
PROGRAM ANALYSIS AND
VERIFICATION

POINTER PROGRAMS IN C

L.GEORGIEVA

HERIOT WATT UNIVERSISTY



ANALYSIS OF POINTER PROGRAMS

• Common in legacy code.Pointer programs

• Any program that manipulates linked 
data structures: e.g. linked lists, trees.

Context

• Error prone. Costly refactoring.
Why should this problem 

be solved?

• Verification versus testing.
How will I know this 

problem has been solved?



BACKGROUND INFORMATION

Research into modelling linked data structures in relational logics

• Description logics

• Purposefully designed languages

• Separation logic

Experiments with tools

• Racer 

• Spass

• Bohne

• Otter



WORKABLE SOLUTIONS 

Modelling in DL

▪ DL reasoners are 
fast.

▪ The language is 
intuitive

▪ The most serious 
issue: reachability. 
DL languages are not 
expressive enough to 
handle this 
automatically.

First order logic

▪ First order logic 
reasoners are 
powerful.

▪ Steep learning curve.

▪ Issues with 
decidability: one 
approach is to 
restrict the language 
to fixed number of 
variables only.

Separation Logic

▪ Intuitive approach.

▪ Relates the heap to 
the data structure 
directly.

▪ Limited automated 
reasoning support.



THE PROTOTYPE

• We used RACER in a case 

study.

• Allows for automated

reasoning with number

restrictions and reachability

• Not all interesting features 

are expressible (i.e. role 

reversal)



OUR EFFORTS

• Modelling of linked data structures.

• Limited support of sharing (graphs, trees).

• Case studies: we considered basic linked lists, cyclic linked lists, 

skipped linked list, binary tree.

• Red black tree: issues with complexity.



EXTENDING THE WORK

• Currently looking at alternative reasoners

• Support for SHOIQ

• Support for more expressive languages (e.g. FOL).

• Different data structures and programs with different sizes

• Sharing is a challenge.



PROGRESS

• Limited features captured.

• Standard linked data structures modelled successfully

• Fully automated support for linked lists like data structures.

• Automated reasoner all the necessary features (support for transitive 

closure) does not exist.

• Alternative frameworks.


	Slide 1: Program Analysis and Verification
	Slide 2: Analysis of Pointer Programs
	Slide 3: Background information
	Slide 4: Workable solutions 
	Slide 5: The prototype
	Slide 6: OUR Efforts
	Slide 7: EXTENDING THE WORK
	Slide 8: Progress

