
Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Towards Logical Specification and Checking of
Malicious Capabilities

Andrei Mogage1 Prof. Dr. Dorel Lucanu1

1Faculty of Computer Science
”Alexandru Ioan Cuza University” of Iaşi

March 2024

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

About Me

PhD student since 2019.

Security Researcher @ Bitdefender since 2016.

Interested in combining academic and industrial knowledge
and tools.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Presentation Outline

1 Motivation

2 Tainting-Based Logic

3 Implementation

4 Real-life Use

5 Conclusions

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Table of Contents

1 Motivation

2 Tainting-Based Logic

3 Implementation

4 Real-life Use

5 Conclusions

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

What is this malware capable of?

Malware analysis, but quick.

Overall picture is good, but what about specific information?

Imprecise text from a sandbox report

“The sample performs certain actions over the network. This can
include connecting to remote hosts or sending and reading data
from different domains. Not only that, the sample gathers
information about the compromised system that can shape its
behavior on the system.”

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Concrete Evidence

Follow the money data.

Actual results, not just guesses.

Figure: Uncertain information from a sandbox execution report

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Table of Contents

1 Motivation

2 Tainting-Based Logic

3 Implementation

4 Real-life Use

5 Conclusions

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Tainting-Based Logic (TBL)

Based on Linear Temporal Logics on Finite Traces.

Expressing the actions of an application as events in time.

The syntax of TBL consists of three main categories of sentences

1 behavioral patterns, whose instances describe behavioral
properties of executions;

2 capability patterns, whose instances describe capabilities of
the executions;

3 rules, which relates behavioral properties and capabilities of an
execution.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Operators

Logical connectors: ¬,∨,∧.
Borrowed temporal connectors: only X (Next).

New temporal connector: andthen - A andthen B ”A holds,
and B will hold at some point in the future”.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Examples

Atomic Pattern (Fact)

Tainted(T)

Behavioral Pattern
(TaintedAPI (A) ∧ X (Tainted(T)))

andthen PropToAPI (B,T)

Capability

File Reading(V0,V1)

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Tainted Trace

A trace of actions performed by the application, decorated
through taint analysis.

Finite trace: τ = (τ0, . . . , τn−1), where τi is a set of instances
of atomic patterns, written as P⟨d1, . . . , dk⟩.

Examples

τ = ({TaintedAPI ⟨CreateFile⟩},
{Tainted⟨T1⟩},
{TaintedAPI ⟨VirtualAlloc⟩},
{Tainted⟨T2⟩},
{PropToAPI ⟨ReadFile,T1⟩},
{PropToAPI ⟨CryptEncrypt,T2⟩}
)

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

TBL rules

Describes a relationship between behavioral properties and a
capability.

If the behavioral pattern is satisfied by the tainted trace,
then the analyzed application denotes the specified
capability.

Examples

(TaintedAPI (CreateFile) ∧ X (Tainted(T)))

andthen PropToAPI (ReadFile,T)

⊢
FileRead(T)

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Table of Contents

1 Motivation

2 Tainting-Based Logic

3 Implementation

4 Real-life Use

5 Conclusions

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Binary Instrumentation and Taint Analysis

Binary instrumentation for total control.

Taint analysis for following sensitive data.

Binary Instrumentation: Intel PIN vs COBAI.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Specification

Configuration
which APIs or code represents taint sources;
what registers or memory can propagate taint symbols;
which additional data should be collected;
which new predicates should be introduced during specific
events.

Rule The actual rule, which encodes the capability.

Trace generation Generated through taint analysis, as
instructed by the configuration.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Deobfuscation Rule Example

Configuration (regex code as taint source):

”xor (.+), .+”,

”mov byte ptr
\[(.+)\+.+\],\1”

If the sequence is executed, a
new symbol is introduced and
the memory area described by
the second captured group (the
buffer referenced by mov byte
ptr) is also tainted. Hence, two
new predicates will be
introduced: Tainted(T) and
PropToMem(\2, SZ ,T).

Rule:

andthen(
∧(

Tainted(X),
X (

PropToMem(M, SZ ,X)
)

),
TaintedCodeExecute(M,X)

)
⊢ Payload deobfuscation

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

andthen(
∧(

TaintedAPI (A),
X (

Tainted(X0)
)

),
∧(

PropToAPI (B,X0),
X (

TaintedAPI (B)
),
X (

X (
Tainted(X1)

)
)

),
∧(

PropToAPI (C ,X1),
X (

TaintedAPI (C)
),
X (

X (
Tainted(X2)

)
)

),
PropToAPI (D,X2)

)
⊢ C2 Communication

Legend:
A = InternetOpen (Taint Source)
B = InternetConnect (Taint Source)
C = HttpOpenRequest (Taint Source)
D = HttpSendRequest

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Informal Explanation

The program has the capability of making a request to an external
server, proved by the rule C2 Communication(0x00CC0004,
0x00CC0008, 0x00CC000C). The arguments are the handle values
used for the connection setup and the request itself.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Results for Command & Control Communication

Hash (MD5)* Analysis (sec.) Native execution (sec.)

04fde4340cc79cd9e61340d4c1e8ddfb 15 14
222792d2e75782516d653d5cccfcf33b 15 13
3d57934b0143b09e82092896580f90b0 15 14
485b9fd90d99ec5e6683fa4448924da8 15 14
66ddb290df3d510a6001365c3a694de2 16 13
6957d10b51d89a2a52eede8b7c3b8472 17 15
6a7fdab1c7f6c5a5482749be5c4bf1a4 17 15
7be33b01e9cb99c6e23ae3b02f384a2c 17 15
9d418ecc0f3bf45029263b0944236884 16 16
c2764be55336f83a59aa0f63a0b36732 15 14
c830512579b0e08f40bc1791fc10c582 15 17
cfcfb68901ffe513e9f0d76b17d02f96 16 18
e81f857bffd0269d9375b08354de3293 16 14

Table: * Samples for DarkSide Ransomware Family
Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Table of Contents

1 Motivation

2 Tainting-Based Logic

3 Implementation

4 Real-life Use

5 Conclusions

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Forensics

Used in forensics for verification of capabilities.

Simplified the process when a quick validation was necessary.

Tested on a small team (3 members) with enthusiastic results.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

All hands on deck: Large Language Models

Experiments with using LLMs for faster creation of rules.

Inspiration for other capabilities and their possible
implementations.

Feedback loop: Our experience ↔ Inspiration from LLMs.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Prompt Examples (1/3)

Question: Write 3 capabilities of a malware that steal user’s
information.
Answer:

1 Data Exfiltration: Malware designed to steal user information can
effectively extract sensitive data from a compromised system. This could
include personal information such as names, addresses, and contact
details, as well as login credentials, [...].

2 Keylogging: Some malware is capable of recording every keystroke made
on an infected computer, allowing it to capture passwords, PIN numbers,
and other sensitive information entered through the keyboard.

3 Man-in-the-Middle (MITM) Attacks: Advanced malware can perform
MITM attacks, intercepting and modifying data transmissions between
the user and their online services. This includes email, instant messaging,
or even online banking sessions.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Prompt Examples (2/3)

Question: Which Windows APIs are necessary for creating a keylogger?
Answer:

1 SetWindowsHookEx: This API is used to set up a low-level keyboard
hook, which intercepts and processes keyboard events before they reach
the application.

2 GetMessageW, TranslateMessageW, DispatchMessageW: These APIs
are used to create a message loop that processes messages from the
keyboard hook and stores them for later use.

3 GetAsyncKeyState: This API can be used to retrieve the current state
of a specific key, allowing the keylogger to check whether a key is
currently being pressed or released.

4 CreateThread: This API is used to create a new thread for handling the
keyboard hook functionality, allowing the keylogger to run in the
background and not interfere with the user’s experience.

5 WriteFile: This API is used to write the logged keyboard input to a
file[...]

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Prompt Examples (3/3)

Question: Write a C++ snippet for a keylogging functionality.

Answer:
LRESULT CALLBACK Hook(int nCode , WPARAM wParam , LPARAM lParam){

if (nCode >= 0 && wParam == WM_KEYDOWN){

char key = MapVirtualKey ((unsigned short)wParam ,

MAPVK_VSC_TO_VIRTUAL);

std:: ofstream logFile("keylog.txt", std:: ios_base ::app);

logFile << key;

logFile.close ();

}

return CallNextHookEx(hHook , nCode , wParam , lParam);

}

int main(){

hHook = SetWindowsHookEx(WH_KEYBOARD_LL , Hook , NULL , 0);

MSG msg;

while (GetMessage (&msg , NULL , 0, 0)){

TranslateMessage (&msg);

DispatchMessageW (&msg);

}

UnhookWindowsHook(hHook);

return 0;

}

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Creating a rule inspired by the LLM prompt
andthen(

∧(
TaintedAPICond(SetWindowsHookEx , (′int′, 0,′ WH KEYBOARD LL′)),
X (

Tainted(X0)
)

),
TaintedAPI (DispatchMessage),
∧(

TaintedAPI (MapVirtualKey),
X (

Tainted(X2)
)

),
PropToAPI (WriteFile,X2)

)
⊢ Keylogging

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Table of Contents

1 Motivation

2 Tainting-Based Logic

3 Implementation

4 Real-life Use

5 Conclusions

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Summary

Intersection of ”ingredients” from academic and industrial:
Taint Analysis, Linear Temporal Logics (TBL), and Malware
Analysis (the ultimate goal).

Every action is monitored, formalized and used to create the
trace.

If the behavioral pattern is satisfied by the tainted trace,
then the analyzed application denotes the specified
capability.

Promising real-life results.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Future Plans

Expanding the current set of rules.

Defining and implementing a model for using capabilities as
behavioral properties, thus ”combining rules”.

Automation.

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

Motivation Tainting-Based Logic Implementation Real-life Use Conclusions Q&A

Thank you

Andrei Mogage, Prof. Dr. Dorel Lucanu UAIC

Tainting-Based Logic

	Motivation
	Tainting-Based Logic
	Implementation
	Real-life Use
	Conclusions
	Q&A

