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Refactoring and relational verification

Refactoring:
Improve structure of code, preserve behavior of executions

if(E) {S1;} else {S2;} return; ∼ if(!E) {S2;return;} S1; return;

placeholders

Relational verification:
Relate pairs of executions, given initial state satisfy Φ then final

state satisfy Ψ

original ∼ refactored : Φ =⇒ ΨApplications to Security . 2
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Applications to Security

Specification

Code

DbC

Refinement

Verification

(abstract)
Code

Equivalence (abstract)

• KeY framework:

information flow,

non-interference for

Java programs

• REFINITY/abstract

execution: proofs on

code-fragments

(as specifications)

A fundamental relational property . 3
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A fundamental relational property

Program equivalence
Two programs are equivalent iff they produce the same output

when executed on the same input.

Here: let’s look at Java fragments that we consider equivalent.

• How far can current tool support take us?

• Other definitions of equivalence?

Relational verification in practice . 4
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Relational verification in practice

REFINITY
• Built on top of the KeY automated theorem prover

• Enables relational verification of “Java” with placeholders

• Placeholders are subject to Abstract Execution

• Has been sufficiently powerful to verify statement level

refactorings1

1See Dominic Steinhöfel’s PhD thesis: https://tuprints.ulb.tu-darmstadt.de/8540/
Example - slide stm. abstract . 5
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Example - slide stm. abs. proved . 6
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Example - slide stm. concrete . 7
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Example - slide stm. conc. open goal . 8
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Example - slide stm. conc. open goal . 9
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Equivalence in REFINITY . 10
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Equivalence

REFINITY checks that the following are identical by default:

• return values

• exceptions

• objects in the so-called relevant location set

Extract Local Variable . 11
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Equivalent?

Refactoring tools often get this wrong:

REFINITYwon’t close the proof unless you can show the

required side-conditions on method n().

Example - condition on n () in REFINITY . 12
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Hide Delegate . 13
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Different output, but equivalent?

Exception origin moved, no additional capture in h()

o.f().g();
→ o.h(); with h(){ this.f().g();}

original

this o null

h()

f()

g()

NPE

refactoredExample - in REFINITY (postcondition) . 14
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Challenges . 15
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Challenges in complex refactorings

Succesfully verified variants of Extract Local Variable and Hide

Delegate and investigated how to approach others.

We discuss
Simplifying postcondition specifications

Unresolved
Making the proofs useful artefacts:

what about instantitations?

Object equality I . 16
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Object equality

REFINITY lacked rules for object equality over multiple

modalities:

• can verify Slide Statement with abstract statements

Example - Slide stm. abs. . 17
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Object equality II . 18
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Object equality

REFINITY lacked rules for object equality over multiple

modalities:

• can verify Slide Statement with abstract statements

• can’t verify Slide Statement with statements involving

concrete objects

Example - Slide stm. conc. . 19
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Why? . 20
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REFINITY Internals

Core issue:

• Objects are placed in a symbolic heap during SE
• Before and After program executed in same proof

Not sufficient for two new objects to be equal:

• the allocation must, additionally, be deterministic

Schematic sequent rules in KeY are specified as taclets:

• we add rules to make objects indistinguishable under

under certain conditions

Adding taclets and rules . 21
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New taclet for object creation

Postcondition simplification . 22
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Postcondition simplification

In Hide Delegate exception objects now equivalent

• we need no special postcondition to handle exceptions…

• …although we should because in practice exceptions

capture state! (Not our problem, though🙃)

Example - Hide Delegate (default postcondition) . 23
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Future challenges . 24
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Future challenges . 25
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Future Challenge

Future challenges . 26
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Trace based notions of equivalence

Summary . 27
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Summary

• REFINITY/KeY excellent foundation for

reasoning about OO in general

• abstract code + side conditions

• initial application area: checking refactorings via symbolic

execution

• next: application-specific?

SILM . 28
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SILMWorkshop

SILM . 29
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