

Formal Verification of TPM-based Remote Attestation

Jannik Mähn

28.03.2024

About me

- PhD student
 - Trustworthy Data Processing Group
- Barkhausen Institute
 - Trustworthiness for the IoT
- Topic:
 - Formal Verification of cryptographic protocols
 - Using SSProve library
 - Based on Coq theorem prover

The Project

The Motivation of my research question

TPM-based Remote Attestation

- How to do Remote Attestation?
 - → Trusted Platform Module (TPM)

- Root of Trust
 - provides cryptographic functionalities

Trusted Platform Module

- But: Heavily underspecified:
 - Pseudocode written in C
 - Missing Statements:
 - Correctness
 - Security
- Apply formal verification

SSProve

A tool to formally verify cryptographic protocols

State-Separation Proofs

Game-based: Indistinguishability

Reduction-based:

■ Protocol → Mathematical Assumption

SSProve brings SSPs to Coq

SSProve – The basics

Definition 1 (Distinguisher advantage). The advantage of a distinguisher \mathcal{D} against a game pair $G = (G^0, G^1)$ is $\alpha(G)(\mathcal{D}) = \left| \Pr[\mathsf{true} \leftarrow \mathcal{D} \circ G^0] - \Pr[\mathsf{true} \leftarrow \mathcal{D} \circ G^1] \right|$

package: P	
mem: n : nat	
X(b):	Y():
if b then	return 5
return 1	
else	
return Z(n)	

Figure 2. Possible pseudocode implementation for P.

A *Distinguisher* has the export: {run}.

A *Game* is a package with no import.

Research

Current state and future work

Current and future work

- Signature
 - Primitives
 - Protocol
- Remote Attestation
 - Primitives
 - Protocol

Future work:

- Signature Schemes
 - RSA Signatures
 - ECDSA

Lemma ext_unforge: | Sig_real ≈₀ Sig_ideal.

)%R.

Wrap-up

Formal Verification of TPM-based Remote Attestation

By Jannik Mähn

