. runtime
verification

Language-agnhostic Program
Verification

WG3 Kick-off Meeting

=i
-
Q

Juan Conejero Rodriguez

https://runtimeverification.com/

. . g . runtime_
Runtime Verification Inc. ‘ verification

e Software quality assurance company
e Uses formal methods to perform security audits
e Team behind the maintenance of the K framework

https://runtimeverification.com/

runtime
The K framework ‘ verification

=> Mission
Accessible trustworthy computing

=> Vision
Generate implementations and tools automatically from formal specifications,
correct by construction

= K

Semantic framework for design, implementation and formal reasoning

https://runtimeverification.com/

‘ tllé?i%ii::na?cion
K Vision

Semantics based tooling

https://runtimeverification.com/

The Problem: Crafting Many Tools & Siton

e How many tools is too many tools?

Cc (ot Interpreter
Java Compiler Java) Compiler
JavaScript Model Checker JavaScript AN Model Checker
Solidity Symbolic Execution Solidity Symbolic Execution
EthereumVM Deductive Verifier EthereumVM Deductive Verifier

e Quite a bit of repeated effort.

https://runtimeverification.com/

The K Approach

Develop each language and each tool once:

o
Java
JavaScript
Solidity

EthereumVM

Save on the implementation effort!
Updates to tools benefit all the languages!

Interpreter

Compiler

Model Checker

Symbolic Execution

Deductive Verifier

runtime
verification

https://runtimeverification.com/

What is K? G untime

e Kiis a formal semantics framework.
o Specify your language or system in the K modelling language.
o K derives a bunch of tools for you from this specification.
o Notice the interpreter: executable semantics.

e K foundation: Matching Logic.
o FOL + p variant for specifying and reasoning about programs & PL.
o Generalizes several important logical frameworks.
o Specifications as rewrite rules.

e All of the tools built by RV are powered by K. Smart contract verification offered by RV
is done with K.

e Webpages: https://kframework.org http://www.matching-logic.org/
https://runtimeverification.com/ https://fsl.cs.illinois.edu/

https://runtimeverification.com/
https://kframework.org
http://www.matching-logic.org/
https://runtimeverification.com/
https://fsl.cs.illinois.edu/

K Vision in the Real World G e on

Test-case
generator

Runtime
monitor

Deductive

program verifier

Formal Language Definition
(Syntax and Semantics) Model
C, C++, Java, JavaScript, checker

Solidity, Python, EVM, LLVM

Interpreter

Symbolic
executer

Semantic
debugger

https://runtimeverification.com/

K in (the) Action

e Kas a frontend
> (Concise and powerful language to express semantics
> Write semantics in K, prove properties in an ITP
> This would allow to prove deeper properties of PL

e K as a backend

>
>

Use K as a solver for ITP
Possible downside: there are more efficient solvers out there

e Back and forth between K and an ITP

VVYVY

Specify semantics and properties in K
Produce Dedukti proofs from K proofs
Double check in Dedukti every K proof
Send to an ITP the statements that K cannot prove

runtime
verification

https://runtimeverification.com/

Our perspective of the Action & erheion

e Make ITPs capable of meeting industry standards
> Ease of use
> Wide range of applicable scenarios
> Plenty of tools available

e K can deliver important key stones in this direction
> |Import semantics of already formalized languages in K
> Ease the definition of future semantic definitions in Dedukti & ITPs
> Strengthen K by making an ITP available for hard statements

https://runtimeverification.com/

. . runtime_
Previous attempts to formalize K & Rion

e Maude (1st version of K)
e Isabelle
e Coq

Final version: Matching logic

https://runtimeverification.com/

Bring both proof systems together

t
Fs,» [] well-formed (empty)
I I—Ejg A:s decl
Fyr I,z : A well-formed (decl) FOL
Rules
FE,R I well-formed :
T s TYPE: KIND O)
= I’ well-formed + A:s
=R T E—— i (const) c:AeX
R C-
Fs r I' well-formed AT Frame
Thresra: A (Var) TiA € Rules
I'-sr A:TYPE T'z:Ablsr B:s d
Theglz:A B:s (prod)
F}_E,RAZTYPE F,CEZA}_E’RBIS P,ZL‘ZA"E,RtZB b))
Ther z:At:1z: A B (abs) nglomt
ules
'ksrt:llz:AB T'Fxru:A
F'Fygrtu:(u/z)B (app)
r I_E,’R t:A T }_E,’R B:s Technical
(conv) A=sr B Rules

FI—E,Rt:B

4

(Propositional 1)
(Propositional 2)
(Propositional 3)

runtime
verification

= (W=
(= W—0)—=> (=)= (p—0)
(p—=L)—= 1) =09

(Modus Ponens) W
(3-Quantifier) oly/z] = Jz. ¢
(3-Generalization) %az ¢ FV(y)
(Propagation) Cll]— L
(Propagationy) Cle V9] = Cle] VCY]
(Propagations) Cl3z. p] = Jz. Clp] with z ¢ FV(C)
(Brering) _ =Y

Cly] = ClY
(Substitution) @—[1;7]
(Prefixpoint) ol(pX. @)/ X] = puX. @
(Knaster-Tarski) %
(Existence) =10
(Singleton) =(Ch[z A @] ACalz A —))

https://runtimeverification.com/

runtime
verification

uestions?

https://runtimeverification.com/

Matching Logic: The Underlying Core Logic of K

4

Type Systems

A

First-Order Logic with
Least Fixpoints

Seperation Logic with
Recursive Definitions

Initial Algebra
Semantics

A

Separation Logic

Order-Sorted
Algebras

\

A-Calculus

A

Many-Sorted
Algebras

Equational Logic

First-Order Logic

Rewriting Logic

Reachability Logic

Hoare Logic

Modal p-Logic

\

Temporal Logics
(LTL,CTL,CTL",...)

Polyadic and/or

Hybrid Modal Logic

/

Dynamic Logic

Normal Modal Logic

Propositional Logic

