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Teaching with Proof Assistants

‚ Learning proof is hard !
‚ Why not teaching with proof assistants ?

‚ Hands-on approach
‚ Students receive instant and frequent feedback
‚ Helps them realize that a proof could be mechanically verified.

‚ PhD ! (w/ Julien Narboux, Laure Gonnord)
ÝÑ explore some questions raised by this educational setting

Grenoble INP - UGA & IRIF, Université Paris Cité Yalep: An environment for learning proof in high-school 3/40



Teaching with Proof Assistants

‚ Learning proof is hard !
‚ Why not teaching with proof assistants ?

‚ Hands-on approach
‚ Students receive instant and frequent feedback
‚ Helps them realize that a proof could be mechanically verified.

‚ PhD ! (w/ Julien Narboux, Laure Gonnord)
ÝÑ explore some questions raised by this educational setting
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The idea is as old as PA themselves1

‚ Many experiments of teaching w/ many different PAs2

using Rocq (Kerjean, Mayero, Rousselin), Deaduction (Leroux), LeanVerbose (Massot),
Edukera & Lean proof term (Tran Minh), Deaduction & LeanVerbose (Bartzia, Boutry,

Narboux), Edukera (Modeste), Coq Waterproof (Wemmenhove), Proof Buddy (Karsten), . . .

‚ APPAM: didacticians, mathematicians and computer scientists
‚ An a priori analysis3

1Tran Minh, Gonnord, and Narboux 2025, 2Kerjean et al. 2022, 3Bartzia, Meyer, and Narboux 2022
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Narboux), Edukera (Modeste), Coq Waterproof (Wemmenhove), Proof Buddy (Karsten), . . .

‚ APPAM: didacticians, mathematicians and computer scientists
‚ An a priori analysis3

‚ GUI proofs may not be so instructive3.
‚ Our focus : language
‚ Rare tools designed for High school

(except for Geometry)

1Tran Minh, Gonnord, and Narboux 2025, 2Kerjean et al. 2022, 3Bartzia, Meyer, and Narboux 2022
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Teaching proof in High School

‚ What is specific to a high school proof ?
‚ rather short, informal proofs
‚ quantifiers, logical connectors in plain text

‚ What is specific to the high school context ?
‚ students’ supposed background: PA (none) ; CS (none) ; proof (tiny)
‚ teachers’ supposed background: PA (none) ; CS (none) ; logics (usually little)
‚ no additional training

‚ what is specific to the French high school curriculum
‚ recommends gradually guiding students toward the truth through proof.
‚ some example proofs ; ex:

?
2 < Q

‚ initiation to logical connectors and quantifiers, without the symbols
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High school proofs?

Prove : @n P Z,npn ` 1q is even.
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Prove : @n P Z,npn ` 1q is even.

S̊i‹n`c´e n `a‹n`dffl n`1 `a˚r`e ˚t›wˆo `c´o“n¯sfi`e´cˇu˚tˇi‹vfle
˚i‹n˚t´e´g´eˇr¯s, ˚t‚h`e›nffl `o“n`e ˚i¯s `e›vfle›nffl `a‹n`dffl ˚t‚h`e
`o˘t‚h`eˇrffl ˚i¯s `oˆd`dffl, ¯sfi`o npn ` 1q ˚i¯s `e›vfle›nffl.
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High school proofs?

Prove : @n P Z,npn ` 1q is even.

Two consecutive integers are written, for instance, in the form n and n ` 1.
‚ If n is even, then there exists an integer k such that n “ 2k . Therefore,

npn ` 1q “ 2k pn ` 1q is even.
‚ If n is odd, then there exists an integer k such that n “ 2k ` 1. As a result,

n ` 1 “ 2k ` 1 ` 1 “ 2k ` 2 “ 2pk ` 1q. Thus, npn ` 1q “ n ˆ 2pk ` 1q is even.
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High school proofs?

Prove : @n P Z,npn ` 1q is even.
theorem product even (n a:Z) : Even n Ñ Even (n*a)

| xk,hky => by use k*a ; rw[Ð right distrib,hk]

theorem successor odd (n :Z) : Odd n Ñ Even (n+1)

| xk,hky => by use k+1 ; rw[hk] ; ring nf

example (h: @n:Z, Even n _ Odd n) : @ n:Z, Even (n*(n+1)) := by
intro n

cases (h n)

apply product even

assumption

rw [mul comm]

apply product even

apply successor odd

assumption
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A pedagogical progression as a guideline

proof construct example of statement to prove
new facts - goal $ 81 “ 2 ˚ 40` 1
Intro D $ 81 odd

Elim D
n P Z,n odd $ n` 1 even
n P Z,n odd $ n2 odd

Intro ùñ n integer $ n even ùñ n2 even
Intro @ @n P Z,@b P Z,n even ùñ nb even
Intro _ $ p0 evenq _ p0 oddq

Elim _ (by cases) @n P Z, pn evenq _ pn oddq $ @n P Z,npn` 1q even

Intro ␣ $ ␣p1 evenq
$ @n P Z,␣pn odd^ n evenq

induction
$ @n PN,n ⩽ n2.
$ @n PN,n odd_ n even
$ @n P Z,n odd_ n even

Intro of ðñ $ @n P Z,n odd ðñ␣pn evenq
contrapositive $ @n P Z,n2 even ùñ n even
Synthesis

?
2 < Q

Progression
‚ theme: parity
‚ leads to

?
2 < Q

‚ explores all logical
connectors

Milesones
‚ Dec 2024 w/ 9th-graders
‚ June 2025 w/ 10th-graders
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”Yet Another Learning Environment for Proof” (YALEP) - A first taste

Theorem nn1even "7. Using (. . . or . . .) : proof by cases"
Assumptions: (for all integer n, n is even or n is odd)

Conclusion: for all integer n, n*(n+1) is even

Proof

let n be an integer

˛ n is even or n is odd

˛ if n is even then n*(n+1) is even

proof

assume n is even

˛ n*(n+1) is even by product even

□
˛ if n is odd then n*(n+1) is even

proof

assume n is odd

˛ n+1 is even

˛ n*(n+1) is even by product even

□
˛ n*(n+1) is even

□
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What language is appropriate to teach proof to high-school students?

Under the constraint : without additional training, the language should be:
‚ Readable by students (without proof state display)

ÝÑ imitate pen and paper writing
ÝÑ declarative

‚ Writable by students
ÝÑ reduced vocabulary and set of proof constructs

Hope : practicing Yalep will help to transfer proving skills to pen and paper proof
activity (and not copying proof scripts!).
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Why does our need diverge from NL parsing?
(Diproche Carl, Lorenzen, and Schmitz 2022)

Let x be an i n t e g e r .
Prove : I f x i s even , then 2−3x i s even .

Proof :
Let x be even .
Then , there i s an i n t e g e r k such t h a t x=2k .
Let k be an i n t e g e r w i th x=2k .
Then we have 2−3x=2−3(2k )=2(1 −3k ) .
Hence 2−3x i s even .

qed .

NL parsing [Naproche Koepke 2019]:
‚ has different objectives (parsing textbooks)
‚ to accept any NL phrase, has to cope with implicit and ambiguities
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Different proof styles : proof term style (Lean)

‚ Proof λ-term : internal representation of proof in a proof assistant based on
typed λ-calculus.

example (x:integer) : x is even ñ 2-3*x is even :=

λ assumption1 ÞÑ

Exists.elim assumption1 λ k fact1 ÞÑ

Exists.intro (1-3*k) <|

Eq.trans (congrArg (2-3*¨) fact1) <|

Eq.trans (congrArg (2-¨) $ (mul assoc 3 2 k).symm) <|

Eq.trans (congrArg (2-¨*k) $ (mul comm 3 2)) <|

Eq.trans (congrArg (2-¨) $ (mul assoc 2 3 k)) <|

Eq.trans (congrArg (¨ - 2*(3*k)) (rfl: (2:Int)=2*1))

(mul sub (2:Int) 1 (3*k)).symm
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Different proof styles : procedural proof script (Lean)

example (x:integer) :

x is even ñ 2-3*x is even :=

by

intro assumption1

obtain xk,fact1y := assumption1

use (1-3*k)

rw[fact1]

ring nf

Proof state

1 goal

x : integer

$ x is even ñ 2 - 3 * x is even

‚ Procedural proof script : sequence of ”tactics” building a proof term
‚ Focus on proof actions
‚ Not meant to be human-readable: needs proof state display to replay the

proof
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Different proof styles : procedural proof script (Lean)

example (x:integer) :

x is even ñ 2-3*x is even :=

by

intro assumption1

obtain xk,fact1y := assumption1

use (1-3*k)

rw[fact1]

ring nf

Proof state

1 goal
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$ 2 - 3 * x is even
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‚ Not meant to be human-readable: needs proof state display to replay the
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by

intro assumption1
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use (1-3*k)

rw[fact1]

ring nf

Proof state

1 goal

case h

x k : integer

fact1 : x = 2 * k
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example (x:integer) :

x is even ñ 2-3*x is even :=

by

intro assumption1

obtain xk,fact1y := assumption1

use (1-3*k)

rw[fact1]

ring nf

Proof state

1 goal

case h

x k : integer

fact1 : x = 2 * k

$ 2 - 3 * (2 * k) = 2 * (1 - 3 * k)

‚ Procedural proof script : sequence of ”tactics” building a proof term
‚ Focus on proof actions
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Different proof styles : procedural proof script (Lean)

example (x:integer) :

x is even ñ 2-3*x is even :=

by

intro assumption1

obtain xk,fact1y := assumption1

use (1-3*k)

rw[fact1]

ring nf

Proof state

No goals

‚ Procedural proof script : sequence of ”tactics” building a proof term
‚ Focus on proof actions
‚ Not meant to be human-readable: needs proof state display to replay the

proof
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Different proof styles : declarative proof script (Lean)

example (x:integer) : x is even ñ 2-3*x is even :=

by

intro ( : x is even)

obtain xk,fact1 : x = 2*ky := by assumption

have : 2-3*x = 2*(1-3*k) := calc

2-3*x = 2-3*(2*k) := by rw[fact1]

= 2*(1-3*k ) := by ring nf

have : D u:Z, 2-3*x = 2*u := by use (1-3*k)
have : 2-3*x is even := by assumption

assumption

‚ Declarative proof script : list of claims with corresponding subproof
‚ Focus on statement : closer to pen and paper practice
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Different proof styles : Controlled Natural Language for education

Exercise "if x is even then 2-3*x is even"

Given: (x:integer)

Conclusion: x is even ñ 2-3*x is even

Proof:

Assume that assumption1: x is even

Since x is even we get k such that fact1: x = 2*k

Let’s prove that (1-3*k) works

Calc

2-3*x = 2-3*(2*k) by We rewrite using fact1

= 2*(1-3*k ) by computation

QED

Goal 2 is the infimum of [2, 5).

Proof.

We need to show that (2 is a lower bound for [2, 5)

^ (@ l P R, l is a lower bound for [2, 5) ñ l ď 2)).

We show both statements.

- We need to show that (2 is a lower bound for [2, 5)).

We need to show that (@ c P [2, 5), 2 ď c).

Take c P [2, 5).

We conclude that (2 ď c).

- We need to show that

(@ l P R, l is a lower bound for [2, 5) ñ l ď 2).

Take l P R. Assume that (l is a lower bound for [2, 5)).
We conclude that (l ď 2).

Qed.

Lean Verbose (Massot 2024) Coq Waterproof (Wemmenhove et al. 2024)

‚ Original tactics are renamed or redefined to better fit vernacular language
‚ Can mix declarative and procedural
‚ Goal : improve transfer to pen and paper proof
‚ Possible bias : it is strict programming, not natural language
‚ Remedy : extend vocabulary (policy?)
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Different proof styles : Yalep

Theorem "if x is even then 2-3*x is even"

Assumptions: (x is integer)

Conclusion: if x is even then 2-3*x is even

Proof

assume x is even

˛ there exists an integer k such that x=2*k

obtain such k

⊚ 2-3*x = 2-3*(2*k)
= 2*(1-3*k)

˛ 2-3*x is even

□

dialect keep abandon

λ-term
structure,
proof object requires to learn functional programming

procedural proof state needs replaying with proof state to be understood
declarative statements proofs (at least if too detailed)
CNL syntactic sugar vocabulary extensibly large to imitate NL parsing
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1 What led us to Yalep ?

2 Designing an appropriate language

3 Yalep: a tiny language on top of Lean
based on forward chaining

4 Numbers

5 Partial functions

6 Automation

7 User assistance

8 Conclusion
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Towards a minimal language for high-school proofs

Key ingredients for minimality
1 No redundancy : let fix take / assume suppose let / obtain fix let ...
2 Avoid commands : instead of unfold, rewrite, compute : state a new fact
3 Implicit proof actions eliminate the need for specific tactics

ÝÑ Approach inspired from coherent logic (Stojanovic et al. 2014)

Connector Introduction Elimination
P and Q (silent) (silent)
P or Q (silent) (silent)

P ùñ Q assume P (silent)
@x P E,Ppxq let x P E (silent)
Dx P E,Ppxq (silent) obtain such x

P ðñ Q (silent) (silent)

4 Favor forward chaining (see next slide...)

Grenoble INP - UGA & IRIF, Université Paris Cité Yalep: An environment for learning proof in high-school 18/40



Towards a minimal language for high-school proofs

Key ingredients for minimality
1 No redundancy : let fix take / assume suppose let / obtain fix let ...
2 Avoid commands : instead of unfold, rewrite, compute : state a new fact
3 Implicit proof actions eliminate the need for specific tactics

ÝÑ Approach inspired from coherent logic (Stojanovic et al. 2014)

Connector Introduction Elimination
P and Q (silent) (silent)
P or Q (silent) (silent)

P ùñ Q assume P (silent)
@x P E,Ppxq let x P E (silent)
Dx P E,Ppxq (silent) obtain such x

P ðñ Q (silent) (silent)

4 Favor forward chaining (see next slide...)

Grenoble INP - UGA & IRIF, Université Paris Cité Yalep: An environment for learning proof in high-school 18/40



Towards a minimal language for high-school proofs

Key ingredients for minimality
1 No redundancy : let fix take / assume suppose let / obtain fix let ...
2 Avoid commands : instead of unfold, rewrite, compute : state a new fact
3 Implicit proof actions eliminate the need for specific tactics

ÝÑ Approach inspired from coherent logic (Stojanovic et al. 2014)

Connector Introduction Elimination
P and Q (silent) (silent)
P or Q (silent) (silent)

P ùñ Q assume P (silent)
@x P E,Ppxq let x P E (silent)
Dx P E,Ppxq (silent) obtain such x

P ðñ Q (silent) (silent)

4 Favor forward chaining (see next slide...)
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Favoring forward chaining
Forward chaining Backward chaining

let n be an integer

˛ n is even or n is odd

˛ if n is even then n*(n+1) is even

proof

assume n is even

˛ n*(n+1) is even by product even

□
˛ if n is odd then n*(n+1) is even

proof

assume n is odd

˛ n+1 is even

˛ n*(n+1) is even by product even

□
˛ n*(n+1) is even

Fact f1: n is even _ n is odd

from every integer is even or odd

We discuss depending on whether

n is even or n is odd

Assume that h1: n is even

We conclude by product even

applied to n and (n+1) and h1

Assume that h2: n is odd

We rewrite using mul comm

We apply product even

We conclude by successor odd

applied to n and h2

‚ Forces students to explicit their goals
‚ Relaxes constraint on order
‚ Requires less vocabulary

‚ Automatic opening of several goals
‚ Order of sub-goals imposed
‚ Appropriate vocabulary needed

Grenoble INP - UGA & IRIF, Université Paris Cité Yalep: An environment for learning proof in high-school 19/40



Favoring forward chaining
Forward chaining Backward chaining

let n be an integer

˛ n is even or n is odd

˛ if n is even then n*(n+1) is even

proof

assume n is even

˛ n*(n+1) is even by product even

□
˛ if n is odd then n*(n+1) is even

proof

assume n is odd

˛ n+1 is even

˛ n*(n+1) is even by product even

□
˛ n*(n+1) is even

Fact f1: n is even _ n is odd

from every integer is even or odd

We discuss depending on whether

n is even or n is odd

Assume that h1: n is even

We conclude by product even

applied to n and (n+1) and h1

Assume that h2: n is odd

We rewrite using mul comm

We apply product even

We conclude by successor odd

applied to n and h2

‚ Forces students to explicit their goals
‚ Relaxes constraint on order
‚ Requires less vocabulary

‚ Automatic opening of several goals
‚ Order of sub-goals imposed
‚ Appropriate vocabulary needed

Oṗ`e›n¯s
2 `g´oˆa˜lṡ
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Oṗ`e›n¯s
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Uṡfi`eˇrffl ¯sfi˚t´a˚t´eṡ
˜f´a`cˇtṡ
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The choice of Lean

‚ Proof assistants already provide real time display of proof state (context, goal)
and correctness: 1st level of feedback

‚ Lean provides
‚ Flexible parser and pretty printer (Massot 2024)
‚ Comprehensive, unified and community maintained Math Library (The Mathlib

Community 2020)
‚ Powerful tactic automation
‚ Lean module allowing to interact with React/JavaScript widgets (Nawrocki, Ayers,

and Ebner 2023)
‚ LeanWeb interface enables to run Lean in a web browser2

2
https://github.com/leanprover-community/lean4web
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Hiding types : a proof of
?

2 < Q in bare Lean
def Rationals : Set R := {x:R | D p:Z, D q:N, q , 0 ^ x=(p:R)/(q:R) ^ ␣(p is even ^ q is even)}

notation (priority := high) "Q" => Rationals
example :

?
2 < Q := by

intro (assumption1:
?
2 P Q)

let xp,q,(f03: q , 0),(f04: ?2 = p/q),(f05 : ␣ (p is even ^ q is even))y := assumption1

-- ensure that all computations are done with (p:R) and (q:R)
have f06 : (p:R)ˆ2 = (2:R)*(q:R)ˆ2 :=

calc

(p:R)ˆ2 = ((p:R)ˆ2/(q:R)ˆ2)*qˆ2 := by field simp

= (((p:R)/(q:R))ˆ2) * qˆ2 := by ring nf

= ((
?
2)ˆ2) * (q:R)ˆ2 := by rw [ă

?
2 = (p:R)/(q:R)ą]

= (2:R)*(q:R)ˆ2 := by norm num

-- back to (p:Z) and (q:Z) (using injectivity of coercion morphism)
have f07 : pˆ2 = 2*qˆ2 := by rify ; rw[f06]

have f08 : (pˆ2) is even := by use qˆ2

have f09 : p is even := by apply n2 even implies n even ; assumption

let x(k:Z), (f10: p = 2*k)y := f09

have f11 : (2*k)ˆ2 = 2*qˆ2 := by rw [Ð ăp = 2*ką , ăpˆ2 = 2*qˆ2ą]

have f13 : 2*kˆ2 = qˆ2 := by linarith

have f14 : (qˆ2) is even := by use kˆ2 ; apply Eq.symm ; assumption

have f15 : q is even := by apply n2 even implies n even ; assumption

have f16 : p is even := by apply n2 even implies n even ; assumption

have f17 : (p is even ^ q is even) := by constructor <;> assumption

contradiction

Grenoble INP - UGA & IRIF, Université Paris Cité Yalep: An environment for learning proof in high-school 22/40



Hiding types : a proof of
?

2 < Q in bare Lean

-- . . .obtain (p:Z) and (q:N) such that f04:
?
2 = p/q

-- . . . and p and q not both even

-- ensure that all computations are done with (p:R) and (q:R)
have f06 : (p:R)ˆ2 = (2:R)*(q:R)ˆ2 :=

calc

(p:R)ˆ2 = ((p:R)ˆ2/(q:R)ˆ2)*qˆ2 := by field simp

= (((p:R)/(q:R))ˆ2) * qˆ2 := by ring nf

= ((
?
2)ˆ2) * (q:R)ˆ2 := by rw [f04]

= (2:R)*(q:R)ˆ2 := by norm num

-- back to (p:Z) and (q:Z) (using injectivity of coercion morphism)
have f07 : pˆ2 = 2*qˆ2 := by rify ; rw[f06]

-- . . .
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Hiding types : a unique number type

‚ Bertot and Portet 2025 advocate for a unique number type.
ÝÑ They formalizeN as an inductive predicate over the Real type.

‚ Yalep integrates the same idea with a simpler formalization :

Given
a reference type T : Type
a type to be represented E : Type
an injective coercion morphism c : E Ñ T

we expose the image of E under c : c xEy :“ tx : T | Dy : E, x “ cpyqu

we hide the underlying types : E , T
‚ When T “ Real, this applies similarly for E P tNat, Int, Ratu.
‚ Automation should prove stability statements like

@x ,@y , x P c xEy ^ y P c xEy ñ x ` y P c xEy.
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Hiding types : a proof of
?

2 < Q in Yalep

Theorem sqrt 2 is irrational "
?
2 < Q"

Conclusion:
?
2 is not rational

Proof

assume that
?
2 is rational

˛ there exists an integer p such that

there exists a natural number q

such that q, 0 and
?
2 = p/q and

the statement (p is even and q is

even) is false

obtain such p

obtain such q

⊚ pˆ2 = (p/q)ˆ2 * qˆ2
= (

?
2)ˆ2 * qˆ2

= 2 * qˆ2

˛ pˆ2 is even

˛ p is even by n2 even implies n even

obtain an integer k such that p = 2*k

⊚ qˆ2 = (2*qˆ2)/2
= pˆ2 / 2

= (2*k)ˆ2 /2

= 2 * kˆ2

˛ qˆ2 is even

˛ q is even by n2 even implies n even

˛ Absurd

□
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Representing type-partial functions
let’s define the function f

from r2;+8r to r3;+8r that maps x to xˆ2

Exercise "f is increasing on r4;+8r"

Conclusion: for all x P r 4 ; +8 r,

for all y ě x,

xě2 and yě2 and fpyq ě fpxq

Proof

let x P r 4 ; +8 r

let y ě x

˛ x ě 2

˛ y ě 2

˛ yˆ2 - xˆ2 = (y-x)*(y+x)

˛ y + x ě 0

˛ y - x ě 0

˛ (y + x)*(y - x) ě 0

˛ yˆ2 - xˆ2 ě 0

˛ xˆ2 ď yˆ2

˛ fpxq ď fpyq

□

Problematics:
‚ Proof assistants based on type theory

manipulate type-total functions

f : αÑ β

‚ How to encode type-partial functions ?
We expect :

(i) f contains its domain (r2;`8r) and
codomain (r3;`8r)

(ii) writing fpxq is allowed because
x P domain is provable
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Representing type-partial functions : First representation

A first representation3 guarantees (i) and (ii):

f : ÒD Ñ ÒF

where ÒD :“
ÿ

x:α
px P Dq denotes the type of dependent pairs xx:α,hx: x P Dy.

Syntactic sugar4 :
‚ fp3q denotes (f x3,(by norm num:(2:Real)ď3)y).val

‚

let’s define the function f

from r2;+8r to r3;+8r

that maps x to xˆ2
denotes:

def f:Òr2;+8rÑÒr3;+8r:=fun xx,(hx:xě2)y=>xxˆ2,((by nlinarith):(xˆ2 ě 3))y

3described in C. Paulin’s lecture https://www.lri.fr/˜paulin/LASER/coq-slides4.pdf
4Without sugar, discarded by Coen and Zoli 2007 in educational context
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Representing type-partial functions : Second representation

Drawbacks of first representation :
‚ A type appears to the user ( ÒD Ñ ÒF)
‚ f : ÒD Ñ ÒF and its derivative f 1 : ÒD 1f Ñ ÒF 1 have distinct types, thus

!

f | D 1f “ D and f “ f 1
)

does not typecheck

Second representation:

structure Map (α β:Type) where
func: αÑβ
domain: Set α
codomain: Set β
prop: @xPdomain,func xPcodomain

prop out:@x:α,x<domainÑfunc x=default

f : ÒD Ñ ÒF u : Map α β

ζ

ζ´1

define new function

apply function to x

CANONICAL
BIJECTION
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Automation : example 1/3
Theorem nn1even "7. Using (. . . or . . .) : proof by cases"

Assumptions: (for all integer n, n is even or n is odd)

Conclusion: for all integer n, n*(n+1) is even

Proof

let n be an integer

˛ n is even or n is odd

˛ if n is even then n*(n+1) is even

proof

assume n is even

˛ n*(n+1) is even by product even

□
˛ if n is odd then n*(n+1) is even

proof

assume n is odd

˛ n+1 is even

˛ n*(n+1) is even by product even

□
˛ n*(n+1) is even

□
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F̊i‹n`d¯s ˚r`e¨l´e›vˆa‹n˚t `a¯sfi¯sfi˚u‹m¯p˚tˇi`o“nffl;
`e¨lˇi‹m˚i‹n`a˚t´eṡ @ ˚i‹nffl ˚i˚t
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`e¨lˇi‹m˚i‹n`a˚t´eṡ @ ˚i‹nffl ˚i˚t
Aṗ¯p˜lˇi`eṡ ¯sfi¯p`e´cˇi˜fˇi`e´dffl ˜l´e›m‹m`affl ˚t´o ˚r`e¨l´e›vˆa‹n˚t
`a¯sfi¯sfi˚u‹m¯p˚tˇi`o“n¯s ˚i‹nffl `c´o“n˚t´e›xˇt
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Automation : example 1/3
Theorem nn1even "7. Using (. . . or . . .) : proof by cases"

Assumptions: (for all integer n, n is even or n is odd)

Conclusion: for all integer n, n*(n+1) is even

Proof

let n be an integer

˛ n is even or n is odd
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proof
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˛ n*(n+1) is even by product even

□
˛ if n is odd then n*(n+1) is even

proof
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˛ n*(n+1) is even by product even

□
˛ n*(n+1) is even

□

F̊i‹n`d¯s ˚r`e¨l´e›vˆa‹n˚t `a¯sfi¯sfi˚u‹m¯p˚tˇi`o“nffl;
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`a¯sfi¯sfi˚u‹m¯p˚tˇi`o“n¯s ˚i‹nffl `c´o“n˚t´e›xˇt
T‚h`e ˜l´e›m‹m`affl `gˇi‹vfleṡ pn`1qn `e›vfle›nffl. U”n˚iffl-
˜fˇi`eṡ ”w˘i˚t‚hffl npn ` 1q ˜b“y `c´o“m‹m˚u˚t´a˚tˇi‹v˘i˚t›y.
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Automation : example 2/3

Theorem sqrt 2 is irrational "
?
2 < Q"

Conclusion:
?
2 is not rational

Proof

assume that
?
2 is rational

˛ there exists an integer p such that

there exists a natural number q

such that q, 0 and
?
2 = p/q and

the statement (p is even and q is

even) is false

obtain such p

obtain such q

⊚ pˆ2 = (p/q)ˆ2 * qˆ2
= (

?
2)ˆ2 * qˆ2

= 2 * qˆ2

˛ pˆ2 is even

˛ p is even by n2 even implies n even

obtain an integer k such that p = 2*k

⊚ qˆ2 = (2*qˆ2)/2
= pˆ2 / 2

= (2*k)ˆ2 /2

= 2 * kˆ2

˛ qˆ2 is even

˛ q is even by n2 even implies n even

˛ Absurd

□
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□

q , 0 `a‹n`dffl ?
2 “ p{q `a‹n`dffl . . .

˜b˘r`o˝k`e›nffl ˚i‹n˚t´o 3 ˜f´a`cˇtṡ
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A˚u˚t´o ˚i‹n˜f´eˇr¯s
q P Z
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Automation : example 3/3
let’s define the function f

from r2;+8r to r3;+8r that maps x to xˆ2

Exercise "f is increasing on r4;+8r"

Conclusion: for all x P r 4 ; +8 r,

for all y ě x,

xě2 and yě2 and fpyq ě fpxq

Proof

let x P r 4 ; +8 r

let y ě x

˛ x ě 2

˛ y ě 2

˛ yˆ2 - xˆ2 = (y-x)*(y+x)

˛ y + x ě 0

˛ y - x ě 0

˛ (y + x)*(y - x) ě 0

˛ yˆ2 - xˆ2 ě 0

˛ xˆ2 ď yˆ2

˛ fpxq ď fpyq

□
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□

P̊r`o“vfleṡ ˚t‚h`a˚t @x P r2;`8r, x2 P r3;`8r
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Grenoble INP - UGA & IRIF, Université Paris Cité Yalep: An environment for learning proof in high-school 32/40



Automation : example 3/3
let’s define the function f

from r2;+8r to r3;+8r that maps x to xˆ2

Exercise "f is increasing on r4;+8r"

Conclusion: for all x P r 4 ; +8 r,

for all y ě x,

xě2 and yě2 and fpyq ě fpxq

Proof

let x P r 4 ; +8 r

let y ě x

˛ x ě 2

˛ y ě 2

˛ yˆ2 - xˆ2 = (y-x)*(y+x)

˛ y + x ě 0

˛ y - x ě 0

˛ (y + x)*(y - x) ě 0

˛ yˆ2 - xˆ2 ě 0

˛ xˆ2 ď yˆ2

˛ fpxq ď fpyq

□
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P̊r`o“vfleṡ ˚t‚h`a˚t x P r2;`8r
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1 What led us to Yalep ?

2 Designing an appropriate language

3 Yalep: a tiny language on top of Lean
based on forward chaining

4 Numbers

5 Partial functions

6 Automation

7 User assistance

8 Conclusion
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Widgets
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Conclusion

Yalep, geared towards high-school students, features:
‚ A minimal language declarative language based on forward chaining
‚ Enough automation to allow most basic proof steps left unjustified
‚ A mechanism to hide type foundations of the underlying P.A., namely:

‚ Transparent handling of user number setsN,Z,Q,R.
‚ Transparent manipulation of type-partial functions

Try it!
Web interface:

Git:

Future work
‚ Automation : rationalize, optimize, limit, configure
‚ Feedback (pretty printer, error messages)
‚ Cover high school curriculum (including Première, Terminale)
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http://vm-lean4web.nova.u-ga.fr/
https://gricad-gitlab.univ-grenoble-alpes.fr/yalep/Yalep


Demo
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Questions?

Thank you !

Grenoble INP - UGA & IRIF, Université Paris Cité Yalep: An environment for learning proof in high-school 39/40



1 What led us to Yalep ?

2 Designing an appropriate language

3 Yalep: a tiny language on top of Lean
based on forward chaining

4 Numbers

5 Partial functions

6 Automation

7 User assistance

8 Conclusion
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