
Intro REFINITY Object Creation Future Challenges

Formal Correctness Proofs of Refactorings

Volker Stolz 1

Ole Jørgen Abusdal 1 Eduard Kamburjan 2 Violet Ka I Pun 1

1Western Norway University of Applied Sciences 2University of Oslo

←− Our KeY updates — for the paper, see ISoLA (2)!

Refactoring and Relational Verification . 1



Intro REFINITY Object Creation Future Challenges

Refactoring and relational verification

Refactoring:
Improve structure of code, preserve behavior of executions

if(E) {S1;} else {S2;} return; ∼ if(!E) {S2;return;} S1; return;

placeholders

Relational verification:
Relate pairs of executions, given initial state satisfy Φ then final

state satisfy Ψ

original ∼ refactored : Φ =⇒ ΨApplications to Security . 2



Intro REFINITY Object Creation Future Challenges

Applications to Security

Specification

Code

DbC

Refinement

Verification

(abstract)
Code

Equivalence (abstract)

• KeY framework:

information flow,

non-interference for

Java programs

• REFINITY/abstract

execution: proofs on

code-fragments

(as specifications)

A fundamental relational property . 3



Intro REFINITY Object Creation Future Challenges

A fundamental relational property

Program equivalence
Two programs are equivalent iff they produce the same output

when executed on the same input.

Here: let’s look at Java fragments that we consider equivalent.

• How far can current tool support take us?

• Other definitions of equivalence?

Relational verification in practice . 4



Intro REFINITY Object Creation Future Challenges

Relational verification in practice

REFINITY
• Built on top of the KeY automated theorem prover

• Enables relational verification of “Java” with placeholders

• Placeholders are subject to Abstract Execution

• Has been sufficiently powerful to verify statement level

refactorings1

1See Dominic Steinhöfel’s PhD thesis: https://tuprints.ulb.tu-darmstadt.de/8540/
Example - slide stm. abstract . 5



Intro REFINITY Object Creation Future Challenges

Example - slide stm. abs. proved . 6



Intro REFINITY Object Creation Future Challenges

Example - slide stm. concrete . 7



Intro REFINITY Object Creation Future Challenges

Example - slide stm. conc. open goal . 8



Intro REFINITY Object Creation Future Challenges

Example - slide stm. conc. open goal . 9



Intro REFINITY Object Creation Future Challenges

Equivalence in REFINITY . 10



Intro REFINITY Object Creation Future Challenges

Equivalence

REFINITY checks that the following are identical by default:

• return values

• exceptions

• objects in the so-called relevant location set

Extract Local Variable . 11



Intro REFINITY Object Creation Future Challenges

Equivalent?

Refactoring tools often get this wrong:

REFINITYwon’t close the proof unless you can show the

required side-conditions on method n().

Example - condition on n () in REFINITY . 12



Intro REFINITY Object Creation Future Challenges

Hide Delegate . 13



Intro REFINITY Object Creation Future Challenges

Different output, but equivalent?

Exception origin moved, no additional capture in h()

o.f().g();
→ o.h(); with h(){ this.f().g();}

original

this o null

h()

f()

g()

NPE

refactoredExample - in REFINITY (postcondition) . 14



Intro REFINITY Object Creation Future Challenges

Challenges . 15



Intro REFINITY Object Creation Future Challenges

Challenges in complex refactorings

Succesfully verified variants of Extract Local Variable and Hide

Delegate and investigated how to approach others.

We discuss
Simplifying postcondition specifications

Unresolved
Making the proofs useful artefacts:

what about instantitations?

Object equality I . 16



Intro REFINITY Object Creation Future Challenges

Object equality

REFINITY lacked rules for object equality over multiple

modalities:

• can verify Slide Statement with abstract statements

Example - Slide stm. abs. . 17



Intro REFINITY Object Creation Future Challenges

Object equality II . 18



Intro REFINITY Object Creation Future Challenges

Object equality

REFINITY lacked rules for object equality over multiple

modalities:

• can verify Slide Statement with abstract statements

• can’t verify Slide Statement with statements involving

concrete objects

Example - Slide stm. conc. . 19



Intro REFINITY Object Creation Future Challenges

Why? . 20



Intro REFINITY Object Creation Future Challenges

REFINITY Internals

Core issue:

• Objects are placed in a symbolic heap during SE
• Before and After program executed in same proof

Not sufficient for two new objects to be equal:

• the allocation must, additionally, be deterministic

Schematic sequent rules in KeY are specified as taclets:

• we add rules to make objects indistinguishable under

under certain conditions

Adding taclets and rules . 21



Intro REFINITY Object Creation Future Challenges

New taclet for object creation

Postcondition simplification . 22



Intro REFINITY Object Creation Future Challenges

Postcondition simplification

In Hide Delegate exception objects now equivalent

• we need no special postcondition to handle exceptions…

• …although we should because in practice exceptions

capture state! (Not our problem, though🙃)

Example - Hide Delegate (default postcondition) . 23



Intro REFINITY Object Creation Future Challenges

Future challenges . 24



Intro REFINITY Object Creation Future Challenges

Future challenges . 25



Intro REFINITY Object Creation Future Challenges

Future Challenge

Future challenges . 26



Intro REFINITY Object Creation Future Challenges

Trace based notions of equivalence

Summary . 27



Intro REFINITY Object Creation Future Challenges

Summary

• REFINITY/KeY excellent foundation for

reasoning about OO in general

• abstract code + side conditions

• initial application area: checking refactorings via symbolic

execution

• next: application-specific?

SILM . 28



Intro REFINITY Object Creation Future Challenges

SILMWorkshop

SILM . 29


	Intro
	REFINITY
	Object Creation
	Future Challenges

