
Interactive theorem proving for protocol
verification

Horaţiu Cheval 1,2

1University of Bucharest

2Institute for Logic and Data Science

Dresden, March 28, 2024



Interactive theorem provers

▶ Software that allows one to state, in principle, any
mathematical statement and to provide a proof thereof, which
will be automatically checked for correctness.

▶ Agda, Coq, Isabelle, Lean etc.

▶ In general, a small trusted code base (the kernel)



Lean

▶ An ITP based on dependent type theory

▶ A fully-fledged functional programming language

▶ Rich metaprogramming capabilities

▶ A large corpus of formalized mathematics in its mathlib
library

▶ So far, more mathematical applications than CS-related (not
to say that they do not exist)



Semantic security

Some formalizations include:

▶ Nowak’s framework [1], Foundational Cryptography
Framework [2], EasyCrypt [3], SSProve [4] (Coq)

▶ crypto-agda (Agda) [5]

▶ CryptHOL (Isabelle/HOL) [6]

▶ cryptolib (Lean 3) [7]

The examples we present in the following are from cryptolib and
are part of a WIP translation of cryptolib to Lean 4.



Semantic security

▶ A challenger C generates a public key pk

▶ The attacker A produces two messages m1, m2

▶ C chooses a message mi , encrypts it with pk and sends it to A

▶ A’s task is to determine which of the two messages was
encrypted

Then, A wins the game if it determines the correct mi , and the
semantic security properties states that the probability of this
happing is negligibly close to 1

2 .



Semantic security

variable {PKey SKey Message Cypher S : Type}

(keygen : PMF (PKey × SKey))

(encrypt : PKey → Message → PMF Cypher)

(decrypt : SKey → Cypher → Message)

(attacker : PKey → PMF (Message × Message × S))

(attacker’ : Cypher → S → PMF Z2)

def semanticSecurityGame : PMF Z2 := do

let (pk, sk) ← keygen

let (m1, m2, s) ← attacker pk

let b ← PMF.uniformOfFintype Z2

let cypher ← encrypt pk

(if b = 0 then m1 else m2)

let b’ ← attacker’ cypher s

return (if b = b’ then 1 else 0)



Semantic security

The two main properties of a protocol are formalized as:

def SemanticSecurity (ε : NNReal) : Prop :=

let p := SSG keygen encrypt attacker attacker’ 1

abs (p.toReal - 1/2) ≤ ε

def Corectness : Prop := ∀ m,

encryptDecrypt keygen encrypt decrypt m = pure 1



ElGamal

A public key encryption algorithm (in particular ElGamal) is thus
specified by providing concrete definitions for the keygen,
encrypt and decrypt functions. For ElGamal, we need to assume
a finite group G and a generator g of G .

variable

(G : Type) [Fintype G] [CommGroup G]

(g : G) (hg : ∀ x : G, x ∈ Subgroup.zpowers g)

The correctness is proved using arithmetic in finite groups, and
reasoning about equality on pmf’s, relying heavily on mathlib.











ElGamal
Finally, the main result uses game hopping to show that that the
decisional Diffie-Hellman assumption, stating (g x , g y , g z) and
(g x , g y , g xy ), where x , y , z ∈ Zq are picked uniformly, cannot be
distinguished, implies semantic security.

The DDH assumption can be readily expressed in Lean, similarly as
before, using

def DDH0 : PMF Z2 := do

let x ← PMF.uniformOfFintype (ZMod q)

let y ← PMF.uniformOfFintype (ZMod q)

D (g^x.val) (g^y.val) (g^(x.val * y.val))

def DDH1 : PMF Z2 := do

let x ← PMF.uniformOfFintype (ZMod q)

let y ← PMF.uniformOfFintype (ZMod q)

let z ← PMF.uniformOfFintype (ZMod q)

D (g^x.val) (g^y.val) (g^z.val)



ElGamal

The main theorem (we won’t go into the proof):

theorem ElGamal.SemanticSecurity :

DDH g hg →
SemanticSecurity

ElGamal.keygen

ElGamal.encrypt

attacker attacker’ ε := . . .



Thank you



References

[1] D. Nowak (2007). A framework for game-based security proofs.
In Information and Communications Security: 9th International
Conference, ICICS 2007, Zhengzhou, China, December 12-15,
2007. Proceedings 9 (pp. 319-333). Springer Berlin Heidelberg.
[2] A. Petcher (2015). A Foundational Proof Framework for
Cryptography. Harvard University.
[3] G. Barthe, B. Grégoire, S. Heraud, S.Z. Béguelin (2011).
Computer-aided security proofs for the working cryptographer. In
Annual Cryptology Conference (pp. 71-90). Berlin, Heidelberg:
Springer Berlin Heidelberg.
[4] C. Abate, P. Haselwarter, E. Rivas, A. Van Muylder, T.
Winterhalter, C. Hriţcu, K. Maillard, B.Spitters (2021). SSprove:
A foundational framework for modular cryptographic proofs in
Coq. In 2021 IEEE 34th Computer Security Foundations
Symposium (CSF) (pp. 1-15). IEEE.



References

[5] D. Gustafsson, N. Pouillard (2011). Dependent protocols for
communication.
[6] D. A. Basin, A. Lochbihler, S.R. Sefidgar (2020). CryptHOL:
Game-based proofs in higher-order logic. Journal of Cryptology,
33, 494-566.
[7] J. Lupo (2021). cryptolib: Security Proofs in the Lean Theorem
Prover. University of Edinburgh.


