

WG3 Kick-Off meeting

February 10-11, 2022

WG3 Context

- Several comunities/approaches/categories of tools in program verification:
 - Theorem provers
 - with expressive type systems as the basis for program verification.
 - to synthetise programs
 - Symbolic representation of state space
 - that use different proof systems to incorporate techniques such as fixpoint reasoning, predicate abstraction, interpolation, backward reachability.
 - Semantic-based approaches
 - inspired on Hoare-based verification, and that use SMT-based reasoning for proving correctness
 - that reduce the verification problem to some kind of logic/constraint representation, that must be solved later by provers
 - semantic frameworks

2/8

WG3 Context

Challenge

Formal verification involves solving intractable or even undecidable problems. Techniques and tools require a high level of expertise. This makes it difficult for the industry to embrace formal verification.

- WG3 beyond the state-of-the-art
 - Verification approaches can envisage new applications and integration
 of proof systems to overcome challenging problems that combine
 features that are better expressed in different logics.
 - Scalability and usability of verification techniques can be improved thanks to the exploitation of synergies among different verification tools.
 - Make verification techniques more successful by taking advantage of advances on interoperability between automated and interactive theorem proving, the mathematical formalisation of program semantics and type theory.

Objectives

Research Coordination Objectives (RCO) for WG3

 Make techniques for program verification more effective and more accessible to all stakeholders.

Capacity-building Objectives (All WG)

- Bring together members of the different communities working on proofs in Europe.
- Act as a stakeholder platform in the field of formal proofs from its theoretical grounds to its industrial applications.
- Create an excellent and inclusive network of researchers in Europe with lasting collaboration beyond the lifetime of the Action.
- Ease access to formal verification techniques in education and other areas of science
- Actively support young researchers, the under-represented gender, and teams from regions with less capacity.
- Transfer knowledge in terms of expertise, scientific tools and human resources
- Prepare competitive EU researchers for a fruitful career.
- Disseminate the results of the Action activities.

Implementation

- Each WG: at least one meeting every year to present results and discuss collaborative research activities for the next year.
- Six WGs:
 - WG1 on tools for interoperability.
 - WG2 on automated theorem provers.
 - WG3 on program verification. Tasks:
 - Investigate and develop proof systems for program semantics in cooperation with other working groups;
 - strengthen traditional techniques for program verification;
 - identify and exploit synergies between different verification tools and proof systems;
 - and develop new systems for checking the correctness of programs and complex software.
 - WG4 on libraries of formal proofs.
 - WG5 on machine learning in proofs.
 - WG6 on type theory.

Implementation – First Year

- Goals are agreed for each grant perior.
- Directly associated to WG3:
 - Identify verification techniques used in the Software Verification competition SV-COMP and start the analysis and characterization of the different approaches

WG3 deliverables

Stated in the MoU

- **D5** (month 18): Comparison of the approaches used in the Software Verification competition SV-COMP.
- **D6** (month 24): Software prototype for the inference of program specifications as logical axioms.
- **D7** (month 48): Collection of verification challenges with summary of working recipes for verifying them.
- **D8 (month 48)**: Technique for syntax-semantics interface for program verification with/without type systems.

Questions?

