THALES

|Frove your Colorings:
Formal Verification of Cache
Coloring of Bao Hypervisor

Axel Ferréol, Laurent Corbin, Nikolai KOSMATOV

Thales Research & Technology, cortAlx Labs,
Palaiseau (Paris-Saclay), France

EuroProofNet Symposium, Orsay, Sep 18, 2025
First presented: ETAPS / FASE 2025, Hamilton, May 06, 2025

www.thalesgroup.com

7 .
ITﬁaIes group Overview

i ol

over77,ooo 68 countries €1 bn

employees Global presence Self-funded R&D

* Does not include
externally financed R&D

any way, in whol

- ©Thales 2018 All rights re

nsent of Thales

This document may not be reproduced, modified, adapted, published, translated, in
arty without the prior written co

part or disclosed to a third p

THALES

IT

77
I Thales’ Mission

: - Digital Identity and
SenSIng i n R
& data gathering

V an .
Data transmission A [4 Ormmmrannes Defence and Security

& storage

ny way, in whole ol

- ©Thales 2018 All rights reserv

nt of Thales

v S
Data processing \,
- & decision making \&'\

We help customers master decisive moments by providing

the right information at the right moment

This document may not be reproduced, modified, adapted, published, translated, in a

part or disclosed to a third p

THALES

IT

I Previous Work: Formal Verification of JavaCard Virtual Machine
| Common Criteria: Int. Standard for Security Certification
> The highest level (EAL7) requires a formal proof of correctness and security

n any way, in who \ i

ent of Thales - © Thales 2018 Al rights r

| World-first formal verification of real-life smart card code for certification
» Previous certification approach with a high-level model not accepted anymore

| EAL7 certificate issued by ANSSI in Oct. 2022

| Only 5t EALY certificate out of 1600+ certifications worldwide
» Competitors do not hold EALY certificates for smart cards today

rty without the prior writte

| Innovative methodology of formal verification for certification

Publication: Adel Djoudi, Martin Hana and Nikolai Kosmatov.
“Formal verification of a JavaCard virtual machine with Frama-C”. FM 2021.

This document may not be reproduced, mo df d, ada pT d p ublished, translated, i

part or disclosed to a third pai

THALES

IT

I Motivation and Main Goal of this Work

| Hypervisors become highly relevant for critical embedded systems to enable more functions

2 As itis not possible to add more hardware because of size, weight and cost constraints
| Static hypervisors rely on partitioning of resources: each VM accesses its own resources

| Some resources must be shared, such as processor last-level cache (LLC)
> This cache is shared between several cores, each one possibly running a different VM

| Cache coloring is used to split cache into several areas, each associated with a color
| Assigning different colors to VMs ensures isolation of the cache areas they use

| Cache coloring is complex and highly critical, its correctness is essential to guarantee

| Our goal: formal verification of the cache coloring in Bao, a static hypervisor

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.

THALES

IT

I Plan

» Frama-C verification platform

» Bao Hypervisor and Cache Coloring
» ldentified Bugs and Corrections

> Verification Results and Statistics

» Verification Approach Highlights

» Conclusion and Future Work

THALES

I Frama-C, its Deductive Verification plugin WP and Specification Language ACSL

ny way, in whole orin

- ©Thales 2018 All rights reserve

This document may not be reproduced, modified, adapted, published, translated, in a

g}

nt of Thales

part or disclosed to a third party without the prior written conse

IT

Frama-C is a platform for analysis and verification of C programs
» It supports ACSL (ANSI C Specification Language)

Deductive verification plugin WP: based on weakest precondition
> Proof of semantic properties of the program

> Modular verification (function by function)

> Input: a program and its specification in ACSL

» WP generates verification conditions (VCs)

» Relies on Why3 and Automatic Provers to discharge VCs
- Alt-Ergo, Z3, CVCS5, ...
> Interactive proof via WP proof scripts or in proof assistant Rocq

Value analysis plugin Eva: based on abstract interpretation

: C

Software Analyzers

Nikolai Kosmatov
Virgile Prevosto
Julien Signoles
Editors

Guide

to Software
Verification
with Frama-C

Core Components, Usages, and
Applications

W Birkhauser

THALES

I Bao Hypervisor and Cache Coloring

| Bao [1] is a lightweight open-source static hypervisor for embedded systems

ny way, i wh\ i

nsent of Thales - © Thale 20 8 All rights r

| Provides strong isolation between VMs and real-time guarantees

| Features an elegant implementation of cache coloring
» A color is assigned to each memory page
» Data of a memory page can be loaded only into cache sets of the same color
» Only pages of certain color(s) can be assigned to each VM
2 Thus, a VM cannot access data of other VMs

rty without the prior written co

- | Itis crucial to ensure correctness of this implementation

This document may not be reproduced, modified, adapted, pub\ished,f nslated, in

part or disclosed to a thir dp

[1] https://github.com/bao-project/bao-hypervisor
THALES

I?

I Implementation: Example of Page Coloring

The main memory layout in Bao with activated coloring

looks like this: B
| Pages are colored into the same color by consecutive porode
groups of COLOR_SIZE pages colored
pages

] Colors follow a constant sequence that loops every
COLOR_NUM groups — COLOR_NUM

| The periodic block of colors is repeated to engender

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.

the coloring of pages for the whole memory I
COLOR_SIZE —
| In this example, we consider 4 colors and 4 E
consecutive pages in each group of the same color
b THALES

I Implementation: Looking for n Free Consecutive Suitably-colored Pages (pset)

ny way, in whole or in

- ©Thales 2018 All rights reserve

This document may not be reproduced, modified, adapted, published, translated, in a

g}

nt of Thales

arty without the prior written conse

part or disclosed to a third p

B

Allocation of n pages to a VM requires to find a set of n free
consecutive suitably-colored pages inside a given pool of
pages. We call such a set a pset.

If we know the first page, we can recover all pages of the set.

Examples for the figure nearby:
I {p2, p4, p6} a pset of size 3 for the yellow color? Yes
I {p1, p3} a pset of size 2 for the blue color? No, p3 not free

| {p1, p5} a pset of size 2 for the blue color? No, not
consecutive, p3 is blue and in-between

Page p7
Page p6

Page p5
Page p4

Page p3
Page p2

= | O O =0 o Oo| =

free page

Page p1

Page p0

1 |allocated page

THALES

I Identified Bugs: First Example

Allocation of a set of 2 free consecutive blue pages

when the starting page is p7 1 Page p7
returns a wrong result: the set {p1, p3} 1 Page p6
instead of returning false (not found)] Page p5

;;E 1 Page p4

Page p3 has already been allocated, possibly to the same VM 1 e

.. oranother VM accepting the blue color! 1 Page p2

g; 0 Page p1

:§ 0 Page p0

:¢ We confirmed this counterexample with the value analysis

E plugin Eva of Frama-C. 0 |free page [T]allocated p

I THALES

I Identified Bugs: Second Example

Allocation of a set of 2 free consecutive blue pages

ny way, in whole or in

We confirmed this counterexample with the value analysis
plugin Eva of Frama-C.

¢ when the starting page is p1 1 Page p7
% returns a wrong result: the set {p5, p7} 0 Page p6
instead of returning false (not found) 0 e
i- Page p7 has already been allocated, possibly to the same VM 0 Page p4
¢-oranother VM accepting the blue color! 1 Page p3
EE 0 Page p2
. L 0 Page p1
23 Inavariant, page p7 may be non-existing, or have already
f-) . 0 Page p0
- been allocated, possibly to the hypervisor, same VM or
3 i I
another VM accepting the blue color! 0lfres page [Tlallocated p

part or disclosed to a third p

THALES

B

Issue Reported and Fixed:

| We reported the issue to
Bao developers and
proposed bug fixes

Thales 2018 All rights reserved.

| Our corrections were
integrated

] Bugs were present since
2020!

| We proposed further code
optimizations in the paper

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

B

Lt

Possibly incorrect allocation in function pp_alloc_clr #199

|| & Closed

nkosmatov opened on Dec 26, 2024

While working on formal verification of cache coloring and page coloring mechanisms in Bao, we discovered two issues in function
pp_alloc_clr

The following line (currently line 138 in commit c386p8f in file src/core/mmu/mem.c)

index ++;

should be removed. Otherwise , in some situations, a previously allocated page can be allocated again, or other unintended behavior
can occur.

The following line (currently line 161 in commit c386p8f in file sre/core/mmu/mem.c)
index = 8;

should be replaced by

index = pp_next_clr { pool-»base , ® , colors) ;

Otherwise , in some situations, a previously allocated page can be allocated again.

After the proposed modifications we were able to prove a (slightly simplified) corrected version of cache coloring and page coloring
mechanisms in Bao.

josecm on Dec 26, 2024 Member

Hello @nkosmatov!

After the proposed modifications we were able to prove a (slightly simplified) corrected version of cache coloring and page
coloring mechanisms in Bao.

This is amazing!! Thank you for doing that work.

Your corrections seem to make sense. I'd propose you send a PR with the fixes you point out.

I Verification Results and Statistics

. | Formal verification for 4 key functions: pp_next_clr, bitmap_get, bitmap_set, pp_alloc_clr

ny way, in who \ 'h

©Tha \ 2018 All rights r

» To check consistency, also for 2 (simplified) upper-level functions: mem_alloc_ppages and mem_map

| Stats: 100 lines of C code, 600 lines of ACSL annotations
> Slightly simplified C code, but all semantic behavior in the key functions is preserved

onsent of Thales -

» Annotations include function and loop contracts, predicates, ghost code, assertions, lemmas

| The full proof with Frama-C/WP v. 29.0 takes ~5 min
> with options -wp-par=8 and -wp-timeout=40

TyWTh ut the prior writte

| 523 proof goals
> 465 (88%) are proved automatically (by Frama-C, internal solver QED or SMT solvers Alt-Ergo, Z3, CVC5)
> 55 (11%) proved by interactive WP proof scripts
» 3 (1%) in proof assistant Rocq

This document may not be reproduced, modified, ada pf ed, published, Trom\ ted, i

part or disclosed to a third pai

THALES

B

I Verification Highlights: Arithmetic Lemmas Proved in Rocq
_ || Page colors are efficiently computed with modulo and
division operations

ny way, in who \ 'ﬂ

©Tha \ 20 8 All rights r

| Solvers are unable to handle such operations directly

| To address this, we use 4 arithmetic lemmas,
and prove 3 of them in Rocq

onsent of Thale

| For instance, the next lemma gives an optimized way to
compute the color of a page:

arty without the prior writte

lemma arith_1: ¥V Z a,b,c,d; 0 < a A0 <bAO0O<cAO0<<d=>
((a+b)/c)hd == ((a+b%(c*xd))/c)id

This document may not be reproduced, modified, ada pT ed, published, 1 nslated, i

part or disclosed to a third p

THALES

B

I Verification Highlights: Ghost Arrays, 1/2

Ghost arrays help solvers reason on bits:

] We maintain an equivalence between a bitvector of
colors and a ghost array of integers

| Such flattening invariants facilitate reasoning (on
integers in array cells instead of bits)

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed fo a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.

THALES

B

I Verification Highlights: Ghost Arrays, 2/2

Ghost arrays used to specify the existence case:

ny way, in whole or in

ntof Thales - © Thales 2018 All rights reserve:

| The existence of a required pset is expressed with a witness, a global ghost array

| This simple solution avoids more complex alternatives with lots of quantifiers when a
witness has to be found inside the function from an existential precondition

| We prove that if a witness pset exists, the allocation function finds a pset
| Specification completeness also requires the proof: if a pset does not exist, it is not found

| Instead, we prove: if a pset is found, it was initially present

arty without the prior written conse

Ghost arrays help to prove termination:

| Maximal number of loop steps is computed in ghost code using a witness

This document may not be reproduced, modified, adapted, published, translated, in a

part or disclosed to a third p

THALES

=

I Verification Highlights: Linked Lists (and Ghost Arrays Again)

.] Adifficulty to handle linked lists used to represent pools of pages

ywy‘nwh\ 'ﬂ

| List nodes contain several data fields and pointers to external arrays

ent of Thales - © Thales 2018 Al rights r

We use a technique inspired by previous work [Blanchard et al, NFM 2018, SAC 2019]:
| introduce a companion ghost array containing the addresses of the nodes of the linked list

| define and maintain a suitable linking predicate, which establishes the link between them

arty without the prior writte

This document may not be reproduced, mo d'f‘ d, ada pT d p ublished, translated, in a

Ghost code index index+n-1
£ oA 8 [ecepfee] [|
% pLst root A B C D E
° &root &B - &C - &D - &E - bound
. Actual code

THALES

B

I Verification Highlights: Non-trivial Invariants for Nested Loops

_] With three levels of nested loops, carefully chosen loop invariants were necessary

n any way, in who \ 'ﬂ

©Thales 2018 All rights r

| To prove that the function finds a pset when there exists a suitable pset in the pool, we have
to ensure that if such a pset exists in the pool, then it is not missed

nt of Thales -

» itis either located in the part of the pool the function has not explored so far, or
> the function is about to find it, that is, the candidate pset is (partly) inside the witness

rty without the prior written conse

| We carefully express this property in the nested loops to have it preserved

-] Notice that the function can possibly find another pset before the witness if it exists

This document may not be reproduced, modified, adapted, published, franslated, i

part or disclosed to a third p

THALES

B

I Verification Highlights: Separation Issues and WP scripts

_] Additional separation clauses were often necessary

ywymwh\ 'h

- ©Thales 2018 All rights r

| Difficulties in proving preservation of seemingly trivial properties through assignments

> In the memory model of WP, pointers are treated as indices within arrays, where cells correspond to the
pointed values

nsent of Thales

> Consequently, properties involving pointers are translated into properties over arrays in WP

» When a pointed value is modified, the whole array is seen as possibly modified, making proofs non-trivial for
solvers

| Manually created proof scripts in WP to show that values in predicates remain unchanged

arty without the prior written co

| This leads to a significant verification overhead making the proofs complex to maintain

| A proof script stability issue in WP was detected and reported

This documen Tm ay not be reproduced, modified, adapted, published, translated, in a

part o d closed fo a third p

THALES

B

I Companion Artifact

.] A companion artifact is available

2018 All

] It can be used to reproduce the proof

Th

=] Itcontains
-. 2 All'tools installed in a ready-to-use VM
» Annotated code of the case study

» WP proof scripts and proofs in Rocq

tthe pr

» Counterexamples that can be used to confirm the bugs
in the value analysis plugin Eva of Frama-C

G
9
o

d party withou

entmay r

or disclosed to a thir

his docum

T

THALES

I?

I Conclusion and Future Work

| Successful formal verification of cache coloring in Bao with Frama-C

| An original, industrially-relevant and security-critical target

ny way, in whole o

- ©Thales 2018 All rights reserve

> The code is very elegant but challenging for deductive verification: it contains bit-level operations, non-trivial
logic, complex arithmetic operations, multiple nested loops, linked lists

nt of Thales

| We give its pedagogical presentation and emphasize main aspects of verification

] Two subtle bugs in the target code were identified and fixed, further optimizations were
suggested, a minor issue in the verification tool was reported

Future work includes

arty without the prior written conse

| verification of optimized versions of cache coloring

| a larger verification of critical parts of the Bao hypervisor

This document may not be reproduced, modified, adapted, published, translated, in a

part or disclosed to a third p

| long-term goal: a highly optimized, verified static hypervisor for embedded systems

THALES

s

