage

  m+w in alive.t

  -- neither one can be married

no (m+w).spouse.t

  -- they must not be blood relatives

not BloodRelatives [m, w, t]

-- post-condition

  -- After marriage w is m’s wife

m.spouse.t' = w

  -- After marriage m is w’s husband

-- (redundant) 

-- frame condition 

}
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Frame condition
Which relations are untouched by marriage?

• 5 relations : 

• children, parents, siblings

• spouse

• alive

• parents and siblings relations are defined
in terms of children relation

• Thus, the frame condition has only to 
consider children, spouse and alive
relations
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Example: Marriage
pred marriage [m: Man, w: Woman, t,t': Time]

{

-- precondition

m+w in alive.t

no (m+w).spouse.t

not BloodRelatives [m, w, t]

-- post-condition

m.spouse.t' = w

-- frame condition

noChildrenChangeExcept [none, t, t’]

noSpouseChangeExcept [m+w, t, t’]

noAliveChange [t, t’]

}
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Instance of marriage
open ordering [Time] as T

…

pred marriageInstance {

 some t: Time | 

  some m: Man | some w: Woman | 

   let t' = T/next [t] | 

     marriage [m, w, t, t’]

}

run { marriageInstance }
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Specifying a transition system

• A transition system is a set of traces: sequences of time steps
generated by the operators

• For every trace:

• The first time step satisfies some initialization condition

• Each pair of consecutive steps are related by an operation.
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Specification of an 
initial step

pred init [t: Time] {

no children.t

no spouse.t

no alive.t

}
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Specification of a trace
fact Trace {

init [T/first]

all t: Time - T/last | 

let t’ = T/next [t] |

birth [t, t’] or 

one m: Man | one w: Woman |

marriage [m, w, t, t’] or 

birthFromParents [m, w, t, t’]

}

run {Trace and some Man and some Woman}
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Realism constraint

run {

 marriageInstance

 birthInstance

 birthFromParentsInstance

} for 5
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• Man-In-The-Middle attack is the type of attack where 
attackers intrude into an existing connection to intercept 
the exchanged data pretending to be client to the server 
and server to the client. 

• It involves intercepting encrypted messages , 
eavesdropping on a connection ( passive) , and/or 
modifying  data(active). 

Man in the middle attack
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assert RealAndVertualConnection
{
All 
R_Client,V_Client,server:Actor,RC_t,VC_t,t0,t1:Time,RC_IP,VC_IP:IP,req
uest:Request |
(server.S_receive.Packet<:RC_IP= server.S_receive.Packet<:VC_IP)
And
(server.S_receive.Packet<:RC_t= server.S_receive.Packet<:VC_t)
Implies
R_Client.RC_sends.reuest->t0= server.S_receive.reuest->t0
And
V_Client.RC_sends.reuest->t0= server.S_receive.reuest->t0

} 

Assert and Prove



Else
(server.S_receive.Packet<:RC_IP= server.S_receive.Packet<:VC_IP)
And
(server.S_receive.Packet<:RC_t != V_Client.S_receive.Packet<:VC_t)
Implies
R_Client.RC_sends.reuest->t0 != server.S_receive.reuest->t1
And
V_Client.RC_sends.reuest->t0= server.S_receive.reuest->t0

} 

Assert and Prove



Model Checking

An automated technique 
that,given a finite-state 
model of a system and a 
logical property, 
systematically checks 
whether this property 
holds for a given initial 
state in that model.

Edmund M. Clarke. The birth of model checking. In 25 Years of Model Checking,

volume 5000 of Lecture Notes in Computer Science, pages 1{26, 2008.



Model Checking or 
model Analysis

• The checking process is automatic.

• Model checking is faster than traditional 
verification techniques (i.e. testing), and 
therefore it saves time and cost.

• Using logics can express many properties 
needed for reasoning about concurrent 
systems.



SPIN Model checker

• It is a model checker for the temporal logic 
LTL.

• Aimed at verification of protocols and 
software.

• Provides a graphical user interface (ispin) 
to the model checker and to an interactive 
simulator.

G.J. Holzmann. The SPIN model checker: Primer and reference manual.

Addison-Wesley Professional, 2004.



PROMELA 
Syntax

• The structure of a PROMELA (PROcess 
MEta LAnguage) program. 



• Investigated how to 
model: 
1.Authentication

• 2.Session 
management

• 3 Navigation 
behaviour in an 
application.



Modelling Web 
applications

• In page transitions; web pages are treated 
as states and; page transitions as a state 
transition.

• The Internal states represent the business 
logic, determined by input values .

• The internal state occurs synchronously 
with the page transition. 



Modelling 
Authentication

• We modelled a security protocol at the 
start of the session. 

• The user send his login credentials.



Modelling Session 
management

• Session is maintained throughout the 
communication. 

• Non-deterministic (Timeouts) are given 
during the session. 



Representation In Promeal 

A client is sending a 
request to login; the 
server receives it and 
reply.  

chan Client ToServer = [0] of {mtype};
chan ServerToClient = [0] of {mtype};
mtype = {loginReq , ACK}; 

active proctype Pages()  {

HomePage:do ::        if        :: Client ToServer ! loginReq 
-> ServerToCilent ? ACK->goto loginPage;        fi; 
od; }

active proctype InternalState() {
do :: 
       if 
       :: ClientToServer ? loginReq ->
atomic {ServerToChanel!ACK;goto SloginPage};
fi;
od; 
}



Model Simulation

• SPIN’s 
Simulation 
chart 

• Online-
banking 
model.



DTSpin

• We extend our Promela model with 
discrete time macros.

• This will give us the ability to construct 
realistic web applications models. 

Reference: http://www.win.tue.nl/~dragan/DTSpin/

http://livepage.apple.com/


UPPAAL model checker

• UPPAAL is used to verify real time systems.

• Models are defined graphically.  

http://www.uppaal.com/

http://livepage.apple.com/


SPIN vs UPPAAL

• Design time in UPPAAL is less than building 
the Promela model. 

• Same model Processes are defined in both 
tools.

• In Spin early modelling faults can be 
detected via the “ Message Sequence 
Charts”
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