

Language-agnostic Program Verification

WG3 Kick-off Meeting

Juan Conejero Rodríguez

Runtime Verification Inc.

- Software quality assurance company
- Uses formal methods to perform security audits
- Team behind the maintenance of the K framework

The K framework

→ Mission

Accessible trustworthy computing

→ Vision

Generate implementations and tools automatically from formal specifications, correct by construction

→ K

Semantic framework for design, implementation and formal reasoning

K Vision

Semantics based tooling

The Problem: Crafting Many Tools

• How many tools is too many tools?

• Quite a bit of repeated effort.

The K Approach

• Develop each language and each tool once:

- Save on the implementation effort!
- Updates to tools benefit *all* the languages!

What is K?

- K is a formal semantics framework.
 - Specify your language or system in the K modelling language.
 - K derives a bunch of tools for you from this specification.
 - Notice the interpreter: executable semantics.
- K foundation: Matching Logic.
 - FOL + μ variant for specifying and reasoning about programs & PL.
 - Generalizes several important logical frameworks.
 - Specifications as rewrite rules.
- All of the tools built by RV are powered by K. Smart contract verification offered by RV is done with K.
- Webpages: <u>https://kframework.org</u> <u>http://www.matching-logic.org/</u> <u>https://runtimeverification.com/</u> <u>https://fsl.cs.illinois.edu/</u>

K Vision in the Real World

K in (the) Action

- K as a frontend
 - Concise and powerful language to express semantics
 - Write semantics in K, prove properties in an ITP
 - This would allow to prove deeper properties of PL
- K as a backend
 - ➢ Use K as a solver for ITP
 - Possible downside: there are more efficient solvers out there
- Back and forth between K and an ITP
 - Specify semantics and properties in K
 - Produce Dedukti proofs from K proofs
 - Double check in Dedukti every K proof
 - Send to an ITP the statements that K cannot prove

Our perspective of the Action

- Make ITPs capable of meeting industry standards
 - Ease of use
 - Wide range of applicable scenarios
 - Plenty of tools available
- K can deliver important key stones in this direction
 - Import semantics of already formalized languages in K
 - Ease the definition of future semantic definitions in Dedukti & ITPs
 - Strengthen K by making an ITP available for hard statements

Previous attempts to formalize K

- Maude (1st version of K)
- Isabelle
- Coq

Final version: Matching logic

Bring both proof systems together

${\vdash_{\Sigma,\mathcal{R}}} [] \text{ well-formed } (\text{empty})$ ${\vdash_{\Sigma,\mathcal{R}}} {\Gamma \vdash_{\Sigma,\mathcal{R}}} \frac{A:s}{A:s} \text{ (decl)}$ $\vdash_{\Sigma,\mathcal{R}} \Gamma \text{ well-formed } (\text{ or } t)$	FOL Rules	 (Propositional 1) (Propositional 2) (Propositional 3) (Modus Ponens) (∃-Quantifier) 	$\begin{split} \varphi &\to (\psi \to \varphi) \\ (\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta)) \\ ((\varphi \to \bot) \to \bot) \to \varphi \\ \frac{\varphi \varphi \to \psi}{\psi} \\ \varphi[y/x] \to \exists x. \varphi \\ \varphi \to \psi \end{split}$
$\overline{\Gamma \vdash_{\Sigma, \mathcal{R}} \mathtt{TYPE} : \mathtt{KIND}} $ (Sort)		$(\exists$ -Generalization)	$\overline{(\exists x.\varphi)\to\psi} \ x\notin FV(\psi)$
$\frac{\vdash_{\Sigma,\mathcal{R}} \Gamma \text{ well-formed} \vdash_{\Sigma,\mathcal{R}} A:s}{\Gamma \vdash_{\Sigma,\mathcal{R}} c:A} \text{ (const) } c:A \in \Sigma$ $\frac{\vdash_{\Sigma,\mathcal{R}} \Gamma \text{ well-formed}}{\Gamma \vdash_{\Sigma,\mathcal{R}} x:A} \text{ (var) } x:A \in \Gamma$ $\Gamma \vdash_{\Sigma,\mathcal{R}} A: \text{TYPE} \Gamma, x:A \vdash_{\Sigma,\mathcal{R}} B:s (q=1)$	Frame Rules	$(Propagation_{\perp})$ $(Propagation_{\vee})$ $(Propagation_{\exists})$ (Framing)	$C[\bot] \to \bot$ $C[\varphi \lor \psi] \to C[\varphi] \lor C[\psi]$ $C[\exists x. \varphi] \to \exists x. C[\varphi] \text{ with } x \notin FV(C)$ $\frac{\varphi \to \psi}{C[\varphi] \to C[\psi]}$
$\frac{\Gamma \vdash_{\Sigma,\mathcal{R}} \Pi x : A, B : s}{\Gamma \vdash_{\Sigma,\mathcal{R}} A : TYPE \Gamma, x : A \vdash_{\Sigma,\mathcal{R}} B : s \Gamma, x : A \vdash_{\Sigma,\mathcal{R}} t : B}{\Gamma \vdash_{\Sigma,\mathcal{R}} \lambda x : A, t : \Pi x : A, B} \text{ (abs)}$ $\frac{\Gamma \vdash_{\Sigma,\mathcal{R}} t : \Pi x : A, B \Gamma \vdash_{\Sigma,\mathcal{R}} u : A}{\Gamma \vdash_{\Sigma,\mathcal{R}} t : \mu : (u/x)B} \text{ (app)}$	Fixpoint Rules	(Substitution) (Prefixpoint) (Knaster-Tarski)	$ \frac{\varphi}{\varphi[\psi/X]} \\ \varphi[(\mu X. \varphi)/X] \to \mu X. \varphi \\ \frac{\varphi[\psi/X] \to \psi}{(\mu X. \varphi) \to \psi} $
$\frac{\Gamma \vdash_{\Sigma,\mathcal{R}} t : A \Gamma \vdash_{\Sigma,\mathcal{R}} B : s}{\Gamma \vdash_{\Sigma,\mathcal{R}} t : B} (\text{conv}) A \equiv_{\beta \mathcal{R}} B$	$\begin{array}{c} \text{Technical} \\ \text{Rules} \end{array} \left\{ \begin{array}{c} \end{array} \right.$	(Existence) (Singleton)	$\exists x. x \neg (C_1[x \land \varphi] \land C_2[x \land \neg \varphi])$

K uestions?

