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Why logical features in rewriting logic?

Why rewriting logic?

1 Models and formal specification are easily written in Maude (simplicity, expressiveness,
and performance)

2 Rewriting modulo associativity, commutativity and identity

3 Differentiation between concurrent and functional fragments of a model

4 Order-sorted and parameterized specifications

5 Infrastructure for formal analysis and verification (including search command, LTL model
checker, theorem prover, etc.)

6 Reflection (meta-modeling, symbolic execution, building tools)

7 Application areas:
• Models of computation (λ-calculi, π-calculus, petri nets, CCS),
• Programming languages (C, Java, Haskell, Prolog),
• Distributed algorithms and systems (security protocols, real-time, probabilistic),
• Biological systems
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Why logical features in rewriting logic?

Why adding logical features to Rewriting Logic?

1 Logical features were included in preliminary designs of the language (80’s) but never
implemented in Maude

2 Automated reasoning capabilities by adding logical variables

3 Differentiation between concurrent and functional fragments of a model is lifted to
differentiation between symbolic models and equational reasoning.

4 Unification and Narrowing modulo combinations of A,C,U

5 Infrastructure for formal analysis and verification lifted:
• from equational reduction to equational unification,
• from search to symbolic reachability,
• from LTL model checker to logical LTL model checker,
• from theorem proving to narrowing-based theorem proving,
• from SMT solving to variant-based SMT solving.

...
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What have we done

What have we done!!
• Maude 2.4 (2009)

• Built-in Unification: free or associative-commutative (AC)
• Narrowing-based search: rules modulo axioms (no equations).

• Maude 2.6 (2011)
• Built-in Unification: free, C, AC, or ACU (AC + identity)
• Variant Unification: Restricted equations modulo axioms.
• Narrowing-based search: rules modulo equations and axioms.

• Maude 2.7 (2015)
• Built-in Unification: free, C, AC, or ACU, CU, U, Ul, Ur
• Built-in Variant unification: wide class of equational theories.
• Narrowing-based search: rules modulo equations and axioms.

• Maude 2.7.1 (2016)
• Built-in Unification: previous cases + associativity

• Maude 3.0 (2019) Built-in Narrowing-based search: modulo all combinations

• Maude 3.1 (2020) Minimal (equational) unifiers, better unification modulo associavity

• Maude 3.2 (Now) Built-in Narrowing-based search with minimal unifiers
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Rewriting logic in a nutshell

Rewriting logic in a nutshell

A rewrite theory is

R = (Σ, Ax] E, R), with:

1 (Σ, R) a set of rewrite rules of the form t→ s
(i.e., system transitions)

2 (Σ, Ax] E) a set of equational properties of the form t = s
(i.e., E are equations and Ax are axioms such as ACU)

Intuitively, R specifies a concurrent system, whose states are elements of the initial algebra
TΣ/(Ax]E) specified by (Σ, Ax] E), and whose concurrent transitions are specified by the rules
R.
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Rewriting logic in a nutshell

Rewriting logic in a nutshell

mod VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op : Marking Marking -> Marking [assoc comm id: empty] .

op < > : Marking -> State .

ops $ q : -> Coin .

ops cookie cap : -> Item .

var M : Marking .

rl [add-$] : < M > => < M $ > .
rl [add-q] : < M > => < M q > .

rl [buy-c] : < M $ > => < M cap > .
rl [buy-a] : < M $ > => < M cookie q > .
eq [change]: q q q q = $ [variant] .

endm
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Rewriting logic in a nutshell

Rewriting modulo

Rewriting is

Given (Σ, Ax] E, R), t→R,(Ax]E) s if there is

• a non-variable position p ∈ Pos(t);
• a rule l→ r in R;

• a matching σ (E-normalized and modulo Ax) such that t|p =(Ax]E) σ(l), and s = t[σ(r)]p.

Ex: < $ q q q > → < $ cookie >
using “rl < M $ > => < M cookie q > .”
modulo AC of symbol “ ”

Ex: < q q q q > → < cap >
using “rl < M $ > => < M cap > .”
modulo simplification with q q q q = $ and AC of symbol “ ”
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Rewriting logic in a nutshell

Narrowing modulo

Narrowing is

Given (Σ, Ax] E, R), t ;σ,R,(Ax]E) s if there is

• a non-variable position p ∈ Pos(t);
• a rule l→ r in R;

• a unifier σ (E-normalized and modulo Ax) such that σ(t|p) =(Ax]E) σ(l), and

s = σ(t[r]p).

Ex: < X q q > ; < $ cookie >
using “rl < M $ > => < M cookie q > .”
using substitution {X 7→ $ q} modulo AC of symbol “ ”

Ex: < X q q > ; < cap >
using “rl < M $ > => < M cap > .”
using substitution {X 7→ q q}
modulo simplification with q q q q = $ and AC of symbol “ ”

Santiago Escobar (UMA-SRI-UIllinois-UPV-UCM) WG3 COST Action EuroProofNet Feb 10-11, Valencia, Spain EuroProofNet 12 / 50



Unification modulo axioms

Outline

1 Why logical features in rewriting logic?

2 What have we done

3 Rewriting logic in a nutshell

4 Unification modulo axioms

5 Variants in Maude

6 Variant-based Equational Unification

7 Narrowing

8 Logical Model Checking

9 Applications

Santiago Escobar (UMA-SRI-UIllinois-UPV-UCM) WG3 COST Action EuroProofNet Feb 10-11, Valencia, Spain EuroProofNet 13 / 50



Unification modulo axioms

Unification modulo axioms

Definition

Given equational theory (Σ, Ax), an Ax-unification problem is

t ?
= t′

An Ax-unifier is an order-sorted substitution σ s.t.

σ(t) =Ax σ(t′)

Decidability
• at most one mgu (syntactic unification, i.e., empty theory)

• a finite number (associativity–commutativity)

• an infinite number (associativity)
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Unification modulo axioms

Admissible Theories

Maude provides order-sorted Ax-unification algorithm for all order-sorted theories
(Σ, E∪Ax, R) s.t. Σ is preregular modulo Ax and axioms Ax are:

1 arbitrary function symbols and constants with no attributes;

2 iter equational attribute declared for some unary symbols;

3 “comm”, “assoc”, “assoc comm”, “assoc comm id:”, “comm id:”, “assoc id:”,
“id:”, “left id:”, or “right id:” attributes declared for some binary function
symbols but no other equational attributes can be given for such symbols.
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Unification modulo axioms

Unification Command in Maude

Maude provides a Ax-unification command of the form:

13.4. THE UNIFY COMMAND 323

Furthermore, the functional module fmod (⌃, E [M [ Ax [ Ax0) endfm (or the analogous
functional theory or system module or theory) may import predefined modules such as BOOL

or NAT, so that function symbols in such predefined modules can also be used in unification
problems.

13.4 The unify command

Given a functional module or theory, or a system module or theory, hModId i, the user can give
to Maude a unification command of the following two forms:

unify [ n ] in hModIdi :

hTerm-1 i =? hTerm’-1 i /\ ... /\ hTerm-ki =? hTerm’-ki .

irredundant unify [ n ] in hModIdi :

hTerm-1 i =? hTerm’-1 i /\ ... /\ hTerm-ki =? hTerm’-ki .

where k � 1; n is an optional argument providing a bound on the number of unifiers requested,
so that if the cardinality of the set of unifiers is greater than the specified bound, the unifiers
beyond that bound are omitted; and hModId i can be any module or theory declared in the
current Maude session (as usual, if no module is mentioned, the current module is used). The
second command generates all the unifiers and, then, filters them against each other in order
to return a minimal set of most general unifiers modulo the axioms.

For a simple example of syntactic order-sorted unification problem illustrating:

• the use of the unify command;

• the use of the predefined operator _^_ in the NAT module, representing exponentiation on
natural numbers; and

• the, in general, non-unitary nature of order-sorted unification,

we can define the module

fmod UNIFICATION-EX1 is

protecting NAT .

op f : Nat Nat -> Nat .

op f : NzNat Nat -> NzNat .

op f : Nat NzNat -> NzNat .

endfm

and then give to Maude the following command:

Maude> unify f(X:Nat, Y:Nat) ^ B:NzNat =? A:NzNat ^ f(Y:Nat, Z:Nat) .

Unifier 1

X:Nat --> #1:Nat

Y:Nat --> #2:NzNat

B:NzNat --> f(#2:NzNat, #3:Nat)

A:NzNat --> f(#1:Nat, #2:NzNat)

Z:Nat --> #3:Nat

Unifier 2

X:Nat --> #1:NzNat

Y:Nat --> #2:Nat

B:NzNat --> f(#2:Nat, #3:NzNat)

A:NzNat --> f(#1:NzNat, #2:Nat)

Z:Nat --> #3:NzNat

• ModId is the name of the module

• n is a bound on the number of unifiers

• new variables are created as #n:Sort

• Implemented at the core level of Maude (C++)
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Unification modulo axioms

AC-Unification in Maude

304 CHAPTER 12. UNIFICATION

always fresh variables of the form #n:Sort. The user is required not to use variables of this
form in the submitted unification problem. A warning is printed if this requirement is violated:

Maude> unify in NAT : X:Nat ^ #1:Nat =? #2:Nat .

Warning: unsafe variable name #1:Nat in unification problem.

The use of a bound on the number of unifiers, as well as the use of the associative-
commutative (AC) operator + in the predefined NAT module (see Section 7.2), plus the fact
that even small AC-unification problems can generate a large number of unifiers are all illus-
trated by the following command:

Maude> unify [100] in NAT :

X:Nat + X:Nat + Y:Nat =? A:Nat + B:Nat + C:Nat .

Solution 1

X:Nat --> #1:Nat + #2:Nat + #3:Nat + #5:Nat + #6:Nat + #8:Nat

Y:Nat --> #4:Nat + #7:Nat + #9:Nat

A:Nat --> #1:Nat + #1:Nat + #2:Nat + #3:Nat + #4:Nat

B:Nat --> #2:Nat + #5:Nat + #5:Nat + #6:Nat + #7:Nat

C:Nat --> #3:Nat + #6:Nat + #8:Nat + #8:Nat + #9:Nat

...

Solution 100

X:Nat --> #1:Nat + #2:Nat + #3:Nat + #4:Nat

Y:Nat --> #5:Nat

A:Nat --> #1:Nat + #1:Nat + #2:Nat

B:Nat --> #2:Nat + #3:Nat

C:Nat --> #3:Nat + #4:Nat + #4:Nat + #5:Nat

The following unification command in the predefined CONVERSION module (see Section 7.9)
illustrates a further point on the handling of built-in constants and functions. Built-in constants,
even though infinite in number (all strings, all quoted identifiers, all natural numbers, and so
on), are handled and can be used in unification problems. But built-in functions are not
considered built-in for unification purposes; therefore, built-in evaluation of such functions is
not performed during the unification.

Maude> unify in CONVERSION :

X:String < "foo" + Y:Char =?

Z:String + string(pi) < "foo" + Z:String .

Solution 1

X:String --> #1:Char + string(pi)

Y:Char --> #1:Char

Z:String --> #1:Char

The handling of unification problems in modules with operators whose equational axioms
are excluded from the current unification algorithm can be illustrated by means of the following
module:

fmod UNIFICATION-EX3 is

protecting NAT .

op f : Nat Nat -> Nat [assoc] .

endfm
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Unification modulo axioms

ACU-Unification in Maude
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Unification modulo axioms

Irredundant Unification in Maude

328 CHAPTER 13. UNIFICATION

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ > => < M c > .

rl [buy-a] : < M $ > => < M a q > .

eq [change]: q q q q = $ .

endm

We can ask whether there is an equational unifier of two configurations, one containing at
least two quarters, and another containing at least one dollar.

Maude> unify in UNIF-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> $
Y:Marking --> q q

Unifier 2

X:Marking --> $ #1:Marking

Y:Marking --> q q #1:Marking

Notice that the computed set of unifiers is not minimal, because the first solution is the instance
of the second obtained by substituting the variable #1:Marking with the constant empty.

Maude> irredundant unify in UNIF-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> $ #1:Marking

Y:Marking --> q q #1:Marking

Recall that memberships are discarded completely. For instance, if we modify the previous
example to include a membership definition for a new sort Quarter, any unification call with
that sort may not succeed.

mod UNIF-VENDING-MACHINE-MB is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

sort Quarter .

subsort Quarter < Coin .

328 CHAPTER 13. UNIFICATION
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rl [buy-a] : < M $ > => < M a q > .

eq [change]: q q q q = $ .

endm

We can ask whether there is an equational unifier of two configurations, one containing at
least two quarters, and another containing at least one dollar.

Maude> unify in UNIF-VENDING-MACHINE :
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Unifier 1

X:Marking --> $
Y:Marking --> q q

Unifier 2

X:Marking --> $ #1:Marking

Y:Marking --> q q #1:Marking

Notice that the computed set of unifiers is not minimal, because the first solution is the instance
of the second obtained by substituting the variable #1:Marking with the constant empty.

Maude> irredundant unify in UNIF-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> $ #1:Marking

Y:Marking --> q q #1:Marking

Recall that memberships are discarded completely. For instance, if we modify the previous
example to include a membership definition for a new sort Quarter, any unification call with
that sort may not succeed.

mod UNIF-VENDING-MACHINE-MB is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

sort Quarter .

subsort Quarter < Coin .
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Variants in Maude

From equational reduction to variants (1/4)

E,Ax-variant

Given a term t and an equational theory Ax] E, (t′, θ) is an E,Ax-variant of t if
θ(t)↓E,Ax =Ax t′ [Comon-Delaune-RTA05]

Exclusive Or

X⊕ 0 → X
X⊕X → 0

X⊕X⊕ Y → Y

X⊕ (Y⊕ Z) = (X⊕ Y)⊕ Z
X⊕ Y = Y⊕X

(axioms: Ax)

Computed Variants

For X⊕X: (0, id), (0, {X 7→ a}), (0, {X 7→ a⊕ b}), . . .
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Variants in Maude

From equational reduction to variants (2/4)

Finite and complete set of E,Ax-variants

A preorder relation of generalization between variants provides a notion of most general variant.

Computed Variants

For X⊕ Y there are 7 most general E,Ax-variants
1. (X⊕ Y, id)
3. (Z, {X 7→ 0, Y 7→ Z})
5. (Z, {X 7→ Z, Y 7→ 0})

2. (0, {X 7→ U, Y 7→ U})
4. (Z, {X 7→ Z⊕U, Y 7→ U})
6. (Z, {X 7→ U, Y 7→ Z⊕U})
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Variants in Maude

From equational reduction to variants (3/4)

Finite Variant Property

Theory has FVP if finite number of most general variants for every term.

Common
• Cryptographic Security Protocols: Public or shared encryption, Exclusive Or, Abelian

groups, Diffie-Hellman, Bilinear Pairings

• Satisfiability Modulo Theories Natural Presburger Arithmetic, Integer Presburger
Arithmetic, Lists, Sets

Used in application areas

Equational Unification, Logical Model Checking, Cyber-Physical systems, Partial evaluation,
Confluence tools, Termination tools, Theorem provers
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Variants in Maude

From equational reduction to variants (4/4)

Test for FVP
Whether a theory has FVP is undecidable in general, though there are approximations
techniques.

Computing most general variants

Given a theory that has FVP, it is possible to compute all the most general variants by using
the Folding Variant Narrowing Strategy (Escobar et al. 2012)
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Variants in Maude

Variant Command in Maude

Maude provides variant generation:

348 CHAPTER 14. VARIANTS AND VARIANT UNIFICATION

Any system module mod (⌃, G [ E [Ax, R) endm (or system theory th (⌃, G [ E [Ax, R)
endth), where G is an additional set of equations (without the variant attribute!) and R is a
set of rules, is also considered admissible for variant generation if the equational part (⌃, E[Ax)
satisfies the conditions described above. Note that when an equational theory (⌃, G[E [Ax)
is entered into Maude, each equation in E (used for variant computation) must include the
variant attribute. Note that equations in G do not have any restriction, i.e., they can be
conditional equations, with the owise attribute, etc.

14.4 The get variants command

Given a module hModId i, Maude provides two variant generation commands of the form:

get variants [ n ] in hModIdi : hTermi .

get irredundant variants [ n ] in hModIdi : hTermi .

where n is an optional argument providing a bound on the number of variants requested, so
that if the cardinality of the set of variants is greater than the specified bound, the variants
beyond that bound are omitted; and, as usual, if no module is mentioned, the current module
is used.

Maude allows an incremental generation of variants, as described in Section 14.6 below.
When a theory does not have the finite variant property, an incremental generation of the
(possibly infinite) set of most general variants would be returned by the first command get

variants. However, the second command, get irredundant variants, is useful for theories
that do have the finite variant property, since it will provide the set of most general variants of
a term, which is the basis for variant-based unification in Section 14.8.

For example, we can check that the EXCLUSIVE-OR module above has the finite variant
property by simply generating the variants for the exclusive-or symbol ⇤.
Maude> get irredundant variants in EXCLUSIVE-OR : X * Y .

Variant 1

[NatSet]: #1:[NatSet] * #2:[NatSet]

X --> #1:[NatSet]

Y --> #2:[NatSet]

Variant 2

NatSet: mt

X --> %1:[NatSet]

Y --> %1:[NatSet]

Variant 3

[NatSet]: %1:[NatSet] * %3:[NatSet]

X --> %1:[NatSet] * %2:[NatSet]

Y --> %2:[NatSet] * %3:[NatSet]

Variant 4

[NatSet]: %1:[NatSet]

X --> %1:[NatSet] * %2:[NatSet]

Y --> %2:[NatSet]

Variant 5

[NatSet]: %2:[NatSet]

X --> %1:[NatSet]

• ModId is the name of the module

• n is a bound on the number of variants

• new variables are created as #n:Sort and %n:Sort

• Implemented at the core level of Maude (C++)

• Folding variant narrowing strategy is used internally

• Terminating if Finite Variant Property

• Incremental output if not Finite Variant Property

• Irredundant version only if Finite Variant Property
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Variants in Maude

Exclusive-or Variants

186 F. Durán et al.

provides a notion of most general variants and also of completeness of a set of
variants. An equational theory has the finite variant property (or it is called a
finite variant theory) iff there is a finite and complete set of most general variants
for each term. Whether an equational theory has the finite variant property is
undecidable [2] but a technique based on the dependency pair framework has
been developed in [12] and a semi-decision procedure that works well in practice
was introduced in [3].

At a practical level, variants are generated using a narrowing strategy. Nar-
rowing with oriented equations E (with or without modulo Ax) enjoys well-
known completeness results. But narrowing can be quite inefficient, generating a
huge search space, and different narrowing strategies have been devised to reduce
the search space while remaining complete. The folding variant narrowing strat-
egy is proved in [12] to be complete for variants and it is able to terminate for
all inputs if the theory has the finite variant property.

The equational theories that are admissible for variant generation are as
follows. Let fmod (Σ, E ∪Ax) endfm be an order-sorted functional module where
E is a set of equations specified with the eq keyword and the attribute variant,
and Ax is a set of axioms such that the axioms satisfy the restrictions explained in
Sect. 2. Furthermore, the equations E must be unconditional, not using the owise
attribute, and confluent, terminating, sort-decreasing, and coherent modulo Ax
(we then call the equational theory convergent).

Any system module mod (Σ, G ∪ E ∪ Ax,R) endm where G is an additional
set of equations and R is a set of rules, is also considered admissible for variant
generation if the equational part (Σ, E ∪ Ax) satisfies the conditions described
above. Note that Maude requires that the equations E used for variant generation
(and variant-based unification) should be clearly distinguished from the standard
equations G in Maude by using the attribute variant (both E and G are used
for term simplification but R not).

Maude provides a variant generation command of the form:

get variants [ n ] in ⟨ModId ⟩ : ⟨Term ⟩ .

where n is an optional argument providing a bound on the number of variants
requested, so that if the cardinality of the set of variants is greater than the
specified bound, the variants beyond that bound are omitted; and ModId is the
module where the command takes place.

For example, consider the following equational theory for exclusive or.

fmod EXCLUSIVE-OR is
sorts Nat NatSet . subsort Nat < NatSet .
op 0 : -> Nat .
op s : Nat -> Nat .
op mt : -> NatSet .
op _*_ : NatSet NatSet -> NatSet [assoc comm] .
vars X Z : [NatSet] .
eq [idem] : X * X = mt [variant] .
eq [idem-Coh] : X * X * Z = Z [variant] .
eq [id] : X * mt = X [variant] .

endfm

We can check that the EXCLUSIVE-OR module above has the finite variant prop-
erty by simply generating the variants for the exclusive-or symbol ∗.
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Maude> get variants in EXCLUSIVE-OR : X * Y .
Variant 1 Variant 7
[NatSet]: #1:[NatSet] * #2:[NatSet] ......... [NatSet]: %1:[NatSet]
X --> #1:[NatSet] X --> %1:[NatSet]
Y --> #2:[NatSet] Y --> mt

The above output illustrates a difference between unifiers returned by the
built-in unification modulo axioms and substitutions (or unifiers) returned by
variant generation or variant-based unification: two forms of fresh variables, the
former #n:Sort and the new %n:Sort . Note that the two forms have different
counters.

We can consider a more complex equational theory such as the one of Abelian
groups specified in the following module; this theory could not be handled by
Maude 2.6 because it is not strongly right irreducible.

fmod ABELIAN-GROUP is
sorts Elem .
op _+_ : Elem Elem -> Elem [comm assoc] .
op -_ : Elem -> Elem .
op 0 : -> Elem .
vars X Y Z : Elem .
eq X + 0 = X [variant] .
eq X + (- X) = 0 [variant] .
eq X + (- X) + Y = Y [variant] .
eq - (- X) = X [variant] .
eq - 0 = 0 [variant] .
eq (- X) + (- Y) = -(X + Y) [variant] .
eq -(X + Y) + Y = - X [variant] .
eq -(- X + Y) = X + (- Y) [variant] .
eq (- X) + (- Y) + Z = -(X + Y) + Z [variant] .
eq -(X + Y) + Y + Z = (- X) + Z [variant] .

endfm

The generation of the variants for the addition symbol provides 47 variants:

Maude> get variants in ABELIAN-GROUP : X + Y .
Variant 1 Variant 47
Elem: #1:Elem + #2:Elem ................. Elem: - (%2:Elem + %3:Elem)
X --> #1:Elem X --> %4:Elem + - (%1:Elem + %2:Elem)
Y --> #2:Elem Y --> %1:Elem + - (%3:Elem + %4:Elem)

And the minus sign symbol has four variants:

Maude> get variants in ABELIAN-GROUP : - X .
Variant 1 Variant 2 Variant 3 Variant 4
Elem: - #1:Elem Elem: %1:Elem Elem: 0 Elem: %1:Elem + - %2:Elem
X --> #1:Elem X --> - %1:Elem X --> 0 X --> %2:Elem + - %1:Elem

Another interesting feature is that variant generation is incremental. In this
way we are able to support general convergent equational theories modulo axioms
that need not have the finite variant property. Let us consider the following
functional module for addition NAT-VARIANT that does not have the finite variant
property.

fmod NAT-VARIANT is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
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Abelian Group Variants

Built-in Variant Generation and Unification, and Their Applications 187

Maude> get variants in EXCLUSIVE-OR : X * Y .
Variant 1 Variant 7
[NatSet]: #1:[NatSet] * #2:[NatSet] ......... [NatSet]: %1:[NatSet]
X --> #1:[NatSet] X --> %1:[NatSet]
Y --> #2:[NatSet] Y --> mt

The above output illustrates a difference between unifiers returned by the
built-in unification modulo axioms and substitutions (or unifiers) returned by
variant generation or variant-based unification: two forms of fresh variables, the
former #n:Sort and the new %n:Sort . Note that the two forms have different
counters.

We can consider a more complex equational theory such as the one of Abelian
groups specified in the following module; this theory could not be handled by
Maude 2.6 because it is not strongly right irreducible.

fmod ABELIAN-GROUP is
sorts Elem .
op _+_ : Elem Elem -> Elem [comm assoc] .
op -_ : Elem -> Elem .
op 0 : -> Elem .
vars X Y Z : Elem .
eq X + 0 = X [variant] .
eq X + (- X) = 0 [variant] .
eq X + (- X) + Y = Y [variant] .
eq - (- X) = X [variant] .
eq - 0 = 0 [variant] .
eq (- X) + (- Y) = -(X + Y) [variant] .
eq -(X + Y) + Y = - X [variant] .
eq -(- X + Y) = X + (- Y) [variant] .
eq (- X) + (- Y) + Z = -(X + Y) + Z [variant] .
eq -(X + Y) + Y + Z = (- X) + Z [variant] .

endfm

The generation of the variants for the addition symbol provides 47 variants:

Maude> get variants in ABELIAN-GROUP : X + Y .
Variant 1 Variant 47
Elem: #1:Elem + #2:Elem ................. Elem: - (%2:Elem + %3:Elem)
X --> #1:Elem X --> %4:Elem + - (%1:Elem + %2:Elem)
Y --> #2:Elem Y --> %1:Elem + - (%3:Elem + %4:Elem)

And the minus sign symbol has four variants:

Maude> get variants in ABELIAN-GROUP : - X .
Variant 1 Variant 2 Variant 3 Variant 4
Elem: - #1:Elem Elem: %1:Elem Elem: 0 Elem: %1:Elem + - %2:Elem
X --> #1:Elem X --> - %1:Elem X --> 0 X --> %2:Elem + - %1:Elem

Another interesting feature is that variant generation is incremental. In this
way we are able to support general convergent equational theories modulo axioms
that need not have the finite variant property. Let us consider the following
functional module for addition NAT-VARIANT that does not have the finite variant
property.

fmod NAT-VARIANT is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .

Built-in Variant Generation and Unification, and Their Applications 187

Maude> get variants in EXCLUSIVE-OR : X * Y .
Variant 1 Variant 7
[NatSet]: #1:[NatSet] * #2:[NatSet] ......... [NatSet]: %1:[NatSet]
X --> #1:[NatSet] X --> %1:[NatSet]
Y --> #2:[NatSet] Y --> mt

The above output illustrates a difference between unifiers returned by the
built-in unification modulo axioms and substitutions (or unifiers) returned by
variant generation or variant-based unification: two forms of fresh variables, the
former #n:Sort and the new %n:Sort . Note that the two forms have different
counters.

We can consider a more complex equational theory such as the one of Abelian
groups specified in the following module; this theory could not be handled by
Maude 2.6 because it is not strongly right irreducible.

fmod ABELIAN-GROUP is
sorts Elem .
op _+_ : Elem Elem -> Elem [comm assoc] .
op -_ : Elem -> Elem .
op 0 : -> Elem .
vars X Y Z : Elem .
eq X + 0 = X [variant] .
eq X + (- X) = 0 [variant] .
eq X + (- X) + Y = Y [variant] .
eq - (- X) = X [variant] .
eq - 0 = 0 [variant] .
eq (- X) + (- Y) = -(X + Y) [variant] .
eq -(X + Y) + Y = - X [variant] .
eq -(- X + Y) = X + (- Y) [variant] .
eq (- X) + (- Y) + Z = -(X + Y) + Z [variant] .
eq -(X + Y) + Y + Z = (- X) + Z [variant] .

endfm

The generation of the variants for the addition symbol provides 47 variants:

Maude> get variants in ABELIAN-GROUP : X + Y .
Variant 1 Variant 47
Elem: #1:Elem + #2:Elem ................. Elem: - (%2:Elem + %3:Elem)
X --> #1:Elem X --> %4:Elem + - (%1:Elem + %2:Elem)
Y --> #2:Elem Y --> %1:Elem + - (%3:Elem + %4:Elem)

And the minus sign symbol has four variants:

Maude> get variants in ABELIAN-GROUP : - X .
Variant 1 Variant 2 Variant 3 Variant 4
Elem: - #1:Elem Elem: %1:Elem Elem: 0 Elem: %1:Elem + - %2:Elem
X --> #1:Elem X --> - %1:Elem X --> 0 X --> %2:Elem + - %1:Elem

Another interesting feature is that variant generation is incremental. In this
way we are able to support general convergent equational theories modulo axioms
that need not have the finite variant property. Let us consider the following
functional module for addition NAT-VARIANT that does not have the finite variant
property.

fmod NAT-VARIANT is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
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Variant-based Equational Unification

Admissible Theories

Maude provides order-sorted Ax] E-unification algorithm for all order-sorted theories
(Σ, Ax,~E) s.t.

1 Maude has an Ax-unification algorithm,

2 E equations specified with the eq and variant keywords.

3 E is unconditional, convergent, sort-decreasing and coherent modulo Ax.

4 The owise feature is not allowed.
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Variant-based Equational Unification

Equational Unification Command in Maude

Maude provides a (Ax] E)-unification command of the form:

14.9. THE VARIANT UNIFY COMMAND 357

14.9 The variant unify command

Given a module hModId i, of the general form mod (⌃, G [ E [ Ax, R) endm where (⌃, E [ Ax)
satisfies the requirements of Section 14.3 and satisfies also the finite variant property, Maude
provides a command for E [ Ax-equational unification based on variant generation of the
following two forms:

variant unify [ n ] in hModIdi :

hTerm-1 i =? hTerm’-1 i /\ ... /\ hTerm-ki =? hTerm’-ki .

filtered variant unify [ n ] in hModIdi :

hTerm-1 i =? hTerm’-1 i /\ ... /\ hTerm-ki =? hTerm’-ki .

where k � 1; n is an optional argument providing a bound on the number of unifiers requested,
so that if the cardinality of the set of unifiers is greater than the specified bound, the unifiers
beyond that bound are omitted; and, as usual, if no module is mentioned, the current module
is used. The second command

Consider again the module VARIANT-VENDING-MACHINE introduced in Section 14.4. We can
ask whether there is an E [Ax-equational unifier of two configurations, one containing at least
two quarters, and another containing at least one dollar, by invoking the following command:

Maude> variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> $ %1:Marking

Y:Marking --> q q %1:Marking

Unifier 2

X:Marking --> q q #1:Marking

Y:Marking --> #1:Marking

It may not be obvious that this is not the minimal set of most general unifiers, but the filtered
version returns only one unifier.

Maude> filtered variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> q q #1:Marking

Y:Marking --> #1:Marking

The first unifier is an instance of the second unifier by applying #1:Marking --> q q and
simplifying q q q q into $. Instead, the second unifier is not an instance of the first unifier
because the $ in normal form disables any possibility.

Note that there are equational theories where two unifiers are comparable in both directions,
i.e. unifier �1 is an instance of unifier �2 modulo the equational theory and viceversa. In such
a case, Maude arbitrarily returns one of them. For instance, it is well-known that unification in
the exclusive-or theory is unitary [86] and, for the following unification problem, the variant

unify command returns 57 unifiers whereas the filtered variant unify command returns
just one, but several could be appropriate candidates for most general unifier.

Maude> filtered variant unify in EXCLUSIVE-OR : X * Y =? Z * W .

Unifier 1

X --> %1:[NatSet] * %3:[NatSet]

• ModId is the name of the module

• n is a bound on the number of unifiers

• new variables are created as #n:Sort and %n:Sort

• Implemented at the core level of Maude (C++)

• Terminating if Finite Variant Property

• Incremental output if not Finite Variant Property
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Variant-based Equational Unification

Filtered Variant-based Unification in Maude

14.9. THE VARIANT UNIFY COMMAND 357

14.9 The variant unify command

Given a module hModId i, of the general form mod (⌃, G [ E [ Ax, R) endm where (⌃, E [ Ax)
satisfies the requirements of Section 14.3 and satisfies also the finite variant property, Maude
provides a command for E [ Ax-equational unification based on variant generation of the
following two forms:

variant unify [ n ] in hModIdi :

hTerm-1 i =? hTerm’-1 i /\ ... /\ hTerm-ki =? hTerm’-ki .

filtered variant unify [ n ] in hModIdi :

hTerm-1 i =? hTerm’-1 i /\ ... /\ hTerm-ki =? hTerm’-ki .

where k � 1; n is an optional argument providing a bound on the number of unifiers requested,
so that if the cardinality of the set of unifiers is greater than the specified bound, the unifiers
beyond that bound are omitted; and, as usual, if no module is mentioned, the current module
is used. The second command

Consider again the module VARIANT-VENDING-MACHINE introduced in Section 14.4. We can
ask whether there is an E [Ax-equational unifier of two configurations, one containing at least
two quarters, and another containing at least one dollar, by invoking the following command:

Maude> variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> $ %1:Marking

Y:Marking --> q q %1:Marking

Unifier 2

X:Marking --> q q #1:Marking

Y:Marking --> #1:Marking

It may not be obvious that this is not the minimal set of most general unifiers, but the filtered
version returns only one unifier.

Maude> filtered variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> q q #1:Marking

Y:Marking --> #1:Marking

The first unifier is an instance of the second unifier by applying #1:Marking --> q q and
simplifying q q q q into $. Instead, the second unifier is not an instance of the first unifier
because the $ in normal form disables any possibility.

Note that there are equational theories where two unifiers are comparable in both directions,
i.e. unifier �1 is an instance of unifier �2 modulo the equational theory and viceversa. In such
a case, Maude arbitrarily returns one of them. For instance, it is well-known that unification in
the exclusive-or theory is unitary [86] and, for the following unification problem, the variant

unify command returns 57 unifiers whereas the filtered variant unify command returns
just one, but several could be appropriate candidates for most general unifier.

Maude> filtered variant unify in EXCLUSIVE-OR : X * Y =? Z * W .

Unifier 1

X --> %1:[NatSet] * %3:[NatSet]

14.9. THE VARIANT UNIFY COMMAND 357

14.9 The variant unify command

Given a module hModId i, of the general form mod (⌃, G [ E [ Ax, R) endm where (⌃, E [ Ax)
satisfies the requirements of Section 14.3 and satisfies also the finite variant property, Maude
provides a command for E [ Ax-equational unification based on variant generation of the
following two forms:

variant unify [ n ] in hModIdi :

hTerm-1 i =? hTerm’-1 i /\ ... /\ hTerm-ki =? hTerm’-ki .

filtered variant unify [ n ] in hModIdi :

hTerm-1 i =? hTerm’-1 i /\ ... /\ hTerm-ki =? hTerm’-ki .

where k � 1; n is an optional argument providing a bound on the number of unifiers requested,
so that if the cardinality of the set of unifiers is greater than the specified bound, the unifiers
beyond that bound are omitted; and, as usual, if no module is mentioned, the current module
is used. The second command

Consider again the module VARIANT-VENDING-MACHINE introduced in Section 14.4. We can
ask whether there is an E [Ax-equational unifier of two configurations, one containing at least
two quarters, and another containing at least one dollar, by invoking the following command:

Maude> variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> $ %1:Marking

Y:Marking --> q q %1:Marking

Unifier 2

X:Marking --> q q #1:Marking

Y:Marking --> #1:Marking

It may not be obvious that this is not the minimal set of most general unifiers, but the filtered
version returns only one unifier.

Maude> filtered variant unify in VARIANT-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .

Unifier 1

X:Marking --> q q #1:Marking

Y:Marking --> #1:Marking

The first unifier is an instance of the second unifier by applying #1:Marking --> q q and
simplifying q q q q into $. Instead, the second unifier is not an instance of the first unifier
because the $ in normal form disables any possibility.

Note that there are equational theories where two unifiers are comparable in both directions,
i.e. unifier �1 is an instance of unifier �2 modulo the equational theory and viceversa. In such
a case, Maude arbitrarily returns one of them. For instance, it is well-known that unification in
the exclusive-or theory is unitary [86] and, for the following unification problem, the variant

unify command returns 57 unifiers whereas the filtered variant unify command returns
just one, but several could be appropriate candidates for most general unifier.

Maude> filtered variant unify in EXCLUSIVE-OR : X * Y =? Z * W .

Unifier 1

X --> %1:[NatSet] * %3:[NatSet]
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Narrowing

Symbolic reachability analysis in rewrite theories

• Given (Σ, E∪Ax, R) as a concurrent system, a symbolic reachability problem is

(∃X) t −→∗ t′

• Narrowing provides a sound and complete method for topmost theories.

• Narrowing with R modulo Ax] E requires Ax] E-unification at each narrowing step

• Narrowing can be also used for logical model checking
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Narrowing

Narrowing in Maude

Narrowing generalizes term rewriting by allowing free variables in terms and by performing
unification instead of matching in order to (non–deterministically) reduce a term.

1 Narrowing + simplification (for built-in operators and equational simplification)

2 Frozen arguments, similar to the context-sensitive narrowing

3 Extra variables in right hand sides of the rules for functional logic programming features
(e.g. constraint programming and instantiation search).
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Narrowing

Narrowing Search Command in Maude

Narrowing-based search command of the form:

366 CHAPTER 15. NARROWING

15.6 The vu-narrow command

Given a system module hModId i, the user can give to Maude a narrowing-based search command
of the form (the prefix vu denotes that uses variant-based unification at each step):

vu-narrow [ n, m ] in hModIdi : hTerm-1 i hSearchArrowi hTerm-2 i .

where

• n is an optional argument providing a bound on the number of desired solutions;

• m is another optional argument stating the maximum depth of the search;

• the module hModId i where the search takes place can be omitted;

• hTerm-1 i is the starting term, which typically will contain variables;

• hTerm-2 i is the pattern that has to be reached, which may share variables with the
starting term (note that terms in the narrowing sequence will be unified with this target
pattern, in contrast to the search command of Section 5.4.3);

• hSearchArrow i is an arrow indicating the form of the rewriting proof from hTerm-1 i until
hTerm-2 i:

– =>1 means a rewriting proof consisting of exactly one step,

– =>+ means a rewriting proof consisting of one or more steps,

– =>* means a proof consisting of none, one, or more steps, and

– =>! indicates that only narrowing sequences ending in terms describing sets of final
states are allowed. Such terms describing sets of final states are called strongly
irreducible in the sense that they cannot be further narrowed; note that this is
stronger than requiring states that cannot be rewritten as in the search command
of Section 5.4.3.

The one step arrow =>1 is an abbreviation of the one-or-more steps arrow =>+ with the
depth bound m set to 1.

Consider, for example, the following new version of the vending machine to buy apples (a)
or cakes (c) with dollars ($) and/or quarters (q). The reader can check that the only di↵erence
with the VARIANT-VENDING-MACHINE module in Section 14.4 is the addition of the narrowing

attribute to the rules.

mod NARROWING-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ > => < M c > [narrowing] .

rl [buy-a] : < M $ > => < M a q > [narrowing] .

eq [change] : q q q q M = $ M [variant] .

endm

• n is the bound on the desired reachability solutions

• m is the maximum depth of the narrowing tree

• Term-1 is not a variable but may contain variables

• Term-2 is a pattern to be reached

• SearchArrow is either =>1, =>+, =>*, =>!

• =>! denotes strongly irreducible terms or rigid normal forms.

• Implemented at the core level of Maude (C++)

• “vu-narrow {filter}” for filtered variant unification
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Narrowing

Variant-based unification in Narrowing Search Command

366 CHAPTER 15. NARROWING

15.6 The vu-narrow command

Given a system module hModId i, the user can give to Maude a narrowing-based search command
of the form (the prefix vu denotes that uses variant-based unification at each step):

vu-narrow [ n, m ] in hModIdi : hTerm-1 i hSearchArrowi hTerm-2 i .

where

• n is an optional argument providing a bound on the number of desired solutions;

• m is another optional argument stating the maximum depth of the search;

• the module hModId i where the search takes place can be omitted;

• hTerm-1 i is the starting term, which typically will contain variables;

• hTerm-2 i is the pattern that has to be reached, which may share variables with the
starting term (note that terms in the narrowing sequence will be unified with this target
pattern, in contrast to the search command of Section 5.4.3);

• hSearchArrow i is an arrow indicating the form of the rewriting proof from hTerm-1 i until
hTerm-2 i:

– =>1 means a rewriting proof consisting of exactly one step,

– =>+ means a rewriting proof consisting of one or more steps,

– =>* means a proof consisting of none, one, or more steps, and

– =>! indicates that only narrowing sequences ending in terms describing sets of final
states are allowed. Such terms describing sets of final states are called strongly
irreducible in the sense that they cannot be further narrowed; note that this is
stronger than requiring states that cannot be rewritten as in the search command
of Section 5.4.3.

The one step arrow =>1 is an abbreviation of the one-or-more steps arrow =>+ with the
depth bound m set to 1.

Consider, for example, the following new version of the vending machine to buy apples (a)
or cakes (c) with dollars ($) and/or quarters (q). The reader can check that the only di↵erence
with the VARIANT-VENDING-MACHINE module in Section 14.4 is the addition of the narrowing

attribute to the rules.

mod NARROWING-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ > => < M c > [narrowing] .

rl [buy-a] : < M $ > => < M a q > [narrowing] .

eq [change] : q q q q M = $ M [variant] .

endm

15.6. THE VU-NARROW COMMAND 367

We can use the narrowing search command to answer the question:

Is there any combination of one or more coins that returns exactly an apple and a
cake?

This can be done by searching for states that are reachable from a term < M:Money > and
match the desired pattern at the end.

Maude> vu-narrow [1] in NARROWING-VENDING-MACHINE : < M:Money > =>* < a c > .

Solution 1

state: < a c #1:Money >

accumulated substitution:

M:Money --> $ q q q #1:Money

variant unifier:

#1:Money --> empty

The narrowing-based search returns the substitution accumulated along the narrowing sequence
and the variant unifier resulting from the unification of the target term and the last expression
in the narrowing sequence. Indeed both unifiers must be combined by hand in order to have
an actual solution to the symbolic reachability problem, as shown for the previous example.

Solution 1

state: < a c >

accumulated substitution:

M:Money --> $ q q q

Note that _ _ is an ACU symbol and that such an ACU symbol appears in the equation change,
disallowing the basic narrowing strategy [84] to be used for equational unification and requiring
the folding variant narrowing [71] to be used for equational unification.

Note that we have restricted the previous reachability problem to just one solution. Narrow-
ing does not terminate for this reachability problem even though the above solution is indeed
the only solution. The problem is that narrowing follows a breadth-first exploration and does
not stop until the whole narrowing tree demanded by the search command is created, even
though this infinite search may not yield any further solutions. The very same problem hap-
pens for the standard search command (see Section 5.4.3). If we increase the depth of the
narrowing tree, we can experimentally observe that there are no more solutions than the one
shown before.

Maude> vu-narrow [,5] in NARROWING-VENDING-MACHINE : < M:Money > =>* < a c > .

Solution 1

state: < a c #1:Money >

accumulated substitution:

M:Money --> $ q q q #1:Money

variant unifier:

#1:Money --> empty

The narrowing-based search version does not provide paths to solutions but there is a metalevel
command, described in Section 17.6.11, that does provide paths.

In the previous reachability problem we can change the arrow =>* for reachability in zero
or more steps by the arrow =>! for reachability in zero or more steps including only states that
cannot be narrowed any more.

Maude> vu-narrow [,5] in NARROWING-VENDING-MACHINE : < M:Money > =>! < a c > .

No solution.
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Narrowing

Variant-based unification in Narrowing Search Command
mod AG-VENDING is

sorts Item Items State Coin Money .

subsort Item < Items . subsort Coin < Money .

op __ : Items Items -> Items [assoc comm id: mt] .

op <_|_> : Money Items -> State .

ops a c : -> Item . ops q $ : -> Coin .

rl < M:Money | I:Items > => < M:Money + - $ | I:Items c > [narrowing] .

rl < M:Money | I:Items > => < M:Money + - q + - q + - q | I:Items a > [narrowing] .

eq $ = q + q + q + q [variant] . --- Property of the original vending machine example

op _+_ : Money Money -> Money [comm assoc] .

op -_ : Money -> Money .

op 0 : -> Money .

vars X Y Z : Money .

... (here come the variant equations shown before for Abelian Group)

endm

Maude> vu-narrow [1] in AG-VENDING : < M:Money | mt > =>* < 0 | a c > .

Solution 1

rewrites: 32032 in 247478ms cpu (272327ms real) (129 rewrites/second)

state: < %1:Money + - (q + q + q + q + q + q + q) | a c >

accumulated substitution:

M:Money --> %1:Money

variant unifier:

%1:Money --> q + q + q + q + q + q + q

Maude> vu-narrow {filter} [1] in AG-VENDING : < M:Money | mt > =>* < 0 | a c > .

Solution 1

rewrites: 510 in 236ms cpu (274ms real) (2160 rewrites/second)

state: < %1:Money + - (q + q + q + q + q + q + q) | a c >

accumulated substitution:

M:Money --> %1:Money

variant unifier:

%1:Money --> q + q + q + q + q + q + q
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Logical Model Checking

Outline
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Logical Model Checking

Model Checking

• Model checking techniques effective in verification of concurrent systems

• However, standard techniques only work for:
• specific initial state (or finite set of initial states)
• the set of states reachable from the initial state is finite
• abstraction techniques

• Various model checking techniques for infinite-state systems exist, but they are less
developed
• Stronger limitations on the kind of systems and/or the properties that can be model checked
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Logical Model Checking

VENDING Example (1/6)

Terminating theory without rules adding money ($ and q).

< $ $ >

��
< $ c >

��
< a q c >

(one initial state - finite space)
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Logical Model Checking

VENDING Example (2/6)

Non-terminating theory with rules adding money ($ and q).

< $ >

��
< c $ >

��
< c c $ >

��
< c >

88

< c c >

77

∞

(one initial state - infinite space)
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Logical Model Checking

VENDING Example (3/6)

Instantiation is another source of infinity.

< X:Money > //
--

++

11

< $ Y1:Money > // · · ·

< $ $ Y2:Money > // · · ·

< $ $ $ Y3:Money > // · · ·
∞

(infinite number of initial states)
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Logical Model Checking

VENDING Example (4/6)

Narrowing usually provides an infinite space due to instantiation even for terminating theories
(e.g. without rules adding money ($ and q)).

< Mo >

Mo 7→$ Mo’
��

< c Mo’ >

Mo’ 7→$ Mo’’
��

< c c Mo’’ >

��
< c Mo’ >

77

< c c Mo’’ >

66

∞

(one initial state - infinite space)
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Logical Model Checking

VENDING Example (5/6)

Narrowing-based state space can be treated in new ways and folded into a finite space in many
cases

< Mo >
Mo 7→$ Mo’

xx
Mo 7→$ Mo’

%%
< a q Mo’ >

4E

##

< c Mo’ >

4E

zz

Narrowing + folding relation ⇒ (multiple initial states - finite space)

(equality =E)

(renaming ≈E)

(instantiation 4E)
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Logical Model Checking

VENDING Example (6/6)

370 CHAPTER 15. NARROWING

– =>1 means a rewriting proof consisting of exactly one step,

– =>+ means a rewriting proof consisting of one or more steps,

– =>* means a proof consisting of none, one, or more steps, and

– =>! indicates that only terms describing sets of canonical final states are allowed
(see Section 15.6).

Consider again the NARROWING-VENDING-MACHINE module and the following question, both
in Section 15.6.

Is there any combination of one or more coins that returns exactly an apple and a
cake?

We can repeat, with the same result, the vu-narrow command but now with the f at the
beginning.

Maude> fvu-narrow [1] in NARROWING-VENDING-MACHINE : < M:Money > =>* < a c > .

Solution 1

state: < a c #1:Money >

accumulated substitution:

M:Money --> $ q q q #1:Money

variant unifier:

#1:Money --> empty

However, producing a reachability graph instead of a reachability tree may improve the chances
of having a finite search space. If we repeat the same command but without asking for the
first solution, Maude reports the unique solution but gets into a loop, since the fvu-narrow

command cannot produce a finite search graph. However, the reason is that we are giving
a logical variable of sort Money and any new state containing an apple or a cake cannot be
an instance of the initial state. Therefore, we can use a variable of sort Marking instead of
Money and the infinite narrowing-based reachability tree is folded into a finite narrowing-based
reachability graph.

Maude> fvu-narrow in NARROWING-VENDING-MACHINE : < M:Marking > =>* < a c > .

Solution 1

state: < #1:Marking >

accumulated substitution:

M:Marking --> #1:Marking

variant unifier:

#1:Marking --> a c

No more solutions.

But this is not the expected solution, since it is simply instantiating variable M:Marking to the
apple and the cake. The graph is finite, as we wanted, but there is only one state, the initial
one, and every other state is folded into it, since they are obviously instances of it.

What is actually happening is that this specification of the vending machine is not well
suited for taking advantage of this folding narrowing technique. Consider the following new
version of the vending machine. The reader can check that the only di↵erence with the
NARROWING-VENDING-MACHINE module in Section 15.6 is that apples and cakes are not de-
posited in the bag but consumed. This is typical of a logic programming style, where computed
answers, rather than normal forms, are used.
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Logical Model Checking

FVU-VENDING Example
15.7. THE FVU-NARROW COMMAND 371

mod FOLDING-NARROWING-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ c > => < M > [narrowing] .

rl [buy-a] : < M $ a > => < M q > [narrowing] .

eq [change] : q q q q M = $ M [variant] .

endm

We can repeat the same command and now we get the expected result, while having a finite
narrowing-based reachability graph.

Maude> fvu-narrow in FOLDING-NARROWING-VENDING-MACHINE : < M:Marking a c > =>* < empty > .

Solution 1

state: < #1:Marking >

accumulated substitution:

M:Marking --> $ q q q #1:Marking

variant unifier:

#1:Marking --> empty

No more solutions.

The graph is finite, as we wanted, since, after two narrowing steps, a state of the form
< #1:Marking > is generated and, therefore, any other further state is folded into it. Note
that a similar vu-narrow command does not stop. Note also that if we use a variable of
sort Money, then the narrowing-based reachability tree is finite, since no more coins can be
introduced, and both the vu-narrow and fvu-narrow commands stop.

Maude> vu-narrow in FOLDING-NARROWING-VENDING-MACHINE : < M:Money a c > =>* < empty > .

Solution 1

state: < #1:Money >

accumulated substitution:

M:Money --> $ q q q #1:Money

variant unifier:

#1:Money --> empty

No more solutions.

< Mo >
Mo 7→$ c Mo’

yy
Mo 7→$ a Mo’

$$
< q Mo’ >

4E

!!

< Mo’ >

4E

}}

15.7. THE FVU-NARROW COMMAND 371

mod FOLDING-NARROWING-VENDING-MACHINE is

sorts Coin Item Marking Money State .

subsort Coin < Money .

op empty : -> Money .

op __ : Money Money -> Money [assoc comm id: empty] .

subsort Money Item < Marking .

op __ : Marking Marking -> Marking [assoc comm id: empty] .

op <_> : Marking -> State .

ops $ q : -> Coin .

ops a c : -> Item .

var M : Marking .

rl [buy-c] : < M $ c > => < M > [narrowing] .

rl [buy-a] : < M $ a > => < M q > [narrowing] .

eq [change] : q q q q M = $ M [variant] .

endm

We can repeat the same command and now we get the expected result, while having a finite
narrowing-based reachability graph.

Maude> fvu-narrow in FOLDING-NARROWING-VENDING-MACHINE : < M:Marking a c > =>* < empty > .

Solution 1

state: < #1:Marking >

accumulated substitution:

M:Marking --> $ q q q #1:Marking

variant unifier:

#1:Marking --> empty

No more solutions.

The graph is finite, as we wanted, since, after two narrowing steps, a state of the form
< #1:Marking > is generated and, therefore, any other further state is folded into it. Note
that a similar vu-narrow command does not stop. Note also that if we use a variable of
sort Money, then the narrowing-based reachability tree is finite, since no more coins can be
introduced, and both the vu-narrow and fvu-narrow commands stop.

Maude> vu-narrow in FOLDING-NARROWING-VENDING-MACHINE : < M:Money a c > =>* < empty > .

Solution 1

state: < #1:Money >

accumulated substitution:

M:Money --> $ q q q #1:Money

variant unifier:

#1:Money --> empty

No more solutions.
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Applications
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Applications

Applications

• Variant-based unification itself

• Formal reasoning tools :
• Relying on unification capabilities:

• termination proofs
• proofs of local confluence and coherence

• Relying on narrowing capabilities:
• narrowing-based theorem proving
• testing

• Logical model checking (model checking with logical variables)

• Cryptographic protocol analysis:
• the Maude-NPA tool (narrowing + unification in Maude)
• the Tamarin and AKISS protocol analyzers also use Maude capabilities

• Program transformation: partial evaluation, slicing

• SMT based on narrowing or by variant generation.
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Thanks

Thank you!

More information in the Maude webpage.
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