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WG3 deliverables

@ Month 18: Comparison of the approaches used in the international
Software Verification competition SV-COMP.

@ Month 24: Software prototype for the automated inference of program
specifications as logical axioms.

@ Month 48: Collection of verification challenges with summary of
working recipes for verifying them.

@ Month 48: Technique for syntax-semantics interface for program
verification with or without type systems.
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WG3 deliverables

@ Month 18: Comparison of the approaches used in the international
Software Verification competition SV-COMP.

@ Month 24: Software prototype for the automated inference of program
specifications as logical axioms.

@ Month 48: Collection of verification challenges with summary of
working recipes for verifying them.

@ Month 48: Technique for syntax-semantics interface for program
verification with or without type systems.

= Some thoughts on competitions and approaches for termination
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@ SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

@ CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
e Property to verify/falsify
@ Input language

@ Expected output
(claim with no proof, human-readable proof, machine-checkable proof)
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@ Partial Correctness
— will my program always produce the right result?

@ Assertions by the programmer. assert x > 0;
— will this always be true?

o Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)

— Safety properties, at SV-COMP since 2012, for C and Java programs
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does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis '17]

— does the order of applying compiler optimisation rules matter?

— CoCo, since 2012, for term rewrite systems
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— termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

— SV-COMP, since 2014, for C programs

o (Quantitative) Resource Use aka Complexity
— how many steps will my program need in the worst case?
(runtime complexity)
— how large can my data become? (size complexity)

— termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!

= tools use automatable sufficient criteria
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Input languages: backend languages

Simple, desugared formalisms with clear semantics
e Term rewrite systems (many flavours)

@ Integer transition systems

Benefits and drawbacks:
@ Easy(-ish) to agree on semantics
@ Interesting mainly for researchers (rather than programmers)

@ Used internally in verification tools for real-world languages
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Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

Benefits:
@ Lots of real-world examples to analyse

@ Tools for these languages useful for non-experts (programmers!)

Challenges:
e Language semantics can be ambiguous; undefined behaviour (— C)

@ Tools usually support only language subsets
(libraries, concurrency, reflection, .. .)

Tools may make simplifying assumptions (e.g., treat int as Z7)

Different competitions may make different assumptions
(... which make sense in context)
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Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

e termCOMP/CoCo:

checkers based on formalisations of problems + verification techniques
in Coq/lIsabelle/. ..

—» trustable verification tool, no proof search
— currently for backend languages only
— CéTA, talk René Thiemann at WG3 meeting in Valencia, Feb 2022

@ SV-COMP: other participating tools, for frontend languages
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Termination analysis, classically

Turing 1949

to an end.
#inally the chocker has to verify that the prooess comes
Hera :yi:]:yhe ahould be assisted by the programmer giving a fuz"tho! deﬁ.zlto
ansortion to be verified. This may take the form of a quantity which 1s
asserted to deorecase ocontipually and vanish when thé machine stopa.

‘Finally the checker has to verify that the process comes to an end. |[...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)
@ Prove f to have a lower bound (“vanish when the machine stops”)

© Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
Xx=x—1
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Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
¢ = b>0 A (4ab-T0*>1 V 3a+c>b)

Answer:
© o satisfiable, model M (e.g., a=3,b=1,c=1):

= P terminating, M fills in the gaps in the termination proof
@  unsatisfiable:

= termination status of P unknown

= try a different template (proof technique)

In practice:
@ Encode only one proof step at a time
— prove only part of the program terminating, get simpler problem
— combine techniques

@ Repeat until the whole program is proved terminating .



Papers on termination of imperative programs often about integers as data
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Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

if (x>0) Does this program terminate?
while (x # 0) (x ranges over Z)
x=x—1;
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Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
2% while (x # 0) (x ranges over 7Z)
l: X =x—1;

Example (Equivalent Translation to an Integer

Transition System, cf. )
bhlx) — li(z) [z >0
b(z) — {3() [z < 0] And this one?
li(z) —  la(x) x # 0]
52(1‘) — fl(l‘ — 1)
l1(z) — fl3(x) [x = 0] )
Oh nol 51(—1> — 52(—1) — fl(—Q) — 52(—2) — fl(—3) — e

= Restrict initial states to /y(z) for z € Z
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Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
2% while (x # 0) (x ranges over 7Z)
l: X =x—1;

Example (Equivalent Translation to an Integer

Transition System, cf. )
bo(z) —  l1(x) [z > 0]
bo(z) — (3(z) [z < 0] And this one?
li(z) —  la(x) [ 0Nz > 0]
l(z) — fli(x—1) [z >0]
l1(z) — fl3(x) [x=0Ax > 0] )
Oh no! 51(—1> — 52(—1) — fl(—Q) — 52(—2) — fl(—3) —

= Restrict initial states to /y(z) for z € Z

= Find invariant x > 0 at /1, /, (how?)
14/22



Proving termination with invariants

Example (Transition system with invariants)

lo(z) — li(z) [z > 0]
l(z) — fla(x) [x #0Az > 0]
b(z) — li(x—1) [z >0
fl(l‘) — 53(1,‘) [33 =0Ax > 0]

Prove termination by ranking function [ -] with [(o](x) = [(1](z) =--- ==z
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Proving termination with invariants

Example (Transition system with invariants)

@) % 4@ |20
li(z) = () [x#A0Az >0
l(z) = li(z—1) [z>0]
l(z) = 43(z) [t=0Az >0

Prove termination by ranking function [ -] with [(o](x) = [(1](z) =--- ==
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Proving termination with invariants

Example (Transition system with invariants)

lo(x) = () [z > 0]
li(z) = () [x#A0Az >0
l(z) = li(z—1) [z>0]
l(z) = 43(z) [t=0Az >0
Prove termination by ranking function [ -] with [(o](x) = [(1](z) =--- ==

Automate search using parametric ranking function:

[lo](z) = ap+bo - =, [L](z)=a1+0b1 -z,
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Example (Transition system with invariants)

lo(z) = hi(x) [z > 0]
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Example (Transition system with invariants)

bo(z) — li(x) [z > 0]
li(z) —  la(z) [x 0Nz >0]
lhi(z) — G3(x) [t=0Az >0
Prove termination by ranking function [ -] with [(o](z) = [(1](z) =--- ==

Automate search using parametric ranking function:
[lo](z) = a0+ bo -z, [G](z) = a1+ b1 -,
Constraints here:

x>0 =  ay+by-xz>a;+b-(x—1) “decrease...”
x>0 =  ay+by-x>0 ... against a bound”

Use Farkas' Lemma to eliminate Vz, solver for linear constraints gives
model for a;, b;.
More: [Podelski, Rybalchenko, VMCAI ‘04, Alias et al, SAS '10]
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Termination prover for programs needs invariants (— safety!)
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Searching for invariants using SMT

Termination prover for programs needs invariants (— safety!)

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR '17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

@ ... also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al, TACAS '16]

@ Using Max-SMT
[Larraz, Oliveras, Rodriguez-Carbonell, Rubio, FMCAD '13]

Nowadays all SMT-based!
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WG3: what is interesting for our tool inventory?

Example: AProVE's termination analysis for C in detail

C program

compile
Y

| LLVM program |

prove memory safety
Y

Termination of C program
A

LLVM program

A

Termination of

Abstract Interpretation

Termination of (overapprox.) Abs. Int.

extract
Y

Integer Transition System

generate
\

| Constraints with V|

remove V

Y SMT sol
|SMT formula without V wﬁ Model for SMT formula

A

| Terminati
A

on of ITS |

function

A

Ranking
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C program

compile
Y

| LLVM program |

prove memory safety
Y

Termination of C program
A

Termination of LLVM program

A

Abstract Interpretation

Termination of (overapprox.) Abs. Int.

extract
Y

Integer Transition System

generate
\

| Constraints with V|

remove V

Y SMT sol
|SMT formula without V wﬁ Model for SMT formula

ITS prover

A

|Termination of ITS |
A

Ranking function
A
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Towards the first deliverable

Tool inventory of verification tools

@ What inputs are supported?
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Inspiration: WG2's inventory of ATPs (1/3)

Inspiration: https://github.com/EuroProofNet/ATP/wiki

© Home - EuroPro... x +
& & | @ https://github.com/EuroProofNet/ATP/wiki

¢ EuroProofNet Automated
Theorem Prover wiki

EuroProofNet is the European research
F fvt:rlg":?:mﬂ network on digital proofs. EuroProofNet
— F on ATPS aims at boosting the interoperability and
usability of proof systems. EuroProofNet is
a COST action started on November 2021 gathering more than 220
researchers from 30 different countries.

The aim of working group 2 (WG 2) s to promote the output of detailed,
checkable proofs from automated theorem provers. Work is under way
for FOL/HOL theorem provers and SMT solvers, but the expressivity of
their input languages renders the task significantly more complicated
than e.g., in the propositional SAT world, with a higher need of
coordination.

The main purpose of this wiki is to provide
« an inventory of automated theorem provers producing proofs

« description of proof formats

« an inventory of checking tools for these proof formats.

2EE

% ~{{@DuckDuc...@ () > =

» Pages @)

+ Home

- List of systems

« List of formats

« How to contribute

Clone this wiki locally

https://github. con/Europroof

o
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https://github.com/EuroProofNet/ATP/wiki

Inspiration: WG2's inventory of ATPs (2/3)

List of - EuroPro ATP'Wiki - GitHub'- Falkon' BHEE
O List of formats ... x +

< & @ | @ https://github.com/EuroProofNet/ATP/wiki/List-of-fc v||@ DuckDuc... @ |() > =

 EuroProofNet/ ATP  Pubic £ Notifications % Fork 1 Y star 2 -

<> Code (O Issues 19 Pullrequests (5) Actions [ Wiki () Security |~ Insights

List of formats

Pascal Fontaine edited this page Jul 10, 2022 - 3 revisions

¢ List of formats > Pases @
The following table contains all input formats and proof formats that are « Home
currently curated by the EuroProofNet ATP inventory. Please click on « Listof systems
the format name for its detailed profile. « Listof formats
- Howto contribute
Web
o .
Name InputiOutput? site Logic(s) Clone this wiki locally
d https: //github.com/EuroProof Ll;l
Alsthe Output linkl  FOL/SMT unde
deve

SMT-LIB Input [link] FOL/SMT/HOL  stabl

TPTP Input+Output [ink] ~ CNF/FOL/HOL  stabl

Zippernosition -
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Inspiration: WG2's inventory of ATPs (3/3)

Tiet AT PWiki“GitHub~ Ealkon BEE
O List of systems ... x +

< & @ | B https://github.com/EuroProofNet/ATP/wiki/List-of-sy v|| @ DuckDuc... @ |() > =

& EuroProofNet/ ATP  Pubic L Notifications %9 Fork 1 ¥ Star 2 -

<> Code (O Issues {9 Pullrequests () Actions [] Wiki (O Security |~ Insights

List of systems

Julien Narboux edited this page Dec 13, 2022 - 12 revisions

¢List of systems > Pages @)
The following table contains all systems that are known to the « Home
EuroProofNet ATP inventory. Please click on the prover name for its « Listof systems
detailed profile (if available) or contribute it. = Listof formats

= How fo confribute

¢ Maintained systems

Clone this wiki locally

Name Web site Format(s) Status https: //github. cow/EuroPraof | (L]
agsyHOL [link] TPTP maintained
Alt-Ergo [link] SMT-LIB, TPTP maintained
AProVE [link] SMT-LIB maintained
Beagle [link] TPTP maintained
Bitwuzla [link] SMT-LIB maintained
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Conclusion: towards the first deliverable

Tool inventory of verification tools
@ What inputs are supported?
@ What properties can be verified?

@ What are the tool's main techniques for the supported
(input, property) pairs?

What external tools are used? (— compilers, SMT solvers, ...)
What is the tool's URL?

What is the “canonical reference” to a system description?
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