

Interactive Proofs for Matching Logic, using Coq

Péter Bereczky¹ Dániel Horpácsi¹ Jan Tušil²³

¹Eötvös Loránd University, Hungary

²Masaryk University, Brno, Czech Republic

³RuntimeVerification, Inc

February 9, 2023

Previous work

Previous work¹:

- Syntax
- Semantics
- Proof system
- Soundness of proof system

Now, let us do matching logic proofs!

¹Bereczky et al., "Mechanizing Matching Logic in Coq."

Hilbert-style proof system of Matching logic

Proof Rule Names Proof Rules		Proof	Proof Rule Names Proof Rules	
(Proposition 1)	$\varphi_1 \to (\varphi_2 \to \varphi_1)$	(Proposition 2)	$ \begin{array}{c} (\varphi_1 \to (\varphi_2 \to \varphi_3)) \to \\ (\varphi_1 \to \varphi_2) \to (\varphi_1 \to \varphi_3) \end{array} $	
(Proposition 3)	$((\varphi \to \bot) \to \bot) \to \varphi$	(Modus Ponens)	$\frac{\varphi_1 \qquad \varphi_1 \rightarrow \varphi_2}{\varphi_2}$	
$(\exists\operatorname{-Quantifier})$	$\varphi[y/x] \to \exists x.\varphi$	$(\exists \text{-} \text{Generalization})$	$\frac{\varphi_1 \xrightarrow{\varphi_2} \varphi_2}{(\exists x . \varphi_1) \to \varphi_2} \text{ with } x \not\in FEV(\varphi)$	
$(Propagation_{\perp})$	$C[\bot] \to \bot$	$(Propagation_{\vee})$	$C[\varphi_1 \vee \varphi_2] \to C[\varphi_1] \vee C[\varphi_2]$	
$(Propagation_{\exists})$	$C[\exists x.\varphi]\to\exists x.C[\varphi] \not\equiv$	if $x \notin FEV(C)$		
(Framing)	$\frac{\varphi_1 \to \varphi_2}{C[\varphi_1] \to C[\varphi_2]}$			
(Substitution)	$\frac{\varphi}{\varphi[\psi/X]}$	$(\operatorname{Pre-Fixpoint})$	$\varphi[(\mu X.\varphi)/X]\to \mu X.\varphi$	
(Knaster-Tarski)	$\frac{\varphi_1[\varphi_2/X] \to \varphi_2}{(\mu X \cdot \varphi_1) \to \varphi_2}$			
(Existence)	$\exists x . x$	(Singleton)	$\neg (C_1[x \land \varphi] \land C_2[x \land \neg \varphi])$	

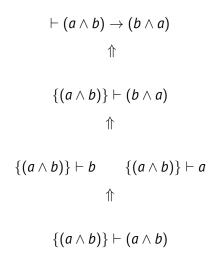
Drawbacks

- Gap between human reasoning and the proof system.
- No "deduction theorem" (moving a LHS of an implication into the theory)

A simple proof

$\vdash (a \land b) \rightarrow (b \land a)$

A simple proof

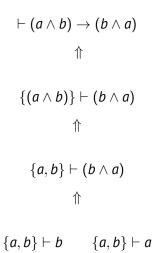


5/18

Another variant

```
\vdash (a \land b) \rightarrow (b \land a)
```

Another variant



Can we have a conceptually same proof in matching logic?

- Without existence of general deduction theorem?
- Using the existing proof system?
- in Coq?

Can we have a conceptually same proof in matching logic?

- Without existence of general deduction theorem?
- Using the existing proof system?
- in Coq?

Yes.

A Natural Deduction Sequent Calculus

A sequent is a quadruple

 $\mathsf{\Gamma} \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \psi,$

(derivable using rules shown later), where

- Γ is a (possibly infinite) set of matching logic formulas, called a (global) theory;
- Δ is a finite (comma-separated) list of matching logic formulas, called a *basic local context* (or just *local context*);
- ψ is a matching logic formula, called *conclusion*; and
- *c* is a *proof constraint* from the set C.

Have a cake and eat it

 $\mathsf{Goal}: \vdash_{\mathcal{H}} (a \land b) \to (b \land a)$

Theorem (Soundness, Hilbert proof generation)

$$\Gamma \blacktriangleright_{\top_{\mathcal{C}}} [] \vdash_{\mathcal{N}} \psi \implies \Gamma \vdash_{\mathcal{H}} \psi.$$

$$\frac{\Gamma \blacktriangleright_{c} \Delta, \varphi \vdash_{\mathcal{N}} \psi}{\Gamma \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \varphi \to \psi} \to_{i} \quad \frac{\Gamma \blacktriangleright_{c} \Delta_{1}, \varphi_{1}, \varphi_{2}, \Delta_{2} \vdash_{\mathcal{N}} \psi}{\Gamma \blacktriangleright_{c} \Delta_{1}, \varphi_{1} \land \varphi_{2}, \Delta_{2} \vdash_{\mathcal{N}} \psi} \land_{e}$$

 $\frac{\Gamma \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \varphi_{1} \quad \Gamma \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \varphi_{2}}{\Gamma \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \varphi_{1} \land \varphi_{2}} \land_{i} \quad \overline{\Gamma \blacktriangleright_{c} \Delta_{1}, \varphi, \Delta_{2} \vdash_{\mathcal{N}} \varphi} \text{ Hyp}$

$$\Gamma \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \psi,$$

1. We cheat, of course.

What?

$$\Gamma \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \psi,$$

- 1. We cheat, of course.
- 2. Global (theory) and local contexts have different semantics.

What?

$\Gamma \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \psi,$

- 1. We cheat, of course.
- 2. Global (theory) and local contexts have different semantics.
- 3. Semantics: if every model element matches every formula of Γ , then every model element which matches every formula of Δ matches also ψ .

What?

$$\Gamma \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \psi,$$

- 1. We cheat, of course.
- 2. Global (theory) and local contexts have different semantics.
- 3. Semantics: if every model element matches every formula of Γ , then every model element which matches every formula of Δ matches also ψ .

Lemma (Correspondence lemma)

$$\Gamma \blacktriangleright_{c} \varphi_{1}, \ldots, \varphi_{k} \vdash_{\mathcal{N}} \psi \implies \Gamma \vdash_{\mathcal{H}}^{c} \varphi_{1} \rightarrow \ldots \rightarrow \varphi_{k} \rightarrow \psi$$

Back to Hilbert

$$\frac{\Gamma \blacktriangleright_{c} \Delta \vdash_{\mathcal{N}} \varphi \to \psi}{\Gamma \vdash_{c} \Delta, \varphi \vdash_{\mathcal{N}} \psi} \to_{e} \qquad \frac{(\Gamma \vdash_{\mathcal{H}}^{c} \psi)}{\Gamma \vdash_{c} [] \vdash_{\mathcal{N}} \psi}$$

Bereczky, Horpácsi, <u>Tušil</u> • Matching Logic in Coq • February 9, 2023

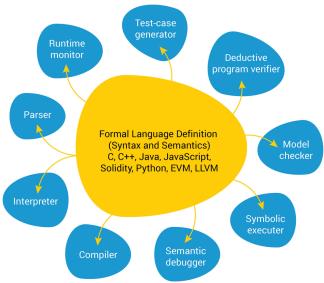
11/18

Coq Implementation

https://github.com/harp-project/AML-Formalization

An interactive theorem prover inside an interactive theorem prover.

$\mathbb{K} \text{ Framework}$



Future Challenges

Future Challenges

Conclusion

Locally Nameless

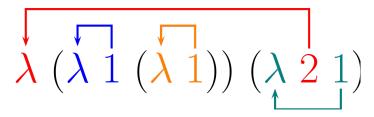


Figure: De Bruijn indexing. https://en.wikipedia.org/wiki/De_Bruijn_index

Conclusion

Future Challenges

Conclusion

Conclusion

Conclusion

A paper is in preparation.

Questions!

MUNI FACULTY OF INFORMATICS