
Techniques and Tools for Automated Termination
Analysis

Carsten Fuhs

Birkbeck, University of London

COST Action EuroProofNet, WG3 meeting, Feb 2023

Timis,oara, Romania

https://www.dcs.bbk.ac.uk/~carsten/

https://www.dcs.bbk.ac.uk/~carsten/

WG3 deliverables

Month 18: Comparison of the approaches used in the international
Software Verification competition SV-COMP.
Month 24: Software prototype for the automated inference of program
specifications as logical axioms.
Month 48: Collection of verification challenges with summary of
working recipes for verifying them.
Month 48: Technique for syntax-semantics interface for program
verification with or without type systems.

⇒ Some thoughts on competitions and approaches for termination

2/22

WG3 deliverables

Month 18: Comparison of the approaches used in the international
Software Verification competition SV-COMP.
Month 24: Software prototype for the automated inference of program
specifications as logical axioms.
Month 48: Collection of verification challenges with summary of
working recipes for verifying them.
Month 48: Technique for syntax-semantics interface for program
verification with or without type systems.

⇒ Some thoughts on competitions and approaches for termination

2/22

WG3 deliverables

Month 18: Comparison of the approaches used in the international
Software Verification competition SV-COMP.
Month 24: Software prototype for the automated inference of program
specifications as logical axioms.
Month 48: Collection of verification challenges with summary of
working recipes for verifying them.
Month 48: Technique for syntax-semantics interface for program
verification with or without type systems.

⇒ Some thoughts on competitions and approaches for termination

2/22

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set

termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
Property to verify/falsify
Input language
Expected output
(claim with no proof, human-readable proof, machine-checkable proof)

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set
termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
Property to verify/falsify
Input language
Expected output
(claim with no proof, human-readable proof, machine-checkable proof)

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set
termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
Property to verify/falsify
Input language
Expected output
(claim with no proof, human-readable proof, machine-checkable proof)

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set
termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
Property to verify/falsify
Input language
Expected output
(claim with no proof, human-readable proof, machine-checkable proof)

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set
termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
Property to verify/falsify

Input language
Expected output
(claim with no proof, human-readable proof, machine-checkable proof)

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set
termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
Property to verify/falsify
Input language

Expected output
(claim with no proof, human-readable proof, machine-checkable proof)

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set
termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
Property to verify/falsify
Input language
Expected output
(claim with no proof, human-readable proof, machine-checkable proof)

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Program verification: the user’s perspective (1/3)

What properties of programs do we want to analyse?

Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer. assert x > 0;
−→ will this always be true?

Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ memory safety matters: Heartbleed (OpenSSL attack)

. . .

−→ Safety properties, at SV-COMP since 2012, for C and Java programs

4/22

Program verification: the user’s perspective (1/3)

What properties of programs do we want to analyse?

Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer. assert x > 0;
−→ will this always be true?

Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ memory safety matters: Heartbleed (OpenSSL attack)

. . .

−→ Safety properties, at SV-COMP since 2012, for C and Java programs

4/22

Program verification: the user’s perspective (1/3)

What properties of programs do we want to analyse?

Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer. assert x > 0;
−→ will this always be true?

Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ memory safety matters: Heartbleed (OpenSSL attack)

. . .

−→ Safety properties, at SV-COMP since 2012, for C and Java programs

4/22

Program verification: the user’s perspective (1/3)

What properties of programs do we want to analyse?

Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer. assert x > 0;
−→ will this always be true?

Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ memory safety matters: Heartbleed (OpenSSL attack)

. . .

−→ Safety properties, at SV-COMP since 2012, for C and Java programs

4/22

Program verification: the user’s perspective (1/3)

What properties of programs do we want to analyse?

Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer. assert x > 0;
−→ will this always be true?

Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ memory safety matters: Heartbleed (OpenSSL attack)

. . .

−→ Safety properties, at SV-COMP since 2012, for C and Java programs

4/22

Program verification: the user’s perspective (1/3)

What properties of programs do we want to analyse?

Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer. assert x > 0;
−→ will this always be true?

Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ memory safety matters: Heartbleed (OpenSSL attack)

. . .

−→ Safety properties, at SV-COMP since 2012, for C and Java programs

4/22

Program verification: the user’s perspective (2/3)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring

−→ No (?) competition (yet?)

Confluence. For languages with non-deterministic rules/commands:
does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

−→ CoCo, since 2012, for term rewrite systems

5/22

Program verification: the user’s perspective (2/3)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring

−→ No (?) competition (yet?)

Confluence. For languages with non-deterministic rules/commands:
does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

−→ CoCo, since 2012, for term rewrite systems

5/22

Program verification: the user’s perspective (2/3)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring

−→ No (?) competition (yet?)

Confluence. For languages with non-deterministic rules/commands:
does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

−→ CoCo, since 2012, for term rewrite systems

5/22

Program verification: the user’s perspective (2/3)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring

−→ No (?) competition (yet?)

Confluence. For languages with non-deterministic rules/commands:
does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

−→ CoCo, since 2012, for term rewrite systems

5/22

Program verification: the user’s perspective (3/3)

Termination
−→ will my program give an output for all inputs
−→ in finitely many steps?

−→ termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

−→ SV-COMP, since 2014, for C programs

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case?
−→ (runtime complexity)
−→ how large can my data become? (size complexity)

−→ termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!
⇒ tools use automatable sufficient criteria

6/22

Program verification: the user’s perspective (3/3)

Termination
−→ will my program give an output for all inputs
−→ in finitely many steps?

−→ termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

−→ SV-COMP, since 2014, for C programs

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case?
−→ (runtime complexity)
−→ how large can my data become? (size complexity)

−→ termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!
⇒ tools use automatable sufficient criteria

6/22

Program verification: the user’s perspective (3/3)

Termination
−→ will my program give an output for all inputs
−→ in finitely many steps?

−→ termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

−→ SV-COMP, since 2014, for C programs

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case?
−→ (runtime complexity)
−→ how large can my data become? (size complexity)

−→ termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!
⇒ tools use automatable sufficient criteria

6/22

Program verification: the user’s perspective (3/3)

Termination
−→ will my program give an output for all inputs
−→ in finitely many steps?

−→ termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

−→ SV-COMP, since 2014, for C programs

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case?
−→ (runtime complexity)
−→ how large can my data become? (size complexity)

−→ termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!
⇒ tools use automatable sufficient criteria

6/22

Program verification: the user’s perspective (3/3)

Termination
−→ will my program give an output for all inputs
−→ in finitely many steps?

−→ termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

−→ SV-COMP, since 2014, for C programs

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case?
−→ (runtime complexity)
−→ how large can my data become? (size complexity)

−→ termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!
⇒ tools use automatable sufficient criteria

6/22

Program verification: the user’s perspective (3/3)

Termination
−→ will my program give an output for all inputs
−→ in finitely many steps?

−→ termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

−→ SV-COMP, since 2014, for C programs

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case?
−→ (runtime complexity)
−→ how large can my data become? (size complexity)

−→ termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!

⇒ tools use automatable sufficient criteria

6/22

Program verification: the user’s perspective (3/3)

Termination
−→ will my program give an output for all inputs
−→ in finitely many steps?

−→ termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

−→ SV-COMP, since 2014, for C programs

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case?
−→ (runtime complexity)
−→ how large can my data become? (size complexity)

−→ termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!
⇒ tools use automatable sufficient criteria

6/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics

Term rewrite systems (many flavours)
Integer transition systems

Benefits and drawbacks:
Easy(-ish) to agree on semantics
Interesting mainly for researchers (rather than programmers)
Used internally in verification tools for real-world languages

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
Term rewrite systems (many flavours)

Integer transition systems

Benefits and drawbacks:
Easy(-ish) to agree on semantics
Interesting mainly for researchers (rather than programmers)
Used internally in verification tools for real-world languages

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
Term rewrite systems (many flavours)
Integer transition systems

Benefits and drawbacks:
Easy(-ish) to agree on semantics
Interesting mainly for researchers (rather than programmers)
Used internally in verification tools for real-world languages

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
Term rewrite systems (many flavours)
Integer transition systems

Benefits and drawbacks:

Easy(-ish) to agree on semantics
Interesting mainly for researchers (rather than programmers)
Used internally in verification tools for real-world languages

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
Term rewrite systems (many flavours)
Integer transition systems

Benefits and drawbacks:
Easy(-ish) to agree on semantics

Interesting mainly for researchers (rather than programmers)
Used internally in verification tools for real-world languages

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
Term rewrite systems (many flavours)
Integer transition systems

Benefits and drawbacks:
Easy(-ish) to agree on semantics
Interesting mainly for researchers (rather than programmers)

Used internally in verification tools for real-world languages

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
Term rewrite systems (many flavours)
Integer transition systems

Benefits and drawbacks:
Easy(-ish) to agree on semantics
Interesting mainly for researchers (rather than programmers)
Used internally in verification tools for real-world languages

7/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, . . .

Benefits:
Lots of real-world examples to analyse
Tools for these languages useful for non-experts (programmers!)

Challenges:
Language semantics can be ambiguous; undefined behaviour (−→ C)
Tools usually support only language subsets

(libraries, concurrency, reflection, . . .)
Tools may make simplifying assumptions (e.g., treat int as Z?)
Different competitions may make different assumptions

(. . . which make sense in context)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, . . .

Benefits:

Lots of real-world examples to analyse
Tools for these languages useful for non-experts (programmers!)

Challenges:
Language semantics can be ambiguous; undefined behaviour (−→ C)
Tools usually support only language subsets

(libraries, concurrency, reflection, . . .)
Tools may make simplifying assumptions (e.g., treat int as Z?)
Different competitions may make different assumptions

(. . . which make sense in context)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, . . .

Benefits:
Lots of real-world examples to analyse

Tools for these languages useful for non-experts (programmers!)

Challenges:
Language semantics can be ambiguous; undefined behaviour (−→ C)
Tools usually support only language subsets

(libraries, concurrency, reflection, . . .)
Tools may make simplifying assumptions (e.g., treat int as Z?)
Different competitions may make different assumptions

(. . . which make sense in context)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, . . .

Benefits:
Lots of real-world examples to analyse
Tools for these languages useful for non-experts (programmers!)

Challenges:
Language semantics can be ambiguous; undefined behaviour (−→ C)
Tools usually support only language subsets

(libraries, concurrency, reflection, . . .)
Tools may make simplifying assumptions (e.g., treat int as Z?)
Different competitions may make different assumptions

(. . . which make sense in context)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, . . .

Benefits:
Lots of real-world examples to analyse
Tools for these languages useful for non-experts (programmers!)

Challenges:

Language semantics can be ambiguous; undefined behaviour (−→ C)
Tools usually support only language subsets

(libraries, concurrency, reflection, . . .)
Tools may make simplifying assumptions (e.g., treat int as Z?)
Different competitions may make different assumptions

(. . . which make sense in context)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, . . .

Benefits:
Lots of real-world examples to analyse
Tools for these languages useful for non-experts (programmers!)

Challenges:
Language semantics can be ambiguous; undefined behaviour (−→ C)

Tools usually support only language subsets
(libraries, concurrency, reflection, . . .)

Tools may make simplifying assumptions (e.g., treat int as Z?)
Different competitions may make different assumptions

(. . . which make sense in context)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, . . .

Benefits:
Lots of real-world examples to analyse
Tools for these languages useful for non-experts (programmers!)

Challenges:
Language semantics can be ambiguous; undefined behaviour (−→ C)
Tools usually support only language subsets

(libraries, concurrency, reflection, . . .)

Tools may make simplifying assumptions (e.g., treat int as Z?)
Different competitions may make different assumptions

(. . . which make sense in context)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, . . .

Benefits:
Lots of real-world examples to analyse
Tools for these languages useful for non-experts (programmers!)

Challenges:
Language semantics can be ambiguous; undefined behaviour (−→ C)
Tools usually support only language subsets

(libraries, concurrency, reflection, . . .)
Tools may make simplifying assumptions (e.g., treat int as Z?)

Different competitions may make different assumptions
(. . . which make sense in context)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, . . .

Benefits:
Lots of real-world examples to analyse
Tools for these languages useful for non-experts (programmers!)

Challenges:
Language semantics can be ambiguous; undefined behaviour (−→ C)
Tools usually support only language subsets

(libraries, concurrency, reflection, . . .)
Tools may make simplifying assumptions (e.g., treat int as Z?)
Different competitions may make different assumptions

(. . . which make sense in context)

8/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

termCOMP/CoCo:
checkers based on formalisations of problems + verification techniques
in Coq/Isabelle/. . .
−→ trustable verification tool, no proof search
−→ currently for backend languages only
−→ CeTA, talk René Thiemann at WG3 meeting in Valencia, Feb 2022

SV-COMP: other participating tools, for frontend languages

9/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

termCOMP/CoCo:
checkers based on formalisations of problems + verification techniques
in Coq/Isabelle/. . .

−→ trustable verification tool, no proof search
−→ currently for backend languages only
−→ CeTA, talk René Thiemann at WG3 meeting in Valencia, Feb 2022

SV-COMP: other participating tools, for frontend languages

9/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

termCOMP/CoCo:
checkers based on formalisations of problems + verification techniques
in Coq/Isabelle/. . .
−→ trustable verification tool, no proof search

−→ currently for backend languages only
−→ CeTA, talk René Thiemann at WG3 meeting in Valencia, Feb 2022

SV-COMP: other participating tools, for frontend languages

9/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

termCOMP/CoCo:
checkers based on formalisations of problems + verification techniques
in Coq/Isabelle/. . .
−→ trustable verification tool, no proof search
−→ currently for backend languages only

−→ CeTA, talk René Thiemann at WG3 meeting in Valencia, Feb 2022

SV-COMP: other participating tools, for frontend languages

9/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

termCOMP/CoCo:
checkers based on formalisations of problems + verification techniques
in Coq/Isabelle/. . .
−→ trustable verification tool, no proof search
−→ currently for backend languages only
−→ CeTA, talk René Thiemann at WG3 meeting in Valencia, Feb 2022

SV-COMP: other participating tools, for frontend languages

9/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

termCOMP/CoCo:
checkers based on formalisations of problems + verification techniques
in Coq/Isabelle/. . .
−→ trustable verification tool, no proof search
−→ currently for backend languages only
−→ CeTA, talk René Thiemann at WG3 meeting in Valencia, Feb 2022

SV-COMP: other participating tools, for frontend languages

9/22

termCOMP with certification (X) (1/2)

10/22

termCOMP with certification (X) (2/2)

Let’s zoom in . . .

⇒ proof certification is competitive!

11/22

termCOMP with certification (X) (2/2)

Let’s zoom in . . .

⇒ proof certification is competitive!

11/22

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

12/22

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

12/22

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)

2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

12/22

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)

3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

12/22

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

12/22

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

12/22

Termination analysis, with automated reasoning
Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

ϕ = b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ prove only part of the program terminating, get simpler problem

−→ combine techniques
Repeat until the whole program is proved terminating

13/22

Termination analysis, with automated reasoning
Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver

−→ SMT = SATisfiability Modulo Theories, solve constraints like

ϕ = b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ prove only part of the program terminating, get simpler problem

−→ combine techniques
Repeat until the whole program is proved terminating

13/22

Termination analysis, with automated reasoning
Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

ϕ = b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ prove only part of the program terminating, get simpler problem

−→ combine techniques
Repeat until the whole program is proved terminating

13/22

Termination analysis, with automated reasoning
Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

ϕ = b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:

1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ prove only part of the program terminating, get simpler problem

−→ combine techniques
Repeat until the whole program is proved terminating

13/22

Termination analysis, with automated reasoning
Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

ϕ = b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ prove only part of the program terminating, get simpler problem

−→ combine techniques
Repeat until the whole program is proved terminating

13/22

Termination analysis, with automated reasoning
Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

ϕ = b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ prove only part of the program terminating, get simpler problem

−→ combine techniques
Repeat until the whole program is proved terminating

13/22

Termination analysis, with automated reasoning
Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

ϕ = b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ prove only part of the program terminating, get simpler problem

−→ combine techniques
Repeat until the whole program is proved terminating

13/22

Termination analysis, with automated reasoning
Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

ϕ = b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ prove only part of the program terminating, get simpler problem
−→ combine techniques

Repeat until the whole program is proved terminating

13/22

Termination analysis, with automated reasoning
Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

ϕ = b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ prove only part of the program terminating, get simpler problem
−→ combine techniques
Repeat until the whole program is proved terminating

13/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0:

if (x ≥ 0)

`1:

while (x 6= 0)

`2:

x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer
Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

And this one?

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (how?)

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0:

if (x ≥ 0)

`1:

while (x 6= 0)

`2:

x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer
Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

And this one?

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (how?)

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer
Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

And this one?

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (how?)

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer
Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

And this one?

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (how?)

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer
Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

And this one?

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (how?)

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer
Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

And this one?

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·
⇒ Restrict initial states to `0(z) for z ∈ Z

⇒ Find invariant x ≥ 0 at `1, `2 (how?)

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer
Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) −→ `1(x− 1) [x ≥ 0]

`1(x) −→ `3(x) [x = 0 ∧ x ≥ 0]

And this one?

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·
⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (how?)

14/22

Proving termination with invariants

Example (Transition system with invariants)

`0(x) −→ `1(x) [x ≥ 0]

`1(x) −→ `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) −→ `1(x− 1) [x ≥ 0]

`1(x) −→ `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

15/22

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

15/22

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

15/22

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) � `1(x− 1) [x ≥ 0]

`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

15/22

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) � `1(x− 1) [x ≥ 0]

`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.

More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

15/22

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) � `1(x− 1) [x ≥ 0]

`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

15/22

Proving termination with invariants

Example (Transition system with invariants)

`0(x) −→ `1(x) [x ≥ 0]

`1(x) −→ `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) � `1(x− 1) [x ≥ 0]

`1(x) −→ `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

15/22

Searching for invariants using SMT

Termination prover for programs needs invariants (−→ safety!)

Statically before the translation
[Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (−→ safety!)

Statically before the translation
[Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (−→ safety!)

Statically before the translation
[Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (−→ safety!)

Statically before the translation
[Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (−→ safety!)

Statically before the translation
[Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (−→ safety!)

Statically before the translation
[Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!
16/22

WG3: what is interesting for our tool inventory?

Example: AProVE’s termination analysis for C in detail

C program

LLVM program

Abstract Interpretation

Integer Transition System

Constraints with ∀

SMT formula without ∀ Model for SMT formula

Ranking function

Termination of ITS

Termination of (overapprox.) Abs. Int.

Termination of LLVM program

Termination of C program

compile

prove memory safety

extract

generate

remove ∀
SMT solver

17/22

WG3: what is interesting for our tool inventory?

Example: AProVE’s termination analysis for C in detail

C program

LLVM program

Abstract Interpretation

Integer Transition System

Constraints with ∀

SMT formula without ∀ Model for SMT formula

Ranking function

Termination of ITS

Termination of (overapprox.) Abs. Int.

Termination of LLVM program

Termination of C program

compile

prove memory safety

extract

generate

remove ∀
SMT solver

ITS prover

17/22

Towards the first deliverable

Tool inventory of verification tools
What inputs are supported?

What properties can be verified?
What are the tool’s main techniques for the supported
(input, property) pairs?
What external tools are used? (−→ compilers, SMT solvers, . . .)
What is the tool’s URL?
What is the “canonical reference” to a system description?

18/22

Towards the first deliverable

Tool inventory of verification tools
What inputs are supported?
What properties can be verified?

What are the tool’s main techniques for the supported
(input, property) pairs?
What external tools are used? (−→ compilers, SMT solvers, . . .)
What is the tool’s URL?
What is the “canonical reference” to a system description?

18/22

Towards the first deliverable

Tool inventory of verification tools
What inputs are supported?
What properties can be verified?
What are the tool’s main techniques for the supported
(input, property) pairs?

What external tools are used? (−→ compilers, SMT solvers, . . .)
What is the tool’s URL?
What is the “canonical reference” to a system description?

18/22

Towards the first deliverable

Tool inventory of verification tools
What inputs are supported?
What properties can be verified?
What are the tool’s main techniques for the supported
(input, property) pairs?
What external tools are used? (−→ compilers, SMT solvers, . . .)

What is the tool’s URL?
What is the “canonical reference” to a system description?

18/22

Towards the first deliverable

Tool inventory of verification tools
What inputs are supported?
What properties can be verified?
What are the tool’s main techniques for the supported
(input, property) pairs?
What external tools are used? (−→ compilers, SMT solvers, . . .)
What is the tool’s URL?

What is the “canonical reference” to a system description?

18/22

Towards the first deliverable

Tool inventory of verification tools
What inputs are supported?
What properties can be verified?
What are the tool’s main techniques for the supported
(input, property) pairs?
What external tools are used? (−→ compilers, SMT solvers, . . .)
What is the tool’s URL?
What is the “canonical reference” to a system description?

18/22

Inspiration: WG2’s inventory of ATPs (1/3)

Inspiration: https://github.com/EuroProofNet/ATP/wiki

19/22

https://github.com/EuroProofNet/ATP/wiki

Inspiration: WG2’s inventory of ATPs (2/3)

20/22

Inspiration: WG2’s inventory of ATPs (3/3)

21/22

Conclusion: towards the first deliverable

Tool inventory of verification tools
What inputs are supported?
What properties can be verified?
What are the tool’s main techniques for the supported
(input, property) pairs?
What external tools are used? (−→ compilers, SMT solvers, . . .)
What is the tool’s URL?
What is the “canonical reference” to a system description?

22/22

	Program Analysis: Overview

