
Language-agnostic Program
Verification

Runtime Verification Inc. Proprietary & Confidential

Juan Conejero Rodríguez

WG3 Kick-off Meeting
+

https://runtimeverification.com/

Runtime Verification Inc.
● Software quality assurance company
● Uses formal methods to perform security audits
● Team behind the maintenance of the K framework

https://runtimeverification.com/

The K framework

➔ Mission
Accessible trustworthy computing

➔ Vision
Generate implementations and tools automatically from formal specifications,
correct by construction

➔ K
Semantic framework for design, implementation and formal reasoning

https://runtimeverification.com/

K Vision
Semantics based tooling

https://runtimeverification.com/

The Problem: Crafting Many Tools
● How many tools is too many tools?

● Quite a bit of repeated effort. 5

https://runtimeverification.com/

The K Approach
● Develop each language and each tool once:

● Save on the implementation effort!
● Updates to tools benefit all the languages!

https://runtimeverification.com/

What is K?
● K is a formal semantics framework.

○ Specify your language or system in the K modelling language.
○ K derives a bunch of tools for you from this specification.
○ Notice the interpreter: executable semantics.

● K foundation: Matching Logic.
○ FOL + μ variant for specifying and reasoning about programs & PL.
○ Generalizes several important logical frameworks.
○ Specifications as rewrite rules.

● All of the tools built by RV are powered by K. Smart contract verification offered by RV
is done with K.

● Webpages: https://kframework.org http://www.matching-logic.org/
 https://runtimeverification.com/ https://fsl.cs.illinois.edu/

https://runtimeverification.com/
https://kframework.org
http://www.matching-logic.org/
https://runtimeverification.com/
https://fsl.cs.illinois.edu/

K Vision in the Real World

https://runtimeverification.com/

K in (the) Action

● K as a frontend
➢ Concise and powerful language to express semantics
➢ Write semantics in K, prove properties in an ITP
➢ This would allow to prove deeper properties of PL

● K as a backend
➢ Use K as a solver for ITP
➢ Possible downside: there are more efficient solvers out there

● Back and forth between K and an ITP
➢ Specify semantics and properties in K
➢ Produce Dedukti proofs from K proofs
➢ Double check in Dedukti every K proof
➢ Send to an ITP the statements that K cannot prove

https://runtimeverification.com/

Our perspective of the Action

● Make ITPs capable of meeting industry standards
➢ Ease of use
➢ Wide range of applicable scenarios
➢ Plenty of tools available

● K can deliver important key stones in this direction
➢ Import semantics of already formalized languages in K
➢ Ease the definition of future semantic definitions in Dedukti & ITPs
➢ Strengthen K by making an ITP available for hard statements

https://runtimeverification.com/

Previous attempts to formalize K

● Maude (1st version of K)
● Isabelle
● Coq

Final version: Matching logic

https://runtimeverification.com/

Bring both proof systems together

https://runtimeverification.com/

Runtime Verification Inc. Proprietary & Confidential

uestions?

https://runtimeverification.com/

