Techniques and Tools for Automated Termination

Analysis

Carsten Fuhs

Birkbeck, University of London

COST Action EuroProofNet, WG3 meeting, Feb 2023

Timisoara, Romania

https://www.dcs.bbk.ac.uk/~carsten/

https://www.dcs.bbk.ac.uk/~carsten/

WG3 deliverables

@ Month 18: Comparison of the approaches used in the international
Software Verification competition SV-COMP.

@ Month 24: Software prototype for the automated inference of program
specifications as logical axioms.

@ Month 48: Collection of verification challenges with summary of
working recipes for verifying them.

@ Month 48: Technique for syntax-semantics interface for program
verification with or without type systems.

2/22

WG3 deliverables

@ Month 18: Comparison of the approaches used in the international
Software Verification competition SV-COMP.

@ Month 24: Software prototype for the automated inference of program
specifications as logical axioms.

@ Month 48: Collection of verification challenges with summary of
working recipes for verifying them.

@ Month 48: Technique for syntax-semantics interface for program
verification with or without type systems.

2/22

WG3 deliverables

@ Month 18: Comparison of the approaches used in the international
Software Verification competition SV-COMP.

@ Month 24: Software prototype for the automated inference of program
specifications as logical axioms.

@ Month 48: Collection of verification challenges with summary of
working recipes for verifying them.

@ Month 48: Technique for syntax-semantics interface for program
verification with or without type systems.

= Some thoughts on competitions and approaches for termination

2/22

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set

o termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set

o termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

@ SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set

o termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

@ SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

@ CoCo (confluence)
http://project-coco.uibk.ac.at/

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set

o termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

@ SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

@ CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
e Property to verify/falsify

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set

o termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

@ SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

@ CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
e Property to verify/falsify
@ Input language

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Tool competitions on verification

Compare fully automatic verification tools on a shared benchmark set

o termCOMP (termination, complexity)
https://termination-portal.org/wiki/Termination_Competition

@ SV-COMP (safety, termination)
https://sv-comp.sosy-lab.org/

@ CoCo (confluence)
http://project-coco.uibk.ac.at/

Usually several “dimensions” for their categories, e.g.:
e Property to verify/falsify
@ Input language

@ Expected output
(claim with no proof, human-readable proof, machine-checkable proof)

3/22

https://termination-portal.org/wiki/Termination_Competition
https://sv-comp.sosy-lab.org/
http://project-coco.uibk.ac.at/

Program verification: the user's perspective (1/3)

What properties of programs do we want to analyse?

4/22

Program verification: the user's perspective (1/3)

What properties of programs do we want to analyse?

@ Partial Correctness
— will my program always produce the right result?

4/22

Program verification: the user's perspective (1/3)

What properties of programs do we want to analyse?

@ Partial Correctness
— will my program always produce the right result?

@ Assertions by the programmer. assert x > 0;
— will this always be true?

4/22

Program verification: the user's perspective (1/3)

What properties of programs do we want to analyse?

@ Partial Correctness
— will my program always produce the right result?

@ Assertions by the programmer. assert x > 0;
— will this always be true?

o Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)

4/22

Program verification: the user's perspective (1/3)

What properties of programs do we want to analyse?

@ Partial Correctness
— will my program always produce the right result?

@ Assertions by the programmer. assert x > 0;
— will this always be true?

o Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)

4/22

Program verification: the user's perspective (1/3)

What properties of programs do we want to analyse?

@ Partial Correctness
— will my program always produce the right result?

@ Assertions by the programmer. assert x > 0;
— will this always be true?

o Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)

— Safety properties, at SV-COMP since 2012, for C and Java programs

4/22

Program verification: the user's perspective (2/3)

e Equivalence. Do two programs always produce the same result?
—» correctness of refactoring

5/22

Program verification: the user's perspective (2/3)

e Equivalence. Do two programs always produce the same result?
—» correctness of refactoring

— No (?) competition (yet?)

5/22

Program verification: the user's perspective (2/3)

e Equivalence. Do two programs always produce the same result?
—» correctness of refactoring

— No (?) competition (yet?)

e Confluence. For languages with non-deterministic rules/commands:
does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis '17]

— does the order of applying compiler optimisation rules matter?

5/22

Program verification: the user's perspective (2/3)

e Equivalence. Do two programs always produce the same result?
—» correctness of refactoring

— No (?) competition (yet?)

e Confluence. For languages with non-deterministic rules/commands:
does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis '17]

— does the order of applying compiler optimisation rules matter?

— CoCo, since 2012, for term rewrite systems

5/22

Program verification: the user's perspective (3/3)

e Termination
— will my program give an output for all inputs
in finitely many steps?

6/22

Program verification: the user's perspective (3/3)

e Termination
— will my program give an output for all inputs
in finitely many steps?

— termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

6/22

Program verification: the user's perspective (3/3)

e Termination
— will my program give an output for all inputs
in finitely many steps?

— termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

— SV-COMP, since 2014, for C programs

6/22

Program verification: the user's perspective (3/3)

e Termination
— will my program give an output for all inputs
in finitely many steps?

— termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

— SV-COMP, since 2014, for C programs

o (Quantitative) Resource Use aka Complexity
— how many steps will my program need in the worst case?
(runtime complexity)
— how large can my data become? (size complexity)

6/22

Program verification: the user's perspective (3/3)

e Termination
— will my program give an output for all inputs
in finitely many steps?

— termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

— SV-COMP, since 2014, for C programs

o (Quantitative) Resource Use aka Complexity
— how many steps will my program need in the worst case?
(runtime complexity)
— how large can my data become? (size complexity)

— termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

6/22

Program verification: the user's perspective (3/3)

e Termination
— will my program give an output for all inputs
in finitely many steps?

— termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

— SV-COMP, since 2014, for C programs

o (Quantitative) Resource Use aka Complexity
— how many steps will my program need in the worst case?
(runtime complexity)
— how large can my data become? (size complexity)

— termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!

6/22

Program verification: the user's perspective (3/3)

e Termination
— will my program give an output for all inputs
in finitely many steps?

— termCOMP, since 2004, for term rewrite systems; integer transition
systems; Prolog, Haskell, Java, C programs

— SV-COMP, since 2014, for C programs

o (Quantitative) Resource Use aka Complexity
— how many steps will my program need in the worst case?
(runtime complexity)
— how large can my data become? (size complexity)

— termCOMP, since 2008, for term rewrite systems; integer transition
systems; C programs

Note: All these properties are undecidable!

= tools use automatable sufficient criteria
6/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics

e Term rewrite systems (many flavours)

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
e Term rewrite systems (many flavours)

@ Integer transition systems

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
e Term rewrite systems (many flavours)

@ Integer transition systems

Benefits and drawbacks:

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
e Term rewrite systems (many flavours)

@ Integer transition systems

Benefits and drawbacks:

@ Easy(-ish) to agree on semantics

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
e Term rewrite systems (many flavours)

@ Integer transition systems

Benefits and drawbacks:
@ Easy(-ish) to agree on semantics

@ Interesting mainly for researchers (rather than programmers)

7/22

Input languages: backend languages

Simple, desugared formalisms with clear semantics
e Term rewrite systems (many flavours)

@ Integer transition systems

Benefits and drawbacks:
@ Easy(-ish) to agree on semantics
@ Interesting mainly for researchers (rather than programmers)

@ Used internally in verification tools for real-world languages

7/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

Benefits:

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

Benefits:

@ Lots of real-world examples to analyse

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

Benefits:
@ Lots of real-world examples to analyse

@ Tools for these languages useful for non-experts (programmers!)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

Benefits:
@ Lots of real-world examples to analyse

@ Tools for these languages useful for non-experts (programmers!)

Challenges:

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

Benefits:
@ Lots of real-world examples to analyse

@ Tools for these languages useful for non-experts (programmers!)

Challenges:

e Language semantics can be ambiguous; undefined behaviour (— C)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

Benefits:
@ Lots of real-world examples to analyse

@ Tools for these languages useful for non-experts (programmers!)

Challenges:
e Language semantics can be ambiguous; undefined behaviour (— C)

@ Tools usually support only language subsets
(libraries, concurrency, reflection, .. .)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

Benefits:
@ Lots of real-world examples to analyse

@ Tools for these languages useful for non-experts (programmers!)

Challenges:
e Language semantics can be ambiguous; undefined behaviour (— C)

@ Tools usually support only language subsets
(libraries, concurrency, reflection, .. .)

@ Tools may make simplifying assumptions (e.g., treat int as Z7)

8/22

Input languages: frontend languages

Programming languages used outside of research:

Prolog, Haskell, Java, C, ...

Benefits:
@ Lots of real-world examples to analyse

@ Tools for these languages useful for non-experts (programmers!)

Challenges:
e Language semantics can be ambiguous; undefined behaviour (— C)

@ Tools usually support only language subsets
(libraries, concurrency, reflection, .. .)

Tools may make simplifying assumptions (e.g., treat int as Z7)

Different competitions may make different assumptions
(... which make sense in context)

8/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

9/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

e termCOMP/CoCo:
checkers based on formalisations of problems + verification techniques
in Coq/lIsabelle/. ..

9/22

Output format

CoCo, SV-COMP, termCOMP:

Encourage/require machine-checkable verification certificates as outputs
Correctness checks:

e termCOMP/CoCo:

checkers based on formalisations of problems + verification techniques
in Coq/lIsabelle/. ..

—» trustable verification tool, no proof search

9/22

Output format

CoCo, SV-COMP, termCOMP:

Encourage/require machine-checkable verification certificates as outputs
Correctness checks:

e termCOMP/CoCo:

checkers based on formalisations of problems + verification techniques
in Coq/lIsabelle/. ..

—» trustable verification tool, no proof search
— currently for backend languages only

9/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

e termCOMP/CoCo:

checkers based on formalisations of problems + verification techniques
in Coq/lIsabelle/. ..

—» trustable verification tool, no proof search
— currently for backend languages only
— CéTA, talk René Thiemann at WG3 meeting in Valencia, Feb 2022

9/22

Output format

CoCo, SV-COMP, termCOMP:
Encourage/require machine-checkable verification certificates as outputs

Correctness checks:

e termCOMP/CoCo:

checkers based on formalisations of problems + verification techniques
in Coq/lIsabelle/. ..

—» trustable verification tool, no proof search
— currently for backend languages only
— CéTA, talk René Thiemann at WG3 meeting in Valencia, Feb 2022

@ SV-COMP: other participating tools, for frontend languages

9/22

termCOMP with certification (v') (1/2)

Termination Com... x |4
& & @i | [https://termcomp.herokuapp.com/Y2022/ || @ DuckDuckGo al() > =

Termination Competition 2022 isnon contosi isnow scresione cotumny

Competition-Wide Ranking

APrOVE+LOAT(4.0811) MU-TERM(1.0331) TTT2+TcT(1.9082) NaTT(1.4268) Matchbox(1.3425) iRankFinder(1 2594) Ultimate(1 2079) MultumNonMulta(1.1930) NTI+CTI(0.9649) SOL(0.9180) Wanda(0.8975)
Advancing-the-State-of-the-Art Ranking

Matchbox(67) MultumNonMulta(48) APrOVE+LoAT (31.25) SOL(16) NaTT(1) NTI+cTI(1) TTT2+TcT(0.375) iRankFinder(0) MU-TERM(0) Ultimate(0) Wanda(0)

Termination of Rewriting e«

CPUTH

TRS Standard 0 54 SRS Standard =20 = TRS Relative 10 54 SRS Relative s4:ca 54107 TRS Equational = 4
1. AProVvE21 1. matchbox-2022-07-22 L] 1.NaTT 2.3.2 1 1. MnM3.19¢ 1°71. AProvE21
C—mm v'1. AProVE21 V1. - 2. AProvE21 1 2. AProvE21 [v1. AProvE21
- 2.NaTT232 2. MNM3.19¢ = v1.AProvE21 C——=2 1. AProVE21 2. muterm 5.18
- 3. ttt2-1.20 - 3. AProvE21 [m— V2 ti2-1.20 3. ttt2-1.20 1 3. NaTT 232
= vote120 | E=——m /2. AProVE21 = 3. tit2-1.20 = ~2.11t2-1.20
- 4. muterm 6.0.3 1 4_1tt2-1.20 4.NaTT1232
| m—] v3. NaTT 162 = 1v3tt2-1.20
- 5. NTI_22 ' 5 NaTT 2.32
v4 NaTT 162
6. muterm 6.0.3
TRS Conditional - Operational Termination 5«05 TRS Context Sensitive =2 TRS Innermost s4z0s 54207 TRS Outermost s+ 542 HRS Union Beta 5227
1. MU-TERM 6.1 *71, muterm 5.18 171, AProVE21 — 1. AProve21 1, SOL 2022
2. AProve21 42, AProvE21 | m— v 1. AProvE21 — v 1. AProvE21 Ww2. Wanda 2.2a
2. muterm 6.0.3
C Integer 25 Integer Transition Systems =+ Logic Programming s
. 1. Aprove22-C w1, Aprove22-C w1, irankfinder v1.3.2 1L NTI+eTI_22
- 2. UtimateAutomizer2022v2, W— 2. UltimateAutomizer2022v2 me——"%" 2. LOAT TermComp 2021 2. AProvE21
W3 irankfinder v1.3.2
Complexity Analysis . CPU Time: 129 22. e Time:
Derivational Complexity: TRS s+ 24214 Derivational Complexity: TRS Innermost s>+ =27 Runtime Complexity: TRS 521z 42
- 1. AProVE21 - 1. AProVE21 W—1. AProVE21
— V1. tet-trs_v3.2.0_2020-06-28 I V1. tet-trs_v3.2.0_2020-06-28 m— 2 tet-trs_v3.2.0_2020-06-28 o

10/22

termCOMP with certification (v') (2/2)

Let's zoom in ...

Termination of Rewriting rrogress: 100%, cPU Time: 254 8:05:32, Hode Time: 244 34

TRS Standard s4200 54102 SRS Standard saz0z 54201
1. AProVE21 = 1. matchbox-2022-07-22
| E— v 1. AProVE21 [+«1. matchbox-2022-07-22
L 2.MNaTT 2.3.2 2. MnM319c
L 3. ttt2-1.20 u 3. AProVE21
| I— 2 tit2-1.20 | — + 2. AProvVE21
L 4. muterm 6.0.3 1 4. ttt2-1.20
| — v3 NaTT 162 Iw 3. t2-1.20
L 5. NTI 22 1 5 MaTT 2.3.2

= v4 NaTT 1.6.2
I 6. muterm 6.0.3

11/22

termCOMP with certification (v') (2/2)

Let's zoom in ...

Termination of Rewriting rrogress: 100%, cPU Time: 254 8:05:32, Hode Time: 244 34

TRS Standard s4200 54102 SRS Standard saz0z 54201
1. AProVE21 = 1. matchbox-2022-07-22
| E— v 1. AProVE21 [+«1. matchbox-2022-07-22
L 2.MNaTT 2.3.2 2. MnM319c
L 3. ttt2-1.20 u 3. AProVE21
| I— 2 tit2-1.20 | — + 2. AProvVE21
L 4. muterm 6.0.3 1 4. ttt2-1.20
| — v3 NaTT 162 Iw 3. t2-1.20
L 5. NTI 22 1 5 MaTT 2.3.2
(| 4 MNaTT 16.2

I 6. muterm 6.0.3

= proof certification is competitive!

11/22

Termination analysis, classically

12/22

Termination analysis, classically

Turing 1949

#inally the checker has to verify that the prooe
Hera :gm;yha ahould be assisted by the programmer giving a fu{thar dofizito
ansortion to be verified. This may take the form of a quantity which 1s
asserted to deorecase ocontipually and vanish when thé machine stopa.

ss comes to an end.

“Finally the checker has to verify that the process comes to an end. [...]

This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

12/22

Termination analysis, classically

Turing 1949

o verify that the proocess comes to an end.
ted by the programmer giving a further definite
This may take the rorm or a gquantity which is

asserted to deoreass oontinually and vanish when thé pachine stopa.

#nally the checker has t
Here again he ahould be assis
ansortion to be verirfied.

‘Finally the checker has to verify that the process comes to an end. |[...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)

12/22

Termination analysis, classically

Turing 1949

o verify that the proocess comes to an end.
ted by the programmer giving a further definite
This may take the rorm or a gquantity which is

asserted to deoreass oontinually and vanish when thé pachine stopa.

#nally the checker has t
Here again he ahould be assis
ansortion to be verirfied.

‘Finally the checker has to verify that the process comes to an end. |[...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)

@ Prove f to have a lower bound (“vanish when the machine stops”)

12/22

Termination analysis, classically

Turing 1949

o verify that the proocess comes to an end.
ted by the programmer giving a further definite
This may take the rorm or a gquantity which is

asserted to deoreass oontinually and vanish when thé pachine stopa.

#nally the checker has t
Here again he ahould be assis
ansortion to be verirfied.

‘Finally the checker has to verify that the process comes to an end. |[...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)
@ Prove f to have a lower bound (“vanish when the machine stops”)

© Prove that f decreases over time

12/22

Termination analysis, classically

Turing 1949

to an end.
#inally the chocker has to verify that the prooess comes
Hera :yi:]:yhe ahould be assisted by the programmer giving a fuz"tho! deﬁ.zlto
ansortion to be verified. This may take the form of a quantity which 1s
asserted to deorecase ocontipually and vanish when thé machine stopa.

‘Finally the checker has to verify that the process comes to an end. |[...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)
@ Prove f to have a lower bound (“vanish when the machine stops”)

© Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
Xx=x—1

12/22

Termination analysis, with automated reasoning

Question: Does program P terminate?

13/22

Termination analysis, with automated reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

13/22

Termination analysis, with automated reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
¢ = b>0 A (4ab-T0*>1 V 3a+c>b)

13/22

Termination analysis, with automated reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
¢ = b>0 A (4ab-T0*>1 V 3a+c>b)

Answer:

13/22

Termination analysis, with automated reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
¢ = b>0 A (4ab-T0*>1 V 3a+c>b)
Answer:
© o satisfiable, model M (e.g., a=3,b=1,c=1):
= P terminating, M fills in the gaps in the termination proof

13/22

Termination analysis, with automated reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like

¢ = b>0 A (4ab-T0*>1 V 3a+c>b)
Answer:
© o satisfiable, model M (e.g., a=3,b=1,c=1):
= P terminating, M fills in the gaps in the termination proof
@ unsatisfiable:
= termination status of P unknown
= try a different template (proof technique)

13/22

Termination analysis, with automated reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like

¢ = b>0 A (4ab-T0*>1 V 3a+c>b)

Answer:
© o satisfiable, model M (e.g., a=3,b=1,c=1):

= P terminating, M fills in the gaps in the termination proof
@ unsatisfiable:

= termination status of P unknown

= try a different template (proof technique)

In practice:
@ Encode only one proof step at a time
— prove only part of the program terminating, get simpler problem

13/22

Termination analysis, with automated reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like

¢ = b>0 A (4ab-T0*>1 V 3a+c>b)

Answer:
© o satisfiable, model M (e.g., a=3,b=1,c=1):

= P terminating, M fills in the gaps in the termination proof
@ unsatisfiable:

= termination status of P unknown

= try a different template (proof technique)

In practice:
@ Encode only one proof step at a time

— prove only part of the program terminating, get simpler problem
— combine techniques

13/22

Termination analysis, with automated reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
¢ = b>0 A (4ab-T0*>1 V 3a+c>b)

Answer:
© o satisfiable, model M (e.g., a=3,b=1,c=1):

= P terminating, M fills in the gaps in the termination proof
@ unsatisfiable:

= termination status of P unknown

= try a different template (proof technique)

In practice:
@ Encode only one proof step at a time
— prove only part of the program terminating, get simpler problem
— combine techniques

@ Repeat until the whole program is proved terminating .

Papers on termination of imperative programs often about integers as data

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

if (x>0) Does this program terminate?
while (x # 0) (x ranges over Z)
x=x—1;

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

lo: if (x>0)
b while (x#£0)

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer

Transition System, cf.)
b(z) — li(x) [z >0
Eo(x) — 53(.’1,‘) [a: < 0]
li(z) — la(x) x # 0]
l(z) — li(x—1)
l1(z) — fl3(x) [x = 0])

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

lo: if (x>0)
b while (x#£0)

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer

Transition System, cf.)
b(z) — li(x) [z >0
bo(z) — (l3(z) [z < 0] And this one?
li(z) — la(x) x # 0]
52(1‘) — fl (l‘ — 1)
l1(z) — fl3(x) [x = 0])

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

lo: if (x>0)
b while (x#£0)

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer

Transition System, cf.)
) — A
bo(z) — (3(z) [z < 0] And this one?
li(z) — la(x) x # 0]
l(z) — li(x—1)
l1(z) — fl3(x) [x = 0])

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
2% while (x # 0) (x ranges over 7Z)
l: X =x—1;

Example (Equivalent Translation to an Integer

Transition System, cf.)
bhlx) — li(z) [z >0
b(z) — {3() [z < 0] And this one?
li(z) — la(x) x # 0]
52(1‘) — fl(l‘ — 1)
l1(z) — fl3(x) [x = 0])
Oh nol 51(—1> — 52(—1) — fl(—Q) — 52(—2) — fl(—3) — e

= Restrict initial states to /y(z) for z € Z

14/22

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
2% while (x # 0) (x ranges over 7Z)
l: X =x—1;

Example (Equivalent Translation to an Integer

Transition System, cf.)
bo(z) — l1(x) [z > 0]
bo(z) — (3(z) [z < 0] And this one?
li(z) — la(x) [0Nz > 0]
l(z) — fli(x—1) [z >0]
l1(z) — fl3(x) [x=0Ax > 0])
Oh no! 51(—1> — 52(—1) — fl(—Q) — 52(—2) — fl(—3) —

= Restrict initial states to /y(z) for z € Z

= Find invariant x > 0 at /1, /, (how?)
14/22

Proving termination with invariants

Example (Transition system with invariants)

lo(z) — li(z) [z > 0]
l(z) — fla(x) [x #0Az > 0]
b(z) — li(x—1) [z >0
fl(l‘) — 53(1,‘) [33 =0Ax > 0]

Prove termination by ranking function [-] with [(o](x) = [(1](z) =--- ==z

15/22

Proving termination with invariants

Example (Transition system with invariants)

@) % 4@ |20
li(z) = () [x#A0Az >0
l(z) = li(z—1) [z>0]
l(z) = 43(z) [t=0Az >0

Prove termination by ranking function [-] with [(o](x) = [(1](z) =--- ==

15/22

Proving termination with invariants

Example (Transition system with invariants)

lo(x) = () [z > 0]
li(z) = () [x#A0Az >0
l(z) = li(z—1) [z>0]
l(z) = 43(z) [t=0Az >0
Prove termination by ranking function [-] with [(o](x) = [(1](z) =--- ==

Automate search using parametric ranking function:

[lo](z) = ap+bo - =, [L](z)=a1+0b1 -z,

15/22

Proving termination with invariants

Example (Transition system with invariants)

lo(z) = hi(x) [z > 0]
lh(z) = la(x) [z #0Az >0
b(z) > li(z—1) [z>0]
l(z) = l3(x) [x=0Az>0]
Prove termination by ranking function [-] with [(o](z) = [(1](z) = --- ==

Automate search using parametric ranking function:
[lo](x) = ag + by -z, [1](x) =ai1+ b1 -,
Constraints here:

x>0 = ax+by-xz>a +b-(x—1) “decrease...
>0 = ags+by-x>0 “... against a bound”

15/22

Proving termination with invariants

Example (Transition system with invariants)

lo(z) = hi(x) [z > 0]
lh(z) = la(x) [z #0Az >0
b(z) > li(z—1) [z>0]
l(z) = l3(x) [x=0Az>0]
Prove termination by ranking function [-] with [(o](z) = [(1](z) = --- ==

Automate search using parametric ranking function:
[lo](x) = ag + by -z, [1](x) =ai1+ b1 -,
Constraints here:

x>0 = as+by-x>a+b-(x—1) “decrease...”
>0 = ags+by-x>0 “... against a bound”

Use Farkas' Lemma to eliminate Vzx, solver for linear constraints gives
model for a;, b;.

15/22

Proving termination with invariants

Example (Transition system with invariants)

lo(z) = hi(x) [z > 0]
lh(z) = la(x) [z #0Az >0
b(z) > li(z—1) [z>0]
l(z) = l3(x) [x=0Az>0]
Prove termination by ranking function [-] with [(o](z) = [(1](z) = --- ==

Automate search using parametric ranking function:
[lo](x) = ag + by -z, [1](x) =ai1+ b1 -,
Constraints here:

x>0 = as+by-x>a+b-(x—1) “decrease...”
>0 = ags+by-x>0 “... against a bound”

Use Farkas' Lemma to eliminate Vzx, solver for linear constraints gives
model for a;, b;.
More: [Podelski, Rybalchenko, VMCAI '04, Alias et al, SAS '10]

15/22

Proving termination with invariants

Example (Transition system with invariants)

bo(z) — li(x) [z > 0]
li(z) — la(z) [x 0Nz >0]
lhi(z) — G3(x) [t=0Az >0
Prove termination by ranking function [-] with [(o](z) = [(1](z) =--- ==

Automate search using parametric ranking function:
[lo](z) = a0+ bo -z, [G](z) = a1+ b1 -,
Constraints here:

x>0 = ay+by-xz>a;+b-(x—1) “decrease...”
x>0 = ay+by-x>0 ... against a bound”

Use Farkas' Lemma to eliminate Vz, solver for linear constraints gives
model for a;, b;.
More: [Podelski, Rybalchenko, VMCAI ‘04, Alias et al, SAS '10]

15/22

Searching for invariants using SMT

Termination prover for programs needs invariants (— safety!)

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (— safety!)

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR '17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (— safety!)

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR '17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (— safety!)

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR '17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

@ ... also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al, TACAS '16]

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (— safety!)

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR '17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

@ ... also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al, TACAS '16]

@ Using Max-SMT
[Larraz, Oliveras, Rodriguez-Carbonell, Rubio, FMCAD '13]

16/22

Searching for invariants using SMT

Termination prover for programs needs invariants (— safety!)

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR '17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

@ ... also cooperating with removal of terminating rules: T2
[Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al, TACAS '16]

@ Using Max-SMT
[Larraz, Oliveras, Rodriguez-Carbonell, Rubio, FMCAD '13]

Nowadays all SMT-based!

16/22

WG3: what is interesting for our tool inventory?

Example: AProVE's termination analysis for C in detail

C program

compile
Y

| LLVM program |

prove memory safety
Y

Termination of C program
A

LLVM program

A

Termination of

Abstract Interpretation

Termination of (overapprox.) Abs. Int.

extract
Y

Integer Transition System

generate
\

| Constraints with V|

remove V

Y SMT sol
|SMT formula without V wﬁ Model for SMT formula

A

| Terminati
A

on of ITS |

function

A

Ranking

17/22

WG3: what is interesting for our tool inventory?

Example: AProVE's termination analysis for C in detail

C program

compile
Y

| LLVM program |

prove memory safety
Y

Termination of C program
A

Termination of LLVM program

A

Abstract Interpretation

Termination of (overapprox.) Abs. Int.

extract
Y

Integer Transition System

generate
\

| Constraints with V|

remove V

Y SMT sol
|SMT formula without V wﬁ Model for SMT formula

ITS prover

A

|Termination of ITS |
A

Ranking function
A

17/22

Towards the first deliverable

Tool inventory of verification tools

@ What inputs are supported?

18/22

Towards the first deliverable

Tool inventory of verification tools
@ What inputs are supported?
@ What properties can be verified?

18/22

Towards the first deliverable

Tool inventory of verification tools
@ What inputs are supported?
@ What properties can be verified?

@ What are the tool's main techniques for the supported
(input, property) pairs?

18/22

Towards the first deliverable

Tool inventory of verification tools
@ What inputs are supported?
@ What properties can be verified?

@ What are the tool's main techniques for the supported
(input, property) pairs?

@ What external tools are used? (— compilers, SMT solvers, ...)

18/22

Towards the first deliverable

Tool inventory of verification tools
@ What inputs are supported?
@ What properties can be verified?

@ What are the tool's main techniques for the supported

(input, property) pairs?
@ What external tools are used? (— compilers, SMT solvers, ...)
@ What is the tool's URL?

18/22

Towards the first deliverable

Tool inventory of verification tools
@ What inputs are supported?
@ What properties can be verified?

@ What are the tool's main techniques for the supported
(input, property) pairs?

What external tools are used? (— compilers, SMT solvers, ...)
What is the tool's URL?

What is the “canonical reference” to a system description?

18/22

Inspiration: WG2's inventory of ATPs (1/3)

Inspiration: https://github.com/EuroProofNet/ATP/wiki

© Home - EuroPro... x +
& & | @ https://github.com/EuroProofNet/ATP/wiki

¢ EuroProofNet Automated
Theorem Prover wiki

EuroProofNet is the European research
F fvt:rlg":?:mﬂ network on digital proofs. EuroProofNet
— F on ATPS aims at boosting the interoperability and
usability of proof systems. EuroProofNet is
a COST action started on November 2021 gathering more than 220
researchers from 30 different countries.

The aim of working group 2 (WG 2) s to promote the output of detailed,
checkable proofs from automated theorem provers. Work is under way
for FOL/HOL theorem provers and SMT solvers, but the expressivity of
their input languages renders the task significantly more complicated
than e.g., in the propositional SAT world, with a higher need of
coordination.

The main purpose of this wiki is to provide
« an inventory of automated theorem provers producing proofs

« description of proof formats

« an inventory of checking tools for these proof formats.

2EE

% ~{{@DuckDuc...@ () > =

» Pages @)

+ Home

- List of systems

« List of formats

« How to contribute

Clone this wiki locally

https://github. con/Europroof

o

19/22

https://github.com/EuroProofNet/ATP/wiki

Inspiration: WG2's inventory of ATPs (2/3)

List of - EuroPro ATP'Wiki - GitHub'- Falkon' BHEE
O List of formats ... x +

< & @ | @ https://github.com/EuroProofNet/ATP/wiki/List-of-fc v||@ DuckDuc... @ |() > =

 EuroProofNet/ ATP Pubic £ Notifications % Fork 1 Y star 2 -

<> Code (O Issues 19 Pullrequests (5) Actions [Wiki () Security |~ Insights

List of formats

Pascal Fontaine edited this page Jul 10, 2022 - 3 revisions

¢ List of formats > Pases @
The following table contains all input formats and proof formats that are « Home
currently curated by the EuroProofNet ATP inventory. Please click on « Listof systems
the format name for its detailed profile. « Listof formats
- Howto contribute
Web
o .
Name InputiOutput? site Logic(s) Clone this wiki locally
d https: //github.com/EuroProof Ll;l
Alsthe Output linkl FOL/SMT unde
deve

SMT-LIB Input [link] FOL/SMT/HOL stabl

TPTP Input+Output [ink] ~ CNF/FOL/HOL stabl

Zippernosition -

20/22

Inspiration: WG2's inventory of ATPs (3/3)

Tiet AT PWiki“GitHub~ Ealkon BEE
O List of systems ... x +

< & @ | B https://github.com/EuroProofNet/ATP/wiki/List-of-sy v|| @ DuckDuc... @ |() > =

& EuroProofNet/ ATP Pubic L Notifications %9 Fork 1 ¥ Star 2 -

<> Code (O Issues {9 Pullrequests () Actions [] Wiki (O Security |~ Insights

List of systems

Julien Narboux edited this page Dec 13, 2022 - 12 revisions

¢List of systems > Pages @)
The following table contains all systems that are known to the « Home
EuroProofNet ATP inventory. Please click on the prover name for its « Listof systems
detailed profile (if available) or contribute it. = Listof formats

= How fo confribute

¢ Maintained systems

Clone this wiki locally

Name Web site Format(s) Status https: //github. cow/EuroPraof | (L]
agsyHOL [link] TPTP maintained
Alt-Ergo [link] SMT-LIB, TPTP maintained
AProVE [link] SMT-LIB maintained
Beagle [link] TPTP maintained
Bitwuzla [link] SMT-LIB maintained

21/22

Conclusion: towards the first deliverable

Tool inventory of verification tools
@ What inputs are supported?
@ What properties can be verified?

@ What are the tool's main techniques for the supported
(input, property) pairs?

What external tools are used? (— compilers, SMT solvers, ...)
What is the tool's URL?

What is the “canonical reference” to a system description?

22/22

	Program Analysis: Overview

