
Applications of Advanced Technologies
for High Integrity

L.Georgieva
lilia@macs.hw.ac.uk

Dependable Systems Group
Heriot Watt University

Edinburgh, UK

What is integrity?

• Ensuring system correctness

 If the user supplies expected input, system
generates desired output

• Ensuring security

 If an attacker supplies unexpected input, system
does not fail in certain ways

My research area

• Understanding of the issues involved in building high
integrity software intensive systems.

• Providing both practical and theoretical insights into
industrial strength tools and techniques that promote
the development and modelling of high integrity
software intensive systems.

• Reasoning techniques in AI with focus on high integrity.

Relevance of integrity

We consider cases where high integrity is needed:

• Security

• Data, knowledge and process management

• Meaning and disambiguation

• Achieving program efficiency and correctness

• Data transmission over a network and network modelling.

Today’s talk

Tools for model analysis:

• Alloy

• Spin

• UPPAAL

Dynamic versus static models

• Security as code – a model where we define our Cyber
security policies as Code and not as a static rule.

• Three areas of focus for Security as Code:

• Security Testing

• Vulnerability Scanning

• Access Control and Policy Management

• Refers to various routines, subroutines and scripts.

Dynamic models in Alloy

• Basics of dynamic models

• Modeling a system’s states and state

transitions

• Modeling operations causing transitions

• Simple example of operations

Static Models
Alloy is used to define the allowable values of
state components

• values of sets

• values of relations

• A model instance is a set of state
component values that

• Satisfies the constraints defined by
multiplicities, fact, “realism” conditions,
…

8

Dynamic Models

• Static models allow us to describe the legal
states of a dynamic system

• We also want to be able to describe the
legal transitions between states

E.g.

• A message is sent before it can be received.

9

Example

10

abstract sig Person {
 senders: set Person,
 recipients: set Person
}

sig Sender, Receiver extends Person {}

sig Signatory in Person {
 signed: one Signatory
}

Message Model

Modeling State Transitions

• Alloy does not have an embedded notions of state transition.

• However, there are several ways to model dynamic aspects of a
system

• A a general and relatively simple one is to:

• introduce a Time signature expressing time and

• add a time component to each relation that changes over time

11

Signatures are static

12

abstract sig Person {
 sender: Person set -> Time,
 recipients: Person set -> Time,
 signatory: Person lone -> Time
}
sig Man, Woman extends Person {}

sig Signatory in Person {
 signed: Signatory one -> Time
}

Message Model

Signatures are static

13

abstract sig Person {
 children: Person set -> Time,
 siblings: Person set -> Time,
 spouse: Person lone -> Time
}

sig Man, Woman extends Person {}

Family Model: Another example

We want to add this relation, but where?

alive: Person set -> Time

Signatures are static

14

abstract sig Person {
 children: Person set -> Time,
 siblings: Person set -> Time,
 spouse: Person lone -> Time
 alive: set Time

}

sig Man, Woman extends Person {}

Family Model

Revising static constraints

fact static {

 -- People cannot be their own ancestors

 all t: Time | no p: Person |

 p in p.^(parents.t)

 -- No one can have more than one father

 -- or mother

 all t: Time | all p: Person |

 lone (p.parents.t & Man)

 and

 lone (p.parents.t & Woman)

 ...

15

Revising static
constraints...

-- A person p's siblings are those people other

-- than p with the same parents as p

all t: Time | all p: Person |

 some p.parents.t implies

 p.siblings.t =

 ({q: Person | p.parents.t = q.parents.t} – p)

 else no p.siblings.t

-- Each married man (woman) has a wife (husband)

all t: Time | all p: Person |

 let s = p.spouse.t |

 (p in Man implies s in Woman) and

 (p in Woman implies s in Man)

 ...

16

Transitions
• A person is born

• Add to alive relation

• NB: No requirement that a person have parents

17

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {Sue}Time t Time t’

State Sequences

18

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

alive = {Sue, Matt}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

alive = {Sue, Matt, Sean}

Express a transition in Alloy

• A transition can be modeled as a predicate between
two states:

• the state right before the transition and

• the state right after it

• We define it as predicate with (at least) two formal
parameters: t, t’: Time

• Constraints over time t (resp., t’) model the state
right before (resp., after) the transition

19

Express a transition in
Alloy

• Pre condition constraints

Describe the states to which the transition applies

• Post condition constraints

• Describes the effects of the transition in generating the next state

• Frame condition constraints

• Describes what does not change between pre-state and post-state of a
transition

 Distinguishing the pre, post and frame conditions in comment provides useful
documentation

20

Example: Marriage
pred marriage [m: Man, w: Woman, t,t': Time,] {

-- precondition

-- m and w must be alive before marriage

 m+w in alive.t

 -- neither one can be married

no (m+w).spouse.t

 -- they must not be blood relatives

not BloodRelatives [m, w, t]

-- post-condition

 -- After marriage w is m’s wife

m.spouse.t' = w

 -- After marriage m is w’s husband

-- (redundant)

-- frame condition

}

21

??

Frame condition
Which relations are untouched by marriage?

• 5 relations :

• children, parents, siblings

• spouse

• alive

• parents and siblings relations are defined
in terms of children relation

• Thus, the frame condition has only to
consider children, spouse and alive
relations

22

Example: Marriage
pred marriage [m: Man, w: Woman, t,t': Time]

{

-- precondition

m+w in alive.t

no (m+w).spouse.t

not BloodRelatives [m, w, t]

-- post-condition

m.spouse.t' = w

-- frame condition

noChildrenChangeExcept [none, t, t’]

noSpouseChangeExcept [m+w, t, t’]

noAliveChange [t, t’]

}

23

Instance of marriage
open ordering [Time] as T

…

pred marriageInstance {

 some t: Time |

 some m: Man | some w: Woman |

 let t' = T/next [t] |

 marriage [m, w, t, t’]

}

run { marriageInstance }

24

Specifying a transition system

• A transition system is a set of traces: sequences of time steps
generated by the operators

• For every trace:

• The first time step satisfies some initialization condition

• Each pair of consecutive steps are related by an operation.
25

Specification of an
initial step

pred init [t: Time] {

no children.t

no spouse.t

no alive.t

}

26

Specification of a trace
fact Trace {

init [T/first]

all t: Time - T/last |

let t’ = T/next [t] |

birth [t, t’] or

one m: Man | one w: Woman |

marriage [m, w, t, t’] or

birthFromParents [m, w, t, t’]

}

run {Trace and some Man and some Woman}

27

Realism constraint

run {

 marriageInstance

 birthInstance

 birthFromParentsInstance

} for 5

28

• Man-In-The-Middle attack is the type of attack where
attackers intrude into an existing connection to intercept
the exchanged data pretending to be client to the server
and server to the client.

• It involves intercepting encrypted messages ,
eavesdropping on a connection (passive) , and/or
modifying data(active).

Man in the middle attack

ServerClient

Secure scope

MITM
connecti
on

Public Key

X

TCP ConnectionPrivate Key

ƫ
ƫ

ƫ
ƫ

ƫ
ƫ

ƫ
ƫ

assert RealAndVertualConnection
{
All
R_Client,V_Client,server:Actor,RC_t,VC_t,t0,t1:Time,RC_IP,VC_IP:IP,req
uest:Request |
(server.S_receive.Packet<:RC_IP= server.S_receive.Packet<:VC_IP)
And
(server.S_receive.Packet<:RC_t= server.S_receive.Packet<:VC_t)
Implies
R_Client.RC_sends.reuest->t0= server.S_receive.reuest->t0
And
V_Client.RC_sends.reuest->t0= server.S_receive.reuest->t0

}

Assert and Prove

Else
(server.S_receive.Packet<:RC_IP= server.S_receive.Packet<:VC_IP)
And
(server.S_receive.Packet<:RC_t != V_Client.S_receive.Packet<:VC_t)
Implies
R_Client.RC_sends.reuest->t0 != server.S_receive.reuest->t1
And
V_Client.RC_sends.reuest->t0= server.S_receive.reuest->t0

}

Assert and Prove

Model Checking

An automated technique
that,given a finite-state
model of a system and a
logical property,
systematically checks
whether this property
holds for a given initial
state in that model.

Edmund M. Clarke. The birth of model checking. In 25 Years of Model Checking,

volume 5000 of Lecture Notes in Computer Science, pages 1{26, 2008.

Model Checking or
model Analysis

• The checking process is automatic.

• Model checking is faster than traditional
verification techniques (i.e. testing), and
therefore it saves time and cost.

• Using logics can express many properties
needed for reasoning about concurrent
systems.

SPIN Model checker

• It is a model checker for the temporal logic
LTL.

• Aimed at verification of protocols and
software.

• Provides a graphical user interface (ispin)
to the model checker and to an interactive
simulator.

G.J. Holzmann. The SPIN model checker: Primer and reference manual.

Addison-Wesley Professional, 2004.

PROMELA
Syntax

• The structure of a PROMELA (PROcess
MEta LAnguage) program.

• Investigated how to
model:
1.Authentication

• 2.Session
management

• 3 Navigation
behaviour in an
application.

Modelling Web
applications

• In page transitions; web pages are treated
as states and; page transitions as a state
transition.

• The Internal states represent the business
logic, determined by input values .

• The internal state occurs synchronously
with the page transition.

Modelling
Authentication

• We modelled a security protocol at the
start of the session.

• The user send his login credentials.

Modelling Session
management

• Session is maintained throughout the
communication.

• Non-deterministic (Timeouts) are given
during the session.

Representation In Promeal

A client is sending a
request to login; the
server receives it and
reply.

chan Client ToServer = [0] of {mtype};
chan ServerToClient = [0] of {mtype};
mtype = {loginReq , ACK};

active proctype Pages() {

HomePage:do :: if :: Client ToServer ! loginReq
-> ServerToCilent ? ACK->goto loginPage; fi;
od; }

active proctype InternalState() {
do ::
 if
 :: ClientToServer ? loginReq ->
atomic {ServerToChanel!ACK;goto SloginPage};
fi;
od;
}

Model Simulation

• SPIN’s
Simulation
chart

• Online-
banking
model.

DTSpin

• We extend our Promela model with
discrete time macros.

• This will give us the ability to construct
realistic web applications models.

Reference: http://www.win.tue.nl/~dragan/DTSpin/

http://livepage.apple.com/

UPPAAL model checker

• UPPAAL is used to verify real time systems.

• Models are defined graphically.

http://www.uppaal.com/

http://livepage.apple.com/

SPIN vs UPPAAL

• Design time in UPPAAL is less than building
the Promela model.

• Same model Processes are defined in both
tools.

• In Spin early modelling faults can be
detected via the “ Message Sequence
Charts”

	Slide 1: Applications of Advanced Technologies for High Integrity
	Slide 2: What is integrity?
	Slide 3: My research area
	Slide 4: Relevance of integrity
	Slide 5: Today’s talk
	Slide 6: Dynamic versus static models
	Slide 7: Dynamic models in Alloy
	Slide 8: Static Models
	Slide 9: Dynamic Models
	Slide 10: Example
	Slide 11: Modeling State Transitions
	Slide 12: Signatures are static
	Slide 13: Signatures are static
	Slide 14: Signatures are static
	Slide 15: Revising static constraints
	Slide 16: Revising static constraints
	Slide 17: Transitions
	Slide 18: State Sequences
	Slide 19: Express a transition in Alloy
	Slide 20: Express a transition in Alloy
	Slide 21: Example: Marriage
	Slide 22: Frame condition
	Slide 23: Example: Marriage
	Slide 24: Instance of marriage
	Slide 25: Specifying a transition system
	Slide 26: Specification of an initial step
	Slide 27: Specification of a trace
	Slide 28: Realism constraint
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Model Checking
	Slide 34: Model Checking or model Analysis
	Slide 35: SPIN Model checker
	Slide 36: PROMELA Syntax
	Slide 37
	Slide 38: Modelling Web applications
	Slide 39: Modelling Authentication
	Slide 40: Modelling Session management
	Slide 41: Representation In Promeal
	Slide 42: Model Simulation
	Slide 43: DTSpin
	Slide 44: UPPAAL model checker
	Slide 45: SPIN vs UPPAAL

