
Converging two directions of program verification:
deductive verification meets smart types for smart

contracts

António Ravara

Informatics Department
Faculty of Sciences and Technology

NOVA Lisbon

11 February 2022



Where are we?

1/10



Lab for Computer Science and Informatics
https://nova-lincs.di.fct.unl.pt/the-center

In NOVA School of Science and Technology

The Faculty of Sciences on NOVA University of Lisbon
The Research Lab of the Department of Informatics

2/10

https://nova-lincs.di.fct.unl.pt/the-center


What are we doing?

3/10



Cameleer: A Deductive Verification Tool for
OCaml Programs
https://mariojppereira.github.io/cameleer.html

Lead by Mário Pereira

1. Add assertions to OCaml
2. Get most discharged by Why3
3. Interactively prove the challenging

ones

4/10

https://mariojppereira.github.io/cameleer.html


Cameleer: limitation and research questions

WhyML type system does not allow mutable recursive data structures
To support reasoning about such OCaml programs,
• how to combine with other proof assistants, like CFML and Vyper?
• What kind of memory model could/should one add to the Why3 logic?

5/10



Java Typestate Checker
https://github.com/jdmota/java-typestate-checker

Statically check that

1. class methods are called in a
prescribed order, specified in a
protocol

2. object protocols are completed
3. absence of null pointer errors

6/10

https://github.com/jdmota/java-typestate-checker


Java Typestate Checker:
a limitation and research questions

Session types control shared resources with a linear discipline
To support reasoning about structures like collections,
• how to describe and control collectively each individual resource?
• how to safely relax linearity, mantaining static assurances of protocol

compliance and completion?

7/10



Challenges requiring to put it all together

8/10



Exploitable vulnerabilities in smart contracts

9/10



Smarter smart contracts...
controlled by (software) contracts

Better programming languages
• Lightweight (graphical) annotations, to declare protocols
• Code generation from scribbled specifications
• Verification at compile-time

◦ behavioural types check protocol conformance
◦ deductive verification / liquid types check assertions

Monitored run-time execution
• Attackers don’t "respect the rules"
• Specs can be used to control the execution of contracts
• Enforcement at run-time 10/10


